I Biological Charge Transfer in Redox Regulation and Signaling by Ruijie

Total Page:16

File Type:pdf, Size:1020Kb

I Biological Charge Transfer in Redox Regulation and Signaling by Ruijie Biological Charge Transfer in Redox Regulation and Signaling by Ruijie Darius Teo Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ David Beratan, Advisor ___________________________ Patrick Charbonneau ___________________________ Agostino Migliore ___________________________ Kenichi Yokoyama Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2020 i v ABSTRACT Biological Charge Transfer in Redox Regulation and Signaling by Ruijie Darius Teo Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ David Beratan, Advisor ___________________________ Patrick Charbonneau ___________________________ Agostino Migliore ___________________________ Kenichi Yokoyama An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2020 i v Copyright by Ruijie Darius Teo 2020 Abstract Biological signaling via DNA-mediated charge transfer between high-potential [4Fe4S]2+/3+ clusters is widely discussed in the literature. Recently, it was proposed that for DNA replication on the lagging strand, primer handover from primase to polymerase α is facilitated by DNA-mediated charge transfer between the [4Fe4S] clusters housed in the respective C-terminal domains of the proteins. Using a theoretical-computational approach, I established that redox signaling between the clusters in primase and polymerase α cannot be accomplished solely by DNA-mediated charge transport, due to the unidirectionality of charge transfer between the [4Fe4S] cluster and the nucleic acid. I extended the study by developing an open-source electron hopping pathway search code to characterize hole hopping pathways in proteins and nucleic acids. I used this module to analyze protective hole escape routes in cytochrome p450, cytochrome c oxidase, and benzylsuccinate synthase. Next, I used the module to analyze molecular dynamics snapshots of a mutant primase, where the Y345C mutation (found in gastric tumors) attenuates charge transfer between the [4Fe4S] cluster and nucleic acid, which in turn, could disrupt the signaling process between primase and polymerase α. In another protein-nucleic acid system, I found that charge transfer in the p53-DNA complex plays an important role for p53 to differentiate Gadd45 DNA and p21 DNA in metabolic pathway regulation. Using density functional theory calculations iv on molecular dynamics snapshots, I found that hole transfer (HT) from Gadd45 DNA to the proximal cysteine residue in the DNA-binding domain of p53 is preferred over HT from p21 DNA to cysteine. This preference ensures that the p21 DNA remains bound to the transcription factor p53 which induces the transcription of the gene under cellular oxidative stress. This dissertation concludes with a study that demonstrates similar electron conductivities between an artificial nucleic acid, 2'-deoxy-2'-fluoro- arabinonucleic acid (2’F-ANA), and DNA. Compared to DNA, 2’F-ANA offers the additional benefit of chemical stability with respect to hydrolysis and nuclease degradation, thereby promoting its use as a sensor in biological systems and cellular environments. v Contents Abstract .......................................................................................................................................... iv List of Tables .................................................................................................................................. x List of Figures ............................................................................................................................. xiii Acknowledgements ................................................................................................................... xvi 1. Introduction ............................................................................................................................... 1 1.1 Charge Transfer in Proteins ............................................................................................ 2 1.2 Charge Transfer in DNA ................................................................................................. 4 1.3 Charge Transfer in Protein-DNA Systems .................................................................... 5 1.4 Aims and Objectives ........................................................................................................ 7 2. Classical Marcus Theory .......................................................................................................... 8 2.1 Charge Transfer Mechanisms ....................................................................................... 11 2.1.1 Tunneling .................................................................................................................... 12 2.1.2 Superexchange ........................................................................................................... 13 2.1.3 Flickering Resonance ................................................................................................ 14 2.1.4 Hopping ...................................................................................................................... 16 3. Electronic Couplings ............................................................................................................... 17 3.1 Empirical/Semi-Empirical Models ............................................................................... 17 3.1.1 Hopfield Model .......................................................................................................... 17 3.1.2 Pathway Tunneling Model ....................................................................................... 18 3.1.3 Average Packing Density Model ............................................................................. 19 vi 3.2 Electronic Structure Models .......................................................................................... 20 3.2.1 Generalized Mulliken-Hush Method ..................................................................... 20 3.2.2 Effective Hamiltonians ............................................................................................. 21 3.2.2.1 Localized Orbitals .............................................................................................. 21 3.2.3 Constrained Density Functional Theory (CDFT) .................................................. 22 3.2.4 Orbital Splitting ......................................................................................................... 25 4. Reorganization Energy ........................................................................................................... 26 4.1 Marcus’ Two-Sphere Model .......................................................................................... 26 4.1.1 Inner-Sphere Reorganization Energy ..................................................................... 27 4.1.2 Outer-Sphere Reorganization Energy .................................................................... 29 5. Molecular Dynamics ............................................................................................................... 30 5.1 MD Force Fields .............................................................................................................. 31 5.1.1 Seminario Method for Calculating Force Constants ............................................ 33 5.1.2 Atomic Charges for Coulomb Interactions ............................................................ 34 5.2 Integration Algorithms for System Evolution ............................................................ 35 5.3 Solvent Representation .................................................................................................. 37 5.4 Periodic Boundary Conditions ..................................................................................... 39 5.5 Temperature/Pressure Coupling Algorithms ............................................................. 40 6. Kinetic Models and Master Equations for Charge Transfer Dynamics .......................... 43 7. Charge Transfer in the Human Primosome ........................................................................ 46 7.1 Methodology ................................................................................................................... 49 7.1.1 Docking and Modeling ............................................................................................. 49 vii 7.1.2 Redox Potentials ........................................................................................................ 51 7.1.3 Reorganization Energies ........................................................................................... 52 7.1.4 Electronic Couplings ................................................................................................. 53 7.1.5 Kinetic Model ............................................................................................................. 56 7.2 Unidirectionality ............................................................................................................. 57 7.3 Concluding Remarks ...................................................................................................... 63 8. Mapping Hole Hopping Pathways in Proteins .................................................................
Recommended publications
  • Distance Dependence of Photoinduced Long-Range Electron Transfer in Zinc/Ruthenium-Modified Myoglobins
    J. Am. Chem. SOC.1988, 110, 435-439 435 Distance Dependence of Photoinduced Long-Range Electron Transfer in Zinc/Ruthenium-Modified Myoglobins Andrew W. Axup, Michael Albin, Stephen L. Mayo, Robert J. Crutchley,' and Harry B. Gray* Contribution No. 7588 from the Arthur Amos Noyes Laboratory, California Institute of Technology, Pasadena, California 91 125. Received May 8, I987 Abstract: An experimental investigation of the distance dependence of long-range electron transfer in zinc/ruthenium-modified myoglobins has been performed. The modified proteins were prepared by substitution of zinc mesoporphyrin IX diacid (ZnP) for the heme in each of four previously characterized pentaammineruthenium(II1) (a5Ru; a = NH,) derivatives of sperm whale myoglobin (Mb): a5Ru(His-48)Mb, aSRu(His-12)Mb, a5Ru(His-l 16)Mb, a5Ru(His-81)Mb. Electron transfer from the ZnP triplet excited state (,ZnP*) to Ru3+, 3ZnP*-Ru3t -+ ZnP+-Ru2+ (AEo - 0.8 V) was measured by time-resolved transient absorption spectroscopy: rate constants (kf)are 7.0 X lo4 (His-48), 1.0 X IO2 (His-12), 8.9 X 10' (His-1 16), and 8.5 X IO' (His-81) s-' at 25 OC. Activation enthalpies calculated from the temperature dependences of the electron-transfer rates over the range 5-40 OC are 1.7 i 1.6 (His-48), 4.7 i 0.9 (His-12), 5.4 i 0.4 (His-116), and 5.6 i 2.5 (His-81) kcal mol-'. Electron-transfer distances (d = closest ZnP edge to a5Ru(His) edge; angstroms) were calculated to fall in the following ranges: His-48, 11.8-16.6; His-12, 21.5-22.3; His-116, 19.8-20.4; His-81, 18.8-19.3.
    [Show full text]
  • Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes
    Review Article J Mol Microbiol Biotechnol 2016;26:29–44 Published online: March 10, 2016 DOI: 10.1159/000441656 Structure and Function of Benzylsuccinate Synthase and Related Fumarate-Adding Glycyl Radical Enzymes a d c a Johann Heider Maciej Szaleniec Berta M. Martins Deniz Seyhan a, b e Wolfgang Buckel Bernard T. Golding a Laboratory of Microbial Biochemistry, LOEWE Center for Synthetic Microbiology, Philipps University Marburg, b c and Max-Planck-Institut für terrestrische Mikrobiologie, Marburg , and Institut für Biologie, Strukturbiologie/ d Biochemie, Humboldt-Universität zu Berlin, Berlin , Germany; Jerzy Haber Institute of Catalysis and Surface e Chemistry, Polish Academy of Sciences, Kraków , Poland; School of Chemistry, Newcastle University, Newcastle upon Tyne , UK Key Words Anaerobic Toluene Degradation Benzylsuccinate synthase · Fumarate-adding enzyme · Glycyl radical · Toluene · Alkane · Anaerobic toluene Hydrocarbons were long believed to be resistant to degradation microbial degradation in the absence of oxygen. It was therefore surprising to find that many bacteria degrade these compounds anaerobically [Aeckersberg et al., 1991; Abstract Dolfing et al., 1990; Rabus et al., 1993; Vogel and Grbic- The pathway of anaerobic toluene degradation is initiated Galic, 1986; Zeyer et al., 1986]. After the initial reports by a remarkable radical-type enantiospecific addition of the dating from 1986, the degradation pathways employed chemically inert methyl group to the double bond of a fuma- by these bacteria remained enigmatic for a decade. How- rate cosubstrate to yield (R) -benzylsuccinate as the first in- ever, over the last 20 years, various oxygen-independent termediate, as catalyzed by the glycyl radical enzyme ben- reactions have been characterized for the activation of zylsuccinate synthase.
    [Show full text]
  • The Electronic Structure of Biomolecular Self-Assembled Monolayers" (2012)
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2012 The lecE tronic Structure of Biomolecular Self- Assembled Monolayers Matthaeus Anton Wolak University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the American Studies Commons, Electrical and Computer Engineering Commons, and the Materials Science and Engineering Commons Scholar Commons Citation Wolak, Matthaeus Anton, "The Electronic Structure of Biomolecular Self-Assembled Monolayers" (2012). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4258 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. The Electronic Structure of Biomolecular Self-Assembled Monolayers by Matthaeus Wolak A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Electrical Engineering College of Engineering University of South Florida Major Professor: Rudy Schlaf, Ph.D. Vinay Gupta, Ph.D. Li-June Ming, Ph.D. Arash Takshi, Ph.D. Jing Wang, Ph.D. Date of Approval: June 13, 2012 Keywords: peptide nucleic acid, tetraphenylporphyrin, work function, charge injection barrier, interface dipole, XPS Copyright © 2012, Matthaeus Wolak DEDICATION I dedicate my dissertation to my girlfriend Emily Helmrich, and my parents Margarete and Anton Wolak, who supported me throughout the process and always had the right words of encouragement for me. I am very grateful to you and will always appreciate all that you have done for me.
    [Show full text]
  • Abstract Gas-Phase Chemistry of Tryptophan
    ABSTRACT GAS-PHASE CHEMISTRY OF TRYPTOPHAN-BASED RADICALS Andrii Piatkivskyi, Ph.D. Department of Chemistry and Biochemistry Northern Illinois University, 2014 Victor Ryzhov, Director This work is devoted to the fundamental study of gas-phase tryptophan-based radical cations. It covers: mechanisms of the radical ion formation in the gas-phase; the description and contrast of the two types of tryptophan side chain radicals (π and N-indolyl) based on their reactivities, infrared spectra, structural energetics and fragmentation patterns; investigation of the N-indolyl tryptophan radical cation fragmentation pathways; formation of the two types of tryptophan radicals (π and N-indolyl) within short peptides; their characterization and comparison based on the fragmentation patterns and reactivity; and gas-phase study of intramolecular radical migration from tryptophan to cysteine and from tryptophan to tyrosine side chains within short peptides. Two different approaches were followed to regiospecifically form desired radicals on the tryptophan side chain. The tryptophan π-radical cation was formed via electron transfer during dissociation of ternary metal complex ([CuII(terpy)(Trp)] 2+), while N-indolyl radical was formed by the homolytic cleavage of the NO group from the N-nitrosylated tryptophan during gas-phase fragmentation. Both radicals were exposed to the low-energy collision-induced dissociation in order to elucidate and contrast their fragmentation. To estimate the fragmentation pathway of the N-indolyl tryptophan radical cation, additional experiments (including H/D exchange, dissociation of tryptophan derivatives and DFT calculations) were carried out. The radical reactivity has been tested via gas-phase ion-molecule reactions with benzeneselenol, 1-propanethiol and di-tert-butyl nitroxide.
    [Show full text]
  • View / Download 3.9 Mb
    A Symphony of Charge Transfer Theory, Conductive DNA Junction Modeling and Chemical Library Design by Yuqi Zhang Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ David Beratan, Supervisor ___________________________ Katherine Franz ___________________________ Jie Liu ___________________________ Weitao Yang Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2016 i v ABSTRACT A Symphony of Charge Transfer Theory, Conductive DNA Junction Modeling and Chemical Library Design by Yuqi Zhang Department of Chemistry Duke University Date:_______________________ Approved: ___________________________ David Beratan, Supervisor ___________________________ Katherine Franz ___________________________ Jie Liu ___________________________ Weitao Yang An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Chemistry in the Graduate School of Duke University 2016 i v Copyright by Yuqi Zhang 2016 Abstract Biological electron transfer (ET) reactions are typically described in the framework of coherent two-state electron tunneling or multi-step hopping. Yet, these ET reactions may involve multiple redox cofactors in van der Waals contact with each other and with vibronic broadenings on the same scale as the energy gaps among the species. In this regime, fluctuations of the molecule and its medium can produce transient energy level matching among multiple electronic states. This transient degeneracy, or flickering electronic resonance among states, is found to support coherent (ballistic) charge transfer. Importantly, ET rates arising from a flickering resonance (FR) mechanism will decay exponentially with distance because the probability of energy matching multiple states is multiplicative.
    [Show full text]
  • Benzylsuccinate Synthase of Azoarcus Sp. Strain T: Cloning, Sequencing, Transcriptional Organization, and Its Role in Anaerobic Toluene and M-Xylene Mineralization
    JOURNAL OF BACTERIOLOGY, Dec. 2001, p. 6763–6770 Vol. 183, No. 23 0021-9193/01/$04.00ϩ0 DOI: 10.1128/JB.183.23.6763–6770.2001 Copyright © 2001, American Society for Microbiology. All Rights Reserved. Benzylsuccinate Synthase of Azoarcus sp. Strain T: Cloning, Sequencing, Transcriptional Organization, and Its Role in Anaerobic Toluene and m-Xylene Mineralization 1 1 1,2 GYPSY R. ACHONG, ANA M. RODRIGUEZ, AND ALFRED M. SPORMANN * Environmental Engineering and Science, Department of Civil and Environmental Engineering,1 and Department of Biological Sciences,2 Stanford University, Stanford, California 94305-4020 Received 18 May 2001/Accepted 23 August 2001 Biochemical studies in Azoarcus sp. strain T have demonstrated that anaerobic oxidation of both toluene and m-xylene is initiated by addition of the aromatic hydrocarbon to fumarate, forming benzylsuccinate and 3-methyl benzylsuccinate, respectively. Partially purified benzylsuccinate synthase was previously shown to catalyze both of these addition reactions. In this study, we identified and sequenced the genes encoding benzylsuccinate synthase from Azoarcus sp. strain T and examined the role of this enzyme in both anaerobic toluene and m-xylene mineralization. Based on reverse transcription-PCR experiments and transcriptional start site mapping, we found that the structural genes encoding benzylsuccinate synthase, bssCAB, together with two additional genes, bssD and bssE, were organized in an operon in the order bssDCABE. bssD is believed to encode an activating enzyme, similar in function to pyruvate formate-lyase activase. bssE shows homology Downloaded from to tutH from Thauera aromatica strain T1, whose function is currently unknown. A second operon that is upstream of bssDCABE and divergently transcribed contains two genes, tdiS and tdiR.
    [Show full text]
  • Federal University of Minas Gerais
    FEDERAL UNIVERSITY OF MINAS GERAIS BIOLOGIC SCIENCES INSTITUTE BIOINFORMATIC POST-GRADUATE INTERUNIT PROGRAM Master dissertation GENOME SEQUENCING AND COMPARATIVE GENOME ANALYSIS OF Streptococcus dysgalactiae subsp. dysgalactiae, AN EMERGING PATHOGEN OF NILE TILAPIA By: Alexandra Antonieta Urrutia Zegarra Advisor: Prof. Henrique César Pereira Figueiredo, DMV, Ph.D. Belo Horizonte, MG, August of 2017 Alexandra Antonieta Urrutia Zegarra GENOME SEQUENCING AND COMPARATIVE GENOME ANALYSIS OF THE EMERGING FISH PATHOGEN Streptococcus dysgalactiae subsp. dysgalactiae Dissertation presented to the Bioinformatic Post- Graduate Interunit Program of the Federal University of Minas Gerais to obtain the title of Master in Bioinformatics. Concentration area: Genomic Bioinformatics Advisor: Prof. Henrique César Pereira Figueiredo, DMV, Ph.D. Belo Horizonte, MG, August of 2017 2 "Joq quimico tatichiy kawsay" Paul Ehrlich "Taytayta, mamayta ñañaytawan. Tioyta Jose Antonio kunan astawan qaylla ch'askakunamanta kashan.” 3 ACKNOWLEDGMENTS Thanks to the Federal University of Minas Gerais for the training offered; To the CNPq, FAPEMIG, CAPES and the Ministry of Fishery and Aquaculture for the funding of this project; To the coordination, professors and colleagues of the Post-Graduation course in Bioinformatics on the UFMG; To the members of the dissertation defense committee for accepting the invitation to evaluate this work; To my advisor Prof. Dr. Henrique César Pereira Figueiredo for the opportunity, for sharing his experience in order to improve the quality of this project and specially for letting me be part of his amazing team in AQUACEN; To the AQUACEN team for letting me feel as part of the family, to Felipe for all the teaching and all the knowledge shared; To the AQUAGIRLS for their awesome friendship, millions of laughs and incredible support; To Julio Cesar H.
    [Show full text]
  • Pyruvate Formate-Lyase and a Novel Route of Eukaryotic ATP-Synthesis In
    Pyruvate formate-lyase and a novel route of eukaryotic ATP-synthesis in Chlamydomonas mitochondria Ariane Atteia, Robert van Lis, Gabriel Gelius-Dietrich, Annie Adrait, Jérôme Garin, Jacques Joyard, Norbert Rolland, William Martin To cite this version: Ariane Atteia, Robert van Lis, Gabriel Gelius-Dietrich, Annie Adrait, Jérôme Garin, et al.. Pyruvate formate-lyase and a novel route of eukaryotic ATP-synthesis in Chlamydomonas mitochondria. Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology, 2006, 281, pp.9909 - 9918. 10.1074/jbc.M507862200. hal-00019406 HAL Id: hal-00019406 https://hal.archives-ouvertes.fr/hal-00019406 Submitted on 30 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Copyright THE JOURNAL OF BIOLOGICAL CHEMISTRY VOL. 281, NO. 15, pp. 9909–9918, April 14, 2006 © 2006 by The American Society for Biochemistry and Molecular Biology, Inc. Printed in the U.S.A. Pyruvate Formate-lyase and a Novel Route of Eukaryotic ATP Synthesis in Chlamydomonas Mitochondria*□S Received for publication, July
    [Show full text]
  • PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance
    Graduate School ETD Form 9 (Revised 12/07) PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Renae Nelson Entitled Exploring the Mechanism of Action of Spore Photoproduct Lyase Master of Science For the degree of Is approved by the final examining committee: Dr. Lei Li Chair Dr. Eric Long Dr. Michael McLeish To the best of my knowledge and as understood by the student in the Research Integrity and Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material. Approved by Major Professor(s): ____________________________________Dr. Lei Li ____________________________________ Approved by: Dr. Eric Long 11/20/2013 Head of the Graduate Program Date i EXPLORING THE MECHANISM OF ACTION OF SPORE PHOTOPRODUCT LYASE A Thesis Submitted to the Faculty of Purdue University by Renae Nelson In Partial Fulfillment of the Requirements for the Degree of Master of Science i December 2013 Purdue University Indianapolis, Indiana ii To Steven, thank you for holding my hand as we’ve grown up together. To my children, Adelene and Calvin, thank you for motivating me to be the best person I can be. To my Momma, for making me think that a master’s degree made you the smartest person in the world. ii iii ACKNOWLEDGEMENTS I would like to thank Dr. Lei Li for providing me with the opportunity to challenge and develop my skills as a research scientist, and his constant patience with my failures as well as my successes.
    [Show full text]
  • Mapping Hole Hopping Escape Routes in Proteins
    Mapping hole hopping escape routes in proteins Ruijie D. Teoa,1, Ruobing Wanga,1,2, Elizabeth R. Smithwicka, Agostino Migliorea,3, Michael J. Theriena, and David N. Beratana,b,c,3 aDepartment of Chemistry, Duke University, Durham, NC 27708; bDepartment of Biochemistry, Duke University, Durham, NC 27710; and cDepartment of Physics, Duke University, Durham, NC 27708 Edited by Michael L. Klein, Temple University, Philadelphia, PA, and approved June 25, 2019 (received for review April 13, 2019) A recently proposed oxidative damage protection mechanism in chains of 3 to 5 aromatic amino acids, with the highest occurrence proteins relies on hole hopping escape routes formed by redox- in redox proteins such as oxidoreductases and hydrolases (3). active amino acids. We present a computational tool to identify In addition to protecting redox-active sites from oxidative the dominant charge hopping pathways through these residues damage, hole hopping pathways could also act to safeguard pro- based on the mean residence times of the transferring charge teins from labilized hemes that may be produced in overoxidized along these hopping pathways. The residence times are estimated proteins like cytochrome c peroxidase (Ccp1). Labilized heme may by combining a kinetic model with well-known rate expressions be produced when H2O2 levels in Ccp1 (e.g., from Saccharomyces for the charge-transfer steps in the pathways. We identify the cerevisiae) increase ∼10-fold with yeast respiration; in this mech- most rapid hole hopping escape routes in cytochrome P450 anism, Ccp1 is activated via irreversible oxidation of the axial monooxygenase, cytochrome c peroxidase, and benzylsuccinate syn- H175 ligand to transfer its heme to apo-catalase A, after which thase (BSS).
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • Radical-Sam Enzymes with Two Iron-Sulfur Clusters: Cofactor
    RADICAL-SAM ENZYMES WITH TWO IRON-SULFUR CLUSTERS: COFACTOR COMPOSITION AND SPECTROSCOPIC STUDIES OF ESCHERICHIA COLI AND BACILLUS SUBTILIS BIOTIN SYNTHASE, HUMAN MOCS1A, AND THERMOTOGA MARITIMA MIAB by HEATHER LOUISE HERNÁNDEZ (Under the Direction of Michael Kenneth Johnson) ABSTRACT A new class of Fe-S proteins, termed radical-SAM enzymes, catalyzes radical reactions in a variety of biosynthetic processes. These [4Fe-4S]2+,+ cluster-containing enzymes initiate radical enzymatic reactions via reductive cleavage of S-adenosyl-L-methionine (SAM) to yield methionine and an extremely reactive 5'-deoxyadenosyl radical. A growing number of radical-SAM enzymes have recently been discovered to contain a second Fe-S cluster of unknown function, although possible roles include acting as sacrificial S-donor or anchoring and possibly activating the substrate. The combination of analytical and spectroscopic studies, including EPR, Mössbauer, UV-visible absorption/circular dichroism/variable temperature magnetic circular dichroism, and resonance Raman, have been used to investigate the cofactor composition and properties of the two cluster containing radical-SAM enzymes Escherichia coli and Bacillus subtilis biotin synthase (BioB), human MOCS1A, and Thermotoga maritima MiaB. These enzymes are involved in crucial steps in the biosynthesis of biotin and molybdopterin, and in the thiomethylation of tRNA. E. coli and B. subtilis BioB are shown to house a radical-SAM [4Fe-4S] cluster and a [2Fe-2S] cluster in separate binding sites. The function and relevance of the [2Fe-2S] cluster, which has been suggested to be the S-donor to biotin, is addressed. In E. coli BioB, the most active form of the enzyme contains a 1:1 ratio of [2Fe-2S]/[4Fe-4S] clusters and the [2Fe-2S] cluster degrades during turnover.
    [Show full text]