“OS-Circular”: a Framework of Internet Client with Xen
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Industrial Control Via Application Containers: Migrating from Bare-Metal to IAAS
Industrial Control via Application Containers: Migrating from Bare-Metal to IAAS Florian Hofer, Student Member, IEEE Martin A. Sehr Antonio Iannopollo, Member, IEEE Faculty of Computer Science Corporate Technology EECS Department Free University of Bolzano-Bozen Siemens Corporation University of California Bolzano, Italy Berkeley, CA 94704, USA Berkeley, CA 94720, USA fl[email protected] [email protected] [email protected] Ines Ugalde Alberto Sangiovanni-Vincentelli, Fellow, IEEE Barbara Russo Corporate Technology EECS Department Faculty of Computer Science Siemens Corporation University of California Free University of Bolzano-Bozen Berkeley, CA 94704, USA Berkeley, CA 94720, USA Bolzano, Italy [email protected] [email protected] [email protected] Abstract—We explore the challenges and opportunities of control design full authority over the environment in which shifting industrial control software from dedicated hardware to its software will run, it is not straightforward to determine bare-metal servers or cloud computing platforms using off the under what conditions the software can be executed on cloud shelf technologies. In particular, we demonstrate that executing time-critical applications on cloud platforms is viable based on computing platforms due to resource virtualization. Yet, we a series of dedicated latency tests targeting relevant real-time believe that the principles of Industry 4.0 present a unique configurations. opportunity to explore complementing traditional automation Index Terms—Industrial Control Systems, Real-Time, IAAS, components with a novel control architecture [3]. Containers, Determinism We believe that modern virtualization techniques such as application containerization [3]–[5] are essential for adequate I. INTRODUCTION utilization of cloud computing resources in industrial con- Emerging technologies such as the Internet of Things and trol systems. -
HTTP-FUSE Xenoppix
HTTP-FUSE Xenoppix Kuniyasu Suzaki† Toshiki Yagi† Kengo Iijima† Kenji Kitagawa†† Shuichi Tashiro††† National Institute of Advanced Industrial Science and Technology† Alpha Systems Inc.†† Information-Technology Promotion Agency, Japan††† {k.suzaki,yagi-toshiki,k-iijima}@aist.go.jp [email protected], [email protected] Abstract a CD-ROM. Furthermore it requires remaking the entire CD-ROM when a bit of data is up- dated. The other solution is a Virtual Machine We developed “HTTP-FUSE Xenoppix” which which enables us to install many OSes and ap- boots Linux, Plan9, and NetBSD on Virtual plications easily. However, that requires in- Machine Monitor “Xen” with a small bootable stalling virtual machine software. (6.5MB) CD-ROM. The bootable CD-ROM in- cludes boot loader, kernel, and miniroot only We have developed “Xenoppix” [1], which and most part of files are obtained via Internet is a combination of CD/DVD bootable Linux with network loopback device HTTP-FUSE “KNOPPIX” [2] and Virtual Machine Monitor CLOOP. It is made from cloop (Compressed “Xen” [3, 4]. Xenoppix boots Linux (KNOP- Loopback block device) and FUSE (Filesys- PIX) as Host OS and NetBSD or Plan9 as Guest tem USErspace). HTTP-FUSE CLOOP can re- OS with a bootable DVD only. KNOPPIX construct a block device from many small block is advanced in automatic device detection and files of HTTP servers. In this paper we describe driver integration. It prepares the Xen environ- the detail of the implementation and its perfor- ment and Guest OSes don’t need to worry about mance. lack of device drivers. -
How to Create a Custom Live CD for Secure Remote Incident Handling in the Enterprise
How to Create a Custom Live CD for Secure Remote Incident Handling in the Enterprise Abstract This paper will document a process to create a custom Live CD for secure remote incident handling on Windows and Linux systems. The process will include how to configure SSH for remote access to the Live CD even when running behind a NAT device. The combination of customization and secure remote access will make this process valuable to incident handlers working in enterprise environments with limited remote IT support. Bert Hayes, [email protected] How to Create a Custom Live CD for Remote Incident Handling 2 Table of Contents Abstract ...........................................................................................................................................1 1. Introduction ............................................................................................................................5 2. Making Your Own Customized Debian GNU/Linux Based System........................................7 2.1. The Development Environment ......................................................................................7 2.2. Making Your Dream Incident Handling System...............................................................9 2.3. Hardening the Base Install.............................................................................................11 2.3.1. Managing Root Access with Sudo..........................................................................11 2.4. Randomizing the Handler Password at Boot Time ........................................................12 -
Deep Compression
COVER STORY Cloop DEEPBlock device compression COMPRESSION with the cloop module KYRO, photocase.com KYRO, The cloop module lets you manage compression at the block device 512 bytes), and they are usually used for random access storage like ramdisks, level. Read on to learn how Knoppix and other Live CDs fit all that CD-ROMs, floppy disks, hard disks, and hard disk partitions. software on a single disc. BY KLAUS KNOPPER Filesystems are a logical representa- tion of ordered data that is often present loop is a kernel block device block-based devices. If you look into the on a block device. A filesystem turns raw module used in Live CDs such output of ls -l /dev, you will easily recog- data into the familiar directory/file view. Cas Knoppix. The cloop module nize these devices by the prefix – c for The mount command is the bridge be- allows the system to read compressed character-based and b for block-based tween a block device partition and its data, usually from a file, thus creating devices – at the beginning of the output projection into a mount point directory. compressed virtual disks. Using cloop, line (see Listing 1). a Linux installation of about 2GB fits on Character-based devices, such as tape Cloop: A Compressed a single 700MB CD-R disc. In this article, drives, mice, and gamepads, provide se- Loopback Block Device I look at how cloop works and provide quential, character-by-character access One block device included in any Linux some insight into general kernel struc- to data. -
Xen on X86, 15 Years Later
Xen on x86, 15 years later Recent development, future direction QEMU Deprivileging PVShim Panopticon Large guests (288 vcpus) NVDIMM PVH Guests PVCalls VM Introspection / Memaccess PV IOMMU ACPI Memory Hotplug PVH dom0 Posted Interrupts KConfig Sub-page protection Hypervisor Multiplexing Talk approach • Highlight some key features • Recently finished • In progress • Cool Idea: Should be possible, nobody committed to working on it yet • Highlight how these work together to create interesting theme • PVH (with PVH dom0) • KConfig • … to disable PV • PVshim • Windows in PVH PVH: Finally here • Full PVH DomU support in Xen 4.10, Linux 4.15 • First backwards-compatibility hack • Experimental PVH Dom0 support in Xen 4.11 PVH: What is it? • Next-generation paravirtualization mode • Takes advantage of hardware virtualization support • No need for emulated BIOS or emulated devices • Lower performance overhead than PV • Lower memory overhead than HVM • More secure than either PV or HVM mode • PVH (with PVH dom0) • KConfig • … to disable PV • PVshim • Windows in PVH KConfig • KConfig for Xen allows… • Users to produce smaller / more secure binaries • Makes it easier to merge experimental functionality • KConfig option to disable PV entirely • PVH • KConfig • … to disable PV • PVshim • Windows in PVH PVShim • Some older kernels can only run in PV mode • Expect to run in ring 1, ask a hypervisor PV-only kernel (ring 1) to perform privileged actions “Shim” Hypervisor (ring 0) • “Shim”: A build of Xen designed to allow an unmodified PV guest to run in PVH mode -
QEMU Version 4.2.0 User Documentation I
QEMU version 4.2.0 User Documentation i Table of Contents 1 Introduction ::::::::::::::::::::::::::::::::::::: 1 1.1 Features :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 2 QEMU PC System emulator ::::::::::::::::::: 2 2.1 Introduction :::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.2 Quick Start::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.3 Invocation :::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 2.3.1 Standard options :::::::::::::::::::::::::::::::::::::::::: 3 2.3.2 Block device options :::::::::::::::::::::::::::::::::::::: 12 2.3.3 USB options:::::::::::::::::::::::::::::::::::::::::::::: 23 2.3.4 Display options ::::::::::::::::::::::::::::::::::::::::::: 23 2.3.5 i386 target only::::::::::::::::::::::::::::::::::::::::::: 30 2.3.6 Network options :::::::::::::::::::::::::::::::::::::::::: 31 2.3.7 Character device options:::::::::::::::::::::::::::::::::: 38 2.3.8 Bluetooth(R) options ::::::::::::::::::::::::::::::::::::: 42 2.3.9 TPM device options :::::::::::::::::::::::::::::::::::::: 43 2.3.10 Linux/Multiboot boot specific ::::::::::::::::::::::::::: 44 2.3.11 Debug/Expert options ::::::::::::::::::::::::::::::::::: 45 2.3.12 Generic object creation :::::::::::::::::::::::::::::::::: 54 2.3.13 Device URL Syntax ::::::::::::::::::::::::::::::::::::: 66 2.4 Keys in the graphical frontends :::::::::::::::::::::::::::::::: 69 2.5 Keys in the character backend multiplexer ::::::::::::::::::::: 69 2.6 QEMU Monitor ::::::::::::::::::::::::::::::::::::::::::::::: 70 2.6.1 Commands ::::::::::::::::::::::::::::::::::::::::::::::: -
Xen to KVM Migration Guide
SUSE Linux Enterprise Server 12 SP4 Xen to KVM Migration Guide SUSE Linux Enterprise Server 12 SP4 As the KVM virtualization solution is becoming more and more popular among server administrators, many of them need a path to migrate their existing Xen based environments to KVM. As of now, there are no mature tools to automatically convert Xen VMs to KVM. There is, however, a technical solution that helps convert Xen virtual machines to KVM. The following information and procedures help you to perform such a migration. Publication Date: September 24, 2021 Contents 1 Migration to KVM Using virt-v2v 2 2 Xen to KVM Manual Migration 9 3 For More Information 18 4 Documentation Updates 18 5 Legal Notice 18 6 GNU Free Documentation License 18 1 SLES 12 SP4 Important: Migration Procedure Not Supported The migration procedure described in this document is not fully supported by SUSE. We provide it as a guidance only. 1 Migration to KVM Using virt-v2v This section contains information to help you import virtual machines from foreign hypervisors (such as Xen) to KVM managed by libvirt . Tip: Microsoft Windows Guests This section is focused on converting Linux guests. Converting Microsoft Windows guests using virt-v2v is the same as converting Linux guests, except in regards to handling the Virtual Machine Driver Pack (VMDP). Additional details on converting Windows guests with the VMDP can be found in the separate Virtual Machine Driver Pack documentation at https://www.suse.com/documentation/sle-vmdp-22/ . 1.1 Introduction to virt-v2v virt-v2v is a command line tool to convert VM Guests from a foreign hypervisor to run on KVM managed by libvirt . -
Smaller Flight Data Recorders{
Available online at http://docs.lib.purdue.edu/jate Journal of Aviation Technology and Engineering 2:2 (2013) 45–55 Smaller Flight Data Recorders{ Yair Wiseman and Alon Barkai Bar-Ilan University Abstract Data captured by flight data recorders are generally stored on the system’s embedded hard disk. A common problem is the lack of storage space on the disk. This lack of space for data storage leads to either a constant effort to reduce the space used by data, or to increased costs due to acquisition of additional space, which is not always possible. File compression can solve the problem, but carries with it the potential drawback of the increased overhead required when writing the data to the disk, putting an excessive load on the system and degrading system performance. The author suggests the use of an efficient compressed file system that both compresses data in real time and ensures that there will be minimal impact on the performance of other tasks. Keywords: flight data recorder, data compression, file system Introduction A flight data recorder is a small line-replaceable computer unit employed in aircraft. Its function is recording pilots’ inputs, electronic inputs, sensor positions and instructions sent to any electronic systems on the aircraft. It is unofficially referred to as a "black box". Flight data recorders are designed to be small and thoroughly fabricated to withstand the influence of high speed impacts and extreme temperatures. A flight data recorder from a commercial aircraft can be seen in Figure 1. State-of-the-art high density flash memory devices have permitted the solid state flight data recorder (SSFDR) to be implemented with much larger memory capacity. -
L4 – Virtualization and Beyond
L4 – Virtualization and Beyond Hermann Härtig!," Michael Roitzsch! Adam Lackorzynski" Björn Döbel" Alexander Böttcher! #!Department of Computer Science# "GWT-TUD GmbH # Technische Universität Dresden# 01187 Dresden, Germany # 01062 Dresden, Germany {haertig,mroi,adam,doebel,boettcher}@os.inf.tu-dresden.de Abstract Mac OS X environment, using full hardware After being introduced by IBM in the 1960s, acceleration by the GPU. Virtual machines are virtualization has experienced a renaissance in used to test potentially malicious software recent years. It has become a major industry trend without risking the host environment and they in the server context and is also popular on help developers in debugging crashes with back- consumer desktops. In addition to the well-known in-time execution. benefits of server consolidation and legacy In the server world, virtual machines are used to preservation, virtualization is now considered in consolidate multiple services previously located embedded systems. In this paper, we want to look on dedicated machines. Running them within beyond the term to evaluate advantages and virtual machines on one physical server eases downsides of various virtualization approaches. management and helps saving power by We show how virtualization can be increasing utilization. In server farms, migration complemented or even superseded by modern of virtual machines between servers is used to operating system paradigms. Using L4 as the balance load with the potential of shutting down basis for virtualization and as an advanced completely unloaded servers or adding more to microkernel provides a best-of-both-worlds increase capacity. Lastly, virtual machines also combination. Microkernels can contribute proven isolate different customers who can purchase real-time capabilities and small trusted computing virtual shares of a physical server in a data center. -
Hands on Virtualization Using XEN
VirtualizationWorkshop09 < GridkaSchool09 < TWiki http://www-ekp.physik.uni-karlsruhe.de/~twiki/bin/view/GridkaSchool... Hands On Virtualization using XEN Hands On Virtualization using XEN General Setup The Machine Hardware Host Preparation (Standard UBUNTU XEN Host) Installation of the XEN Packages Modification of the Bootloader GRUB Reboot the Host System Explore Your New XEN dom0 Hardware Host Virtual Machine Preparation Start Your Virtual Machine Working with the Virtual Machines Network Setup on the Host System Start/Stop the Virtual Machines Change the Memory Allocated to the VM High Availability Shared Network Storage Solution Host Preparation Phase Configure the DRBD Device Startup the DRBD Device Setup the Filesystem on the Device Test the DRBD Raid Device Migration of the VMs Advanced tutorial (if you have time left): libvirt usage with XEN Installation of libvirt and tools VM libvirt configuration virsh usage libvirt GUI example "virt-manager" Additional Information General Setup The Machine Hardware The host systems are running Ubuntu 9.04 (Jaunty Jackalope). The following procedures will be possible on most common linux distributions with specific changes to the software installation steps. For Ubuntu we will use the Advanced Packaging Tool ( apt ) similar to Debian . RedHat or SuSE are using rpm or some GUI (Graphical User Interface) installation tool. Each workshop group has access to two hardware hosts: hostname gks- <1/2>-X .fzk.de gks- <1/2>-Y .fzk.de Replace <1/2> and X and Y with the numbers given on the workshop handout. Host Preparation (Standard UBUNTU XEN Host) 1 von 15 16.12.2009 15:13 VirtualizationWorkshop09 < GridkaSchool09 < TWiki http://www-ekp.physik.uni-karlsruhe.de/~twiki/bin/view/GridkaSchool.. -
Lars Kurth Community Manger, Xen Project Chairman, Xen Project Advisory Board Director, Open Source, Citrix Lars Kurth
Lars Kurth Community Manger, Xen Project Chairman, Xen Project Advisory Board Director, Open Source, Citrix lars_kurth Was a contributor to various projects Worked in parallel computing, tools, mobile and now virtualization Long history in change projects Community guy at Symbian Foundation Learned how NOT to do stuff Community guy for the Xen Project Working for Citrix Accountable to Xen Project Advisory Board Chairman of Xen Project Advisory Board 250000 200000 150000 More than 1 Projects Million Today 100000 Projected 50000 0 2006 2008 2010 2012 2014 Source: The 2013 Future of Open Source Survey Results Late 90’s Today Individuals & Hobbyist's Still about Individuals But, a majority are employees Companies have a huge stake Features How many users you have How many vendors back you How you are seen in the press … Different Management Disciplines can help you succeed Neutrality / Perception Support Infrastructure Expertise / Mentoring Vendor Network … BUT: You still need to do all the right things Case Study An Open Source Hypervisor > 10M Users Powering some of the biggest Clouds in Production Amazon Web Services, Rackspace Public Cloud, Terremark, … Several sub-projects Xen Hypervisor (including Xen on ARM), XAPI management tools, Mirage OS Linux Foundation Collaborative Project Sponsored by Amazon Web Services, AMD, Bromium, Calxeda, CA Technologies, Cisco, Citrix, Google, Intel, NetApp, Oracle, Samsung and Verizon 10 years old Four Key Issues Symptoms Consequences for Xen Fixes that were applied Effect this had (there may be others) -
Design of the Next-Generation Securedrop Workstation Freedom of the Press Foundation
1 Design of the Next-Generation SecureDrop Workstation Freedom of the Press Foundation I. INTRODUCTION Whistleblowers expose wrongdoing, illegality, abuse, misconduct, waste, and/or threats to public health or safety. Whistleblowing has been critical for some of the most important stories in the history of investigative journalism, e.g. the Pentagon Papers, the Panama Papers, and the Snowden disclosures. From the Government Accountability Project’s Whistleblower Guide (1): The power of whistleblowers to hold institutions and leaders accountable very often depends on the critical work of journalists, who verify whistleblowers’ disclosures and then bring them to the public. The partnership between whistleblowers and journalists is essential to a functioning democracy. In the United States, shield laws and reporter’s privilege exists to protect the right of a journalist to not reveal the identity of a source. However, under both the Obama and Trump administrations, governments have attempted to identify journalistic sources via court orders to third parties holding journalist’s records. Under the Obama administration, the Associated Press had its telephone records acquired in order to identify a source (2). Under the Trump Administration, New York Times journalist Ali Watkins had her phone and email records acquired by court order (3). If source—journalist communications are mediated by third parties that can be subject to subpoena, source identities can be revealed without a journalist being aware due to a gag that is often associated with such court orders. Sources can face a range of reprisals. These could be personal reprisals such as reputational or relationship damage, or for employees that reveal wrongdoing, loss of employment and career opportunities.