Integrated Multi-Omics of the Human Gut Microbiome in a Case Study Of

Total Page:16

File Type:pdf, Size:1020Kb

Integrated Multi-Omics of the Human Gut Microbiome in a Case Study Of ARTICLES PUBLISHED: 10 OCTOBER 2016 | VOLUME: 2 | ARTICLE NUMBER: 16180 OPEN Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes Anna Heintz-Buschart1*,PatrickMay1,CédricC.Laczny1,LauraA.Lebrun1, Camille Bellora2, Abhimanyu Krishna1, Linda Wampach1, Jochen G. Schneider1,3,4, Angela Hogan2, Carine de Beaufort1,5 and Paul Wilmes1* The gastrointestinal microbiome is a complex ecosystem with functions that shape human health. Studying the relationship between taxonomic alterations and functional repercussions linked to disease remains challenging. Here, we present an integrative approach to resolve the taxonomic and functional attributes of gastrointestinal microbiota at the metagenomic, metatranscriptomic and metaproteomic levels. We apply our methods to samples from four families with multiple cases of type 1 diabetes mellitus (T1DM). Analysis of intra- and inter-individual variation demonstrates that family membership has a pronounced effect on the structural and functional composition of the gastrointestinal microbiome. In the context of T1DM, consistent taxonomic differences were absent across families, but certain human exocrine pancreatic proteins were found at lower levels. The associated microbial functional signatures were linked to metabolic traits in distinct taxa. The methodologies and results provide a foundation for future large-scale integrated multi-omic analyses of the gastrointestinal microbiome in the context of host–microbe interactions in human health and disease. etagenomic studies of faecal samples have provided deep Furthermore, the microbiota of siblings have been found to be insights into the structure and functional potential of closer to each other than to their parents’22. In the present study, Mmicrobial communities within the human gastrointestinal healthy family members were used as a stringent control group in tract1,2, revealing their inter-individual variability3 and apparent type 1 diabetes mellitus (T1DM), a disease supposedly influenced intra-individual stability4,5. Case–control studies have associated by an interplay of genetics and environment. microbial traits in individuals with patterns of diseases, thereby The worldwide increase in the incidence of T1DM (ref. 24), implicating gastrointestinal microbial communities in a range especially in individuals with a low genetic risk25, suggests that of human disorders6–10. Metagenomics is able to resolve environmental factors may trigger the autoimmune destruction differences in the functional potential of microbial communities of insulin-producing beta cells in the endocrine pancreas that and has revealed a surprisingly stable set of core functions, causes T1DM. Gastrointestinal agents have been implicated in even though gastrointestinal community structures display this process due to the immune-modulatory role of the gastrointes- great inter-individual variation2. tinal tract26,27 and the potential involvement of the pancreatic ducts These deep insights notwithstanding, metagenomics offers little in the inflammation that culminates in beta-cell destruction28. information on which microbial traits are actually contributed to Case–control studies of the microbial community structure human physiology. More specifically, previous studies analysing during29–32, immediately after33,34 and before31,35 seroconversion, functional ‘omes’, such as the metatranscriptomes or the metapro- have tried but failed to identify generalizable disease-causing or teomes, in gastrointestinal samples9,11–17 have found that functional biomarker organism signatures. The present study does not focus genes predicted from metagenomes are not necessarily on the aetiology, but examines a relatively small cohort of individ- expressed9,11–13. Furthermore, as the functional omes display uals living with T1DM to determine whether there are effects higher variability and sensitivity to perturbation9,11–13, these vari- that are apparent in the structure and function of the ations may better reflect disease-related changes in host–micro- gastrointestinal microbiome linked to T1DM. biome interactions14,15. For this reason, the integration of In this Article, we expand our recently developed methodologies metagenomic, metatranscriptomic and metaproteomic data is for integrated multi-omic analyses of microbial consortia36,37 to expected to yield important insights into the human microbiome18, systematically explore the variability of the different omes and as it has for environmental microbial consortia19,20. their relationships in the context of a case study of familial Families play an important role in the formation of the micro- T1DM. Our study allowed us to link the expression of disease- biota of individuals3,21,22. More specifically, greater similarities associated microbial functions to distinct taxa, which demonstrates have been observed between the microbiota of family members the necessity for integrated multi-omic analyses of microbiota in the and cohabiting partners than between unrelated individuals23. context of human disease research. 1Luxembourg Centre for Systems Biomedicine, 7 avenue des Hauts-Fourneaux, 4362 Esch-sur-Alzette, Luxembourg. 2Integrated BioBank of Luxembourg, 6 rue Nicolas Ernest Barblé, 1210 Luxembourg, Luxembourg. 3 Department of Internal Medicine II, Saarland University Medical Center, 66421 Homburg, Germany. 4Centre Hospitalier Emile Mayrisch, Rue Emile Mayrisch, 4240 Esch-sur-Alzette, Luxembourg. 5Clinique Pédiatrique – Centre Hospitalier de Luxembourg, 4 rue Nicolas Ernest Barblé, 1210 Luxembourg. *e-mail: [email protected]; [email protected] NATURE MICROBIOLOGY 2, 16180 (2016) | DOI: 10.1038/nmicrobiol.2016.180 | www.nature.com/naturemicrobiology 1 © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. ARTICLES NATURE MICROBIOLOGY a M01 M02 M03 M04 Female with T1DM 2.1 2.4 3.1 4.6 4.1 1.1 1.2 1.3 Male with T1DM Female without T1DM 2.3 2.5 2.2 3.5 3.4 3.3 4.5 4.4 4.3 4.2 1.4 Male without T1DM 1.5 b #! Reads Variant calling !" Protein profile Whole human genome Individualized protein sequences Mass spectra Human proteins Functional profile Metaproteome Protein identification Microbial proteins Strain-resolved gene predictions Reads Taxonomic profile Functional profile Metatranscriptome Variant calling Functional Genome annotations reconstructions Assembly Alignment Gene predictions Reads Taxonomic profile Functional profile Metagenome Binning Detected mOTU marker genes mOTU marker genes Functional categories Figure 1 | Overview of the cohort and framework for integrated analyses. a, Pedigrees of participant families. Individuals who donated samples are represented by coloured symbols; these colours are reflected in all subsequent figures. Individuals with T1DM are represented by filled symbols. Samples of the two individuals denoted in grey letters and represented by symbols with dashed lines (M01.5 and M03.1) were only subjected to metagenomic analyses. b, Schematic representation of the per-sample analysis workflow. Resulting data sets framed with coloured boxes were used for cross-sample comparisons. Study cohort and microbial community structures groups than unrelated individuals, and samples did not cluster accord- The study cohort consisted of 20 individuals from four families of at ing to T1DM status (Supplementary Fig. 2). Similar to earlier ana- least two generations presenting at least two cases of T1DM (Fig. 1a). lyses38, 43 ± 14% of the detected microorganisms in each sample T1DM was in all cases diagnosed for more than five years and belonged to mOTUs without a sequenced isolate genome. The relative successfully controlled by insulin replacement therapy, and the abundance of single mOTUs not assigned to any phylum reached up to auto-antibody status of the healthy individuals did not indicate 9% (Supplementary Section 2). These results indicate that analytical immediate risk of developing T1DM (for detailed descriptions see approaches purely based on isolate reference genomes would not be Supplementary Section 1 and Supplementary Table 1). able to capture the taxonomic and functional diversity in these To obtain overviews of the microbial community structures in 53 microbial communities. well-preserved faecal samples collected over a period of two to four months, we calculated relative abundances of metagenomic operational Integrated multi-omics taxonomic units (mOTUs)38 from 3.9 ± 0.1 Gbp (mean ± standard Given the considerable proportion of taxa not represented by deviation (s.d.)) of metagenomic data per sample (Supplementary sequenced isolate genomes in the mOTU analyses, we devised a refer- Section 2, Supplementary Fig. 1 and Supplementary Table 2). In ence genome-independent workflow for the integration of metage- most cases, mOTU-based taxonomic profiles were stable over time nomic, metatranscriptomic and metaproteomic data (Fig. 1b). A within individuals. Given that family members share environment, total of 8.0 ± 1.0 Gbp (mean ± s.d.) of metatranscriptomic sequen- nutrition and genetic background, families formed more distinct cing data and 185,000 ± 13,000 peptide mass spectra were obtained 2 NATURE MICROBIOLOGY 2, 16180 (2016) | DOI: 10.1038/nmicrobiol.2016.180 | www.nature.com/naturemicrobiology © 2016 Macmillan Publishers Limited, part of Springer Nature. All rights reserved. NATURE MICROBIOLOGY ARTICLES G18 a G8 b 700 d 1 × 100 600 Essential genes O50 G6 500 G17 400 1 × 10−1 P26.2 300 G10 L26.1 200 Gene count 100 1 × 10−2 L2.2.1.2.1.1 O22O23 0 010203040 P19
Recommended publications
  • Quantum Effects in Radical B12 Enzymes
    Quantum Effects in Adenosylcobalamin-dependent Enzymes by M. Hossein Khalilian Boroujeni B.Sc., Chemistry, Razi University, 2014 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in THE COLLEGE OF GRADUATE STUDIES (Chemistry) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) April 2019 © M. Hossein Khalilian Boroujeni, 2019 The following individuals certify that they have read, and recommend to the College of Graduate Studies for acceptance, a thesis/dissertation entitled: Quantum Effects in Adenosylcobalamin-dependent Enzymes submitted by M. Hossein Khalilian Boroujeni in partial fulfillment of the requirements for the degree of Master of Science Examining Committee: Gino A. DiLabio, I. K. Barber School of Arts & Sciences Supervisor W. Stephen McNeil, I. K. Barber School of Arts & Sciences Supervisory Committee Member Kirsten Wolthers, I. K. Barber School of Arts & Sciences Supervisory Committee Member Michael Deyholos, I. K. Barber School of Arts & Sciences University Examiner ii Abstract The ability of radical enzymes to maintain tight control over the high reactive radical intermediates generated in their active sites is not completely understood. In this thesis, we report on a strategy that radical (B12-dependent) enzymes appear to exploit in order to manipulate and control the reactivity of one of their radical intermediate (5'-deoxyadenosyl radical) contained in the active site. The results of quantum mechanical calculations suggest that these enzymes utilize the little known quantum Coulombic effect (QCE), which causes the radical to acquire an electronic structure that contradicts the Aufbau Principle. This effect causes the energy of the singly-occupied molecular orbital (SOMO) of the radical to be well below that of the highest-occupied molecular orbital (HOMO), which renders the radical less reactive.
    [Show full text]
  • Structural Forms of the Human Amylase Locus and Their Relationships to Snps, Haplotypes, and Obesity
    Structural Forms of the Human Amylase Locus and Their Relationships to SNPs, Haplotypes, and Obesity The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Usher, Christina Leigh. 2015. Structural Forms of the Human Amylase Locus and Their Relationships to SNPs, Haplotypes, and Obesity. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:17467224 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Structural forms of the human amylase locus and their relationships to SNPs, haplotypes, and obesity A dissertation presented by Christina Leigh Usher to The Division of Medical Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Genetics and Genomics Harvard University Cambridge, Massachusetts March 2015 © 2015 Christina Leigh Usher All rights reserved. Dissertation Advisor: Professor Steven McCarroll Christina Leigh Usher Structural forms of the human amylase locus and their relationships to SNPs, haplotypes, and obesity Abstract Hundreds of human genes reside in structurally complex loci that elude molecular analysis and assessment in genome-wide association studies (GWAS). One such locus contains the three different amylase genes (AMY2B, AMY2A, and AMY1) responsible for digesting starch into sugar. The copy number of AMY1 is reported to be the genome’s largest influence on obesity, yet has gone undetected in GWAS.
    [Show full text]
  • Differential Proteomic Analysis of the Pancreas of Diabetic Db/Db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus
    Int. J. Mol. Sci. 2014, 15, 9579-9593; doi:10.3390/ijms15069579 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article Differential Proteomic Analysis of the Pancreas of Diabetic db/db Mice Reveals the Proteins Involved in the Development of Complications of Diabetes Mellitus Victoriano Pérez-Vázquez 1,*, Juan M. Guzmán-Flores 1, Daniela Mares-Álvarez 1, Magdalena Hernández-Ortiz 2, Maciste H. Macías-Cervantes 1, Joel Ramírez-Emiliano 1 and Sergio Encarnación-Guevara 2 1 Depto. de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León, Guanajuato 37320, Mexico; E-Mails: [email protected] (J.M.G.-F.); [email protected] (D.M.-A.); [email protected] (M.H.M.-C.); [email protected] (J.R.-E.) 2 Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos 62210, Mexico; E-Mails: [email protected] (M.H.-O.); [email protected] (S.E.-G.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +52-477-7143-812; Fax: +52-477-7167-623. Received: 4 April 2014; in revised form: 14 May 2014 / Accepted: 19 May 2014 / Published: 30 May 2014 Abstract: Type 2 diabetes mellitus is characterized by hyperglycemia and insulin-resistance. Diabetes results from pancreatic inability to secrete the insulin needed to overcome this resistance. We analyzed the protein profile from the pancreas of ten-week old diabetic db/db and wild type mice through proteomics. Pancreatic proteins were separated in two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and significant changes in db/db mice respect to wild type mice were observed in 27 proteins.
    [Show full text]
  • Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’S Biological Network Based on Systematic Pharmacology
    ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fphar.2021.601846 Exploring the Regulatory Mechanism of Hedysarum Multijugum Maxim.-Chuanxiong Rhizoma Compound on HIF-VEGF Pathway and Cerebral Ischemia-Reperfusion Injury’s Biological Network Based on Systematic Pharmacology Kailin Yang 1†, Liuting Zeng 1†, Anqi Ge 2†, Yi Chen 1†, Shanshan Wang 1†, Xiaofei Zhu 1,3† and Jinwen Ge 1,4* Edited by: 1 Takashi Sato, Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of 2 Tokyo University of Pharmacy and Life Cardio-Cerebral Diseases, Hunan University of Chinese Medicine, Changsha, China, Galactophore Department, The First 3 Sciences, Japan Hospital of Hunan University of Chinese Medicine, Changsha, China, School of Graduate, Central South University, Changsha, China, 4Shaoyang University, Shaoyang, China Reviewed by: Hui Zhao, Capital Medical University, China Background: Clinical research found that Hedysarum Multijugum Maxim.-Chuanxiong Maria Luisa Del Moral, fi University of Jaén, Spain Rhizoma Compound (HCC) has de nite curative effect on cerebral ischemic diseases, *Correspondence: such as ischemic stroke and cerebral ischemia-reperfusion injury (CIR). However, its Jinwen Ge mechanism for treating cerebral ischemia is still not fully explained. [email protected] †These authors share first authorship Methods: The traditional Chinese medicine related database were utilized to obtain the components of HCC. The Pharmmapper were used to predict HCC’s potential targets. Specialty section: The CIR genes were obtained from Genecards and OMIM and the protein-protein This article was submitted to interaction (PPI) data of HCC’s targets and IS genes were obtained from String Ethnopharmacology, a section of the journal database.
    [Show full text]
  • Anaerobic Radical Enzymes for Biotechnology
    ChemBioEng Reviews Anaerobic radical enzymes for biotechnology Journal: ChemBioEng Reviews Manuscript ID cben.201800003.R1 Wiley - Manuscript type:For Review Peer Review Date Submitted by the Author: n/a Complete List of Authors: Jäger, Christof; University of Nottingham, Chemical and Environmental Engineering Croft, Anna; University of Nottingham, Chemical and Environmental Engineering Keywords: Radicals, Enzymes, Catalysis, Biotechnology, Anaerobic reactions Wiley-VCH Page 1 of 61 ChemBioEng Reviews 1 2 3 Christof M. Jäger* and Anna K. Croft* 4 5 6 7 8 9 Anaerobic radical enzymes for biotechnology 10 11 12 13 AUTHORS: Dr Christof Martin Jäger* and Dr Anna Kristina Croft* 14 15 16 ADDRESS: Department of Chemical and Environmental Engineering, University of 17 18 Nottingham, Nottingham, NG7 2RD, United Kingdom. [email protected], 19 For Peer Review 20 21 [email protected] 22 23 24 ABSTRACT: 25 26 27 28 Enzymes that proceed through radical intermediates have a rich chemistry that includes 29 30 functionalisation of otherwise unreactive carbon atoms, carbon-skeleton rearrangements, 31 32 aromatic reductions, and unusual eliminations. Especially under anaerobic conditions, 33 34 organisms have developed a wide range of approaches for managing these transformations 35 36 that can be exploited to generate new biological routes towards both bulk and specialty 37 38 39 chemicals. These routes are often either much more direct or allow access to molecules that 40 41 are inaccessible through standard (bio)chemical approaches. This review gives an overview 42 43 of some of the key enzymes in this area: benzoyl-CoA reductases (that effect the enzymatic 44 45 Birch reduction), ketyl radical dehydratases, coenzyme B12-dependant enzymes, glycyl 46 47 radical enzymes, and radical SAM (AdoMet radical) enzymes.
    [Show full text]
  • Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School July 2017 Role of Amylase in Ovarian Cancer Mai Mohamed University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Pathology Commons Scholar Commons Citation Mohamed, Mai, "Role of Amylase in Ovarian Cancer" (2017). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/6907 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Role of Amylase in Ovarian Cancer by Mai Mohamed A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Pathology and Cell Biology Morsani College of Medicine University of South Florida Major Professor: Patricia Kruk, Ph.D. Paula C. Bickford, Ph.D. Meera Nanjundan, Ph.D. Marzenna Wiranowska, Ph.D. Lauri Wright, Ph.D. Date of Approval: June 29, 2017 Keywords: ovarian cancer, amylase, computational analyses, glycocalyx, cellular invasion Copyright © 2017, Mai Mohamed Dedication This dissertation is dedicated to my parents, Ahmed and Fatma, who have always stressed the importance of education, and, throughout my education, have been my strongest source of encouragement and support. They always believed in me and I am eternally grateful to them. I would also like to thank my brothers, Mohamed and Hussien, and my sister, Mariam. I would also like to thank my husband, Ahmed.
    [Show full text]
  • Marker Identification of the Grade of Dysplasia of Intraductal Papillary
    cancers Article Marker Identification of the Grade of Dysplasia of Intraductal Papillary Mucinous Neoplasm in Pancreatic Cyst Fluid by Quantitative Proteomic Profiling 1, 2, 1 3 4 Misol Do y , Hongbeom Kim y, Dongyoon Shin , Joonho Park , Haeryoung Kim , Youngmin Han 2, Jin-Young Jang 2,* and Youngsoo Kim 1,3,* 1 Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea; [email protected] (M.D.); [email protected] (D.S.) 2 Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Korea; [email protected] (H.K.); [email protected] (Y.H.) 3 Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul 03080, Korea; [email protected] 4 Department of Pathology, Seoul National University College of Medicine, Seoul 03080, Korea; [email protected] * Correspondence: [email protected] (J.-Y.J.); [email protected] (Y.K.); Tel.: +82-10-8338-6719 (J.-Y.J.); +82-2-740-8073 (Y.K.) The first two authors contributed equally to this work. y Received: 10 August 2020; Accepted: 20 August 2020; Published: 23 August 2020 Abstract: The incidence of patients with pancreatic cystic lesions, particularly intraductal papillary mucinous neoplasm (IPMN), is increasing. Current guidelines, which primarily consider radiological features and laboratory data, have had limited success in predicting malignant IPMN. The lack of a definitive diagnostic method has led to low-risk IPMN patients undergoing unnecessary surgeries. To address this issue, we discovered IPMN marker candidates by analyzing pancreatic cystic fluid by mass spectrometry. A total of 30 cyst fluid samples, comprising IPMN dysplasia and other cystic lesions, were evaluated.
    [Show full text]
  • Functional Analysis of Pdx1 Overexpression in Nave Endoderm
    Functional Analysis of Pdx1 Overexpression in Naïve Endoderm Marco Gasparrini Faculty of Graduate Studies Division of Experimental Medicine McGill University Montréal, Québec, Canada August 2010 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Master of Science © Marco Gasparrini, 2010 ABSTRACT Pancreatic and duodenal homeobox 1 (Pdx1) was one of the first pancreas specific genes isolated. It is expressed in early pancreatic buds, throughout the duodenum and localized to insulin producing cells in the adult. Pdx1 plays a fundamental role in pancreas development as the loss-of-function of Pdx1 in mice and frogs result in absence of pancreatic tissue. In humans, Pdx1 homozygous mutations lead to pancreas agenesis, while heterozygous mutations result in type 2 diabetes. Our laboratory studies the role of Pdx1 in promoting ectopic pancreatic cell fates. Using Xenopus laevis as a model, we previously showed that the overexpression of a modified form of Pdx1, Pdx1-VP16, is sufficient to convert liver to pancreas. Whether Pdx1 is able to promote ectopic pancreas in naïve endoderm has yet to be determined. To achieve this, Pdx1 mRNA was overexpressed in the anterior endoderm. The overexpression resulted in ectopic tissue with reduced expression of exocrine and endocrine differentiation markers. In addition, stomach, duodenum and liver organogenesis was severely perturbed. To ascertain the identity of this ectopic tissue, microarray analysis was performed which confirmed the reduction in pancreatic endocrine and exocrine cells as well as the reduction in stomach, duodenum and hepatic tissue. Moreover, the genes highly upregulated suggest a pancreatic stellate cell phenotype.
    [Show full text]
  • Cancer Sequencing Service Data File Formats File Format V2.4 Software V2.4 December 2012
    Cancer Sequencing Service Data File Formats File format v2.4 Software v2.4 December 2012 CGA Tools, cPAL, and DNB are trademarks of Complete Genomics, Inc. in the US and certain other countries. All other trademarks are the property of their respective owners. Disclaimer of Warranties. COMPLETE GENOMICS, INC. PROVIDES THESE DATA IN GOOD FAITH TO THE RECIPIENT “AS IS.” COMPLETE GENOMICS, INC. MAKES NO REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR USE, OR ANY OTHER STATUTORY WARRANTY. COMPLETE GENOMICS, INC. ASSUMES NO LEGAL LIABILITY OR RESPONSIBILITY FOR ANY PURPOSE FOR WHICH THE DATA ARE USED. Any permitted redistribution of the data should carry the Disclaimer of Warranties provided above. Data file formats are expected to evolve over time. Backward compatibility of any new file format is not guaranteed. Complete Genomics data is for Research Use Only and not for use in the treatment or diagnosis of any human subject. Information, descriptions and specifications in this publication are subject to change without notice. Copyright © 2011-2012 Complete Genomics Incorporated. All rights reserved. RM_DFFCS_2.4-01 Table of Contents Table of Contents Preface ...........................................................................................................................................................................................1 Conventions .................................................................................................................................................................................................
    [Show full text]
  • Computational Genome and Pathway Analysis of Halophilic Archaea
    Computational Genome and Pathway Analysis of Halophilic Archaea Dissertation Michaela Falb aus Heiligenstadt (Eichsfeld) 2005 Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Computational Genome and Pathway Analysis of Halophilic Archaea Michaela Falb aus Heiligenstadt (Eichsfeld) 2005 Erklärung Diese Dissertation wurde im Sinne von §13 Abs. 3 bzw. 4 der Promotionsordnung vom 29. Januar 1998 von Prof. Dr. Dieter Oesterhelt betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, den 31. August 2005 Michaela Falb Dissertation eingereicht am: 01.09.2005 1. Gutachter: Prof. Dr. Dieter Oesterhelt 2. Gutachter: Prof. Dr. Erich Bornberg-Bauer Mündliche Prüfung am: 22.12.2005 CONTENTS Summary 1 1 Introduction to Halophilic Archaea 3 1.1 Hypersaline environments 3 1.2 Taxononomy of halophilic archaea 5 1.3 Information processing in archaea 7 1.4 Physiology and metabolism of halophilic archaea 9 1.4.1 Osmotic adaptation 9 1.4.2 Nutritional demands, nutrient transport and sensing 10 1.4.3 Energy metabolism 11 1.5 Genomes of halophilic archaea 13 1.6 Motivation 15 2 Gene Prediction and Start Codon Selection in Halophilic Genomes 17 2.1 Introduction 17 2.2 Post-processing of gene prediction results by expert validation 19 2.3 Intrinsic features of haloarchaeal proteins and gene context analysis 22 2.3.1 Isoelectric points and amino acid distribution of halophilic proteins 22 2.3.2 Development of a pI scanning tool
    [Show full text]
  • Mapping Mrna Libraries
    Mapping mRNA libraries STAR-2.5.2b was used with options shown below. Index generation: $STAR --runThreadN 16 \ --runMode genomeGenerate \ --genomeDir $IndexPref \ --genomeFastaFiles $GenomePref/Mus_musculus.GRCm38.dna.primary_assembly.fa \ --sjdbGTFfile $AnnoPref/Mus_musculus.GRCm38.86.gtf \ --sjdbOverhang 100 Aligning and counting reads with the genes (annotated transcripts): $STAR --runThreadN 8 \ --runMode alignReads \ --genomeDir $IndexPref \ --readFilesIn $FileOne $FileTwo \ --outFileNamePrefix $OutDir \ --outFilterType BySJout \ --outFilterMismatchNoverLmax 0.05 \ --alignSJoverhangMin 8 \ --alignSJDBoverhangMin 1 \ --alignIntronMin 20 \ --alignMatesGapMax 1000000 \ --outSAMtype BAM SortedByCoordinate Complex homology groups discussed in this paper Modencode project declares more homology pairs than homologene. When we combine homology pairs from different sources there exists a potential for amplifying the number of incorrect homology pairs, therefore here we review the complex homology groups that are mentioned in the paper. Homology of genes is defined on the basis of the evolutionary history of genomes which cannot be easily assessed by looking at the data from two species, but we can compare clues from synteny and expression profiles. While we see many differences in expression profiles among members of the same homology group, given a choice of different sets of homology pairs we prefer one that explains more cases of high gene expressions with homology. These homology groups were included in our specific findings while they are not consistently identified by modencode and homologene: • Alkaline phosphatases • Amylases • Kallikrein 1-related peptidases • Defensins with high expression in mouse skin and vagina More authoritative methods to determine homology collect information from many species. However, we use a method which allows to choose most plausible homology when we have two-three alternatives.
    [Show full text]
  • Epigenomic Plasticity Enables Human Pancreatic Α to Β Cell Reprogramming
    Epigenomic plasticity enables human pancreatic α to β cell reprogramming Nuria C. Bramswig, … , Markus Grompe, Klaus H. Kaestner J Clin Invest. 2013;123(3):1275-1284. https://doi.org/10.1172/JCI66514. Research Article Insulin-secreting β cells and glucagon-secreting α cells maintain physiological blood glucose levels, and their malfunction drives diabetes development. Using ChIP sequencing and RNA sequencing analysis, we determined the epigenetic and transcriptional landscape of human pancreatic α, β, and exocrine cells. We found that, compared with exocrine and β cells, differentiated α cells exhibited many more genes bivalently marked by the activating H3K4me3 and repressing H3K27me3 histone modifications. This was particularly true for β cell signature genes involved in transcriptional regulation. Remarkably, thousands of these genes were in a monovalent state in β cells, carrying only the activating or repressing mark. Our epigenomic findings suggested that α to β cell reprogramming could be promoted by manipulating the histone methylation signature of human pancreatic islets. Indeed, we show that treatment of cultured pancreatic islets with a histone methyltransferase inhibitor leads to colocalization of both glucagon and insulin and glucagon and insulin promoter factor 1 (PDX1) in human islets and colocalization of both glucagon and insulin in mouse islets. Thus, mammalian pancreatic islet cells display cell-type–specific epigenomic plasticity, suggesting that epigenomic manipulation could provide a path to cell reprogramming and novel cell replacement-based therapies for diabetes. Find the latest version: https://jci.me/66514/pdf Related Commentary, page 1007 Research article Epigenomic plasticity enables human pancreatic α to β cell reprogramming Nuria C. Bramswig,1 Logan J.
    [Show full text]