Occurrence and Role of Selected RNA-Viruses As Potential Causative Agents of Watery Droppings in Pigeons
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On the Entry and Entrapment of Picornaviruses
On the entry and entrapment of picornaviruses Jacqueline Staring PS_JS_def.indd 1 08-10-18 08:46 ISBN 978-94-92679-60-4 NUR 100 Printing and lay-out by: Proefschriftenprinten.nl – The Netherlands With financial support from the Netherlands Cancer Institute © J. Staring, 2018 All rights are reserved. No part of this book may be reproduced, distributed, or transmitted in any form or by any means, without prior written permission of the author. PS_JS_def.indd 2 08-10-18 08:46 On the entry and entrapment of picornaviruses Over het binnendringen en insluiten van picornavirussen (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. H.R.B.M. Kummeling, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 6 november 2018 des middags te 16.15 uur door Jacqueline Staring geboren op 8 december 1984 te Leiden PS_JS_def.indd 3 08-10-18 08:46 Promotor: Prof. dr T.R. Brummelkamp PS_JS_def.indd 4 08-10-18 08:46 TABLE OF CONTENTS Chapter 1 Introduction I: Picornaviruses 7 Chapter 2 Introduction II: Genetic approaches to study 27 host-pathogen interactions Chapter 3 PLA2G16, a switch between entry and clearance of 43 picornaviridae Chapter 4 Enterovirus D68 receptor requirements unveiled by 77 haploid genetics Chapter 5 KREMEN1 is a host entry receptor for a major group 95 of enteroviruses Chapter 6 General Discussion I: Viral endosomal escape & 125 detection at a glance Chapter 7 General Discussion II: Concluding remarks 151 Addendum 161 Summary 163 Nederlandse samenvatting 165 Curriculum vitae 167 List of publications 168 Acknowledgements 169 PS_JS_def.indd 5 08-10-18 08:46 Roll the dice if you’re going to try, go all the way. -
List N: Products with Emerging Viral Pathogens and Human Coronavirus Claims for Use Against SARS-Cov-2 Date Accessed: 06/12/2020
List N: Products with Emerging Viral Pathogens AND Human Coronavirus claims for use against SARS-CoV-2 Date Accessed: 06/12/2020 EPA Active Ingredient(s) Product Company To kill SARS- Contact Formulation Surface Use Sites Emerging Date Registration Name CoV-2 Time (in Type Types Viral Added to Number (COVID-19), minutes) Pathogen List N follow Claim? disinfection directions for the following virus(es) 1677-202 Quaternary ammonium 66 Heavy Duty Ecolab Inc Norovirus 2 Dilutable Hard Healthcare; Yes 06/04/2020 Alkaline Nonporous Institutional Bathroom (HN) Cleaner and Disinfectant 10324-81 Quaternary ammonium Maquat 7.5-M Mason Norovirus; 10 Dilutable Hard Healthcare; Yes 06/04/2020 Chemical Feline Nonporous Institutional; Company calicivirus (HN); Food Residential Contact Post-Rinse Required (FCR); Porous (P) (laundry presoak only) 4822-548 Triethylene glycol; Scrubbing S.C. Johnson Rotavirus 5 Pressurized Hard Residential Yes 06/04/2020 Quaternary ammonium Bubbles® & Son Inc liquid Nonporous Multi-Purpose (HN) Disinfectant 1839-167 Quaternary ammonium BTC 885 Stepan Rotavirus 10 Dilutable Hard Healthcare; Yes 05/28/2020 Neutral Company Nonporous Institutional; Disinfectant (HN) Residential Cleaner-256 93908-1 Hypochlorous acid Envirolyte O & Aqua Norovirus 10 Ready-to-use Hard Healthcare; Yes 05/28/2020 G Engineered Nonporous Institutional; Solution Inc (HN); Food Residential Contact Post-Rinse www.epa.gov/pesticide-registration/list-n-disinfectants-use-against-sars-cov-2 1 of 66 EPA Active Ingredient(s) Product Company To kill SARS- Contact -
Prospects of Replication-Deficient Adenovirus Based Vaccine Development Against SARS-Cov-2
Brief Report Prospects of Replication-Deficient Adenovirus Based Vaccine Development against SARS-CoV-2 Mariangela Garofalo 1,* , Monika Staniszewska 2 , Stefano Salmaso 1 , Paolo Caliceti 1, Katarzyna Wanda Pancer 3, Magdalena Wieczorek 3 and Lukasz Kuryk 3,4,* 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy; [email protected] (S.S.); [email protected] (P.C.) 2 Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland; [email protected] 3 Department of Virology, National Institute of Public Health—National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland; [email protected] (K.W.P.); [email protected] (M.W.) 4 Clinical Science, Targovax Oy, Saukonpaadenranta 2, 00180 Helsinki, Finland * Correspondence: [email protected] (M.G.); [email protected] (L.K.) Received: 1 May 2020; Accepted: 6 June 2020; Published: 10 June 2020 Abstract: The current appearance of the new SARS coronavirus 2 (SARS-CoV-2) and it quickly spreading across the world poses a global health emergency. The serious outbreak position is affecting people worldwide and requires rapid measures to be taken by healthcare systems and governments. Vaccinations represent the most effective strategy to prevent the epidemic of the virus and to further reduce morbidity and mortality with long-lasting effects. Nevertheless, currently there are no licensed vaccines for the novel coronaviruses. Researchers and clinicians from all over the world are advancing the development of a vaccine against novel human SARS-CoV-2 using various approaches. -
Key Factors That Enable the Pandemic Potential of RNA Viruses and Inter-Species Transmission: a Systematic Review
viruses Review Key Factors That Enable the Pandemic Potential of RNA Viruses and Inter-Species Transmission: A Systematic Review Santiago Alvarez-Munoz , Nicolas Upegui-Porras , Arlen P. Gomez and Gloria Ramirez-Nieto * Microbiology and Epidemiology Research Group, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá 111321, Colombia; [email protected] (S.A.-M.); [email protected] (N.U.-P.); [email protected] (A.P.G.) * Correspondence: [email protected]; Tel.: +57-1-3-16-56-93 Abstract: Viruses play a primary role as etiological agents of pandemics worldwide. Although there has been progress in identifying the molecular features of both viruses and hosts, the extent of the impact these and other factors have that contribute to interspecies transmission and their relationship with the emergence of diseases are poorly understood. The objective of this review was to analyze the factors related to the characteristics inherent to RNA viruses accountable for pandemics in the last 20 years which facilitate infection, promote interspecies jump, and assist in the generation of zoonotic infections with pandemic potential. The search resulted in 48 research articles that met the inclusion criteria. Changes adopted by RNA viruses are influenced by environmental and host-related factors, which define their ability to adapt. Population density, host distribution, migration patterns, and the loss of natural habitats, among others, have been associated as factors in the virus–host interaction. This review also included a critical analysis of the Latin American context, considering its diverse and unique social, cultural, and biodiversity characteristics. The scarcity of scientific information is Citation: Alvarez-Munoz, S.; striking, thus, a call to local institutions and governments to invest more resources and efforts to the Upegui-Porras, N.; Gomez, A.P.; study of these factors in the region is key. -
A Human Coronavirus Evolves Antigenically to Escape Antibody Immunity
bioRxiv preprint doi: https://doi.org/10.1101/2020.12.17.423313; this version posted December 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A human coronavirus evolves antigenically to escape antibody immunity Rachel Eguia1, Katharine H. D. Crawford1,2,3, Terry Stevens-Ayers4, Laurel Kelnhofer-Millevolte3, Alexander L. Greninger4,5, Janet A. Englund6,7, Michael J. Boeckh4, Jesse D. Bloom1,2,# 1Basic Sciences and Computational Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 2Department of Genome Sciences, University of Washington, Seattle, WA, USA 3Medical Scientist Training Program, University of Washington, Seattle, WA, USA 4Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA 5Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA 6Seattle Children’s Research Institute, Seattle, WA USA 7Department of Pediatrics, University of Washington, Seattle, WA USA 8Howard Hughes Medical Institute, Seattle, WA 98109 #Corresponding author. E-mail: [email protected] Abstract There is intense interest in antibody immunity to coronaviruses. However, it is unknown if coronaviruses evolve to escape such immunity, and if so, how rapidly. Here we address this question by characterizing the historical evolution of human coronavirus 229E. We identify human sera from the 1980s and 1990s that have neutralizing titers against contemporaneous 229E that are comparable to the anti-SARS-CoV-2 titers induced by SARS-CoV-2 infection or vaccination. -
The Viruses of Wild Pigeon Droppings
The Viruses of Wild Pigeon Droppings Tung Gia Phan1,2, Nguyen Phung Vo1,3,A´ kos Boros4,Pe´ter Pankovics4,Ga´bor Reuter4, Olive T. W. Li6, Chunling Wang5, Xutao Deng1, Leo L. M. Poon6, Eric Delwart1,2* 1 Blood Systems Research Institute, San Francisco, California, United States of America, 2 Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America, 3 Pharmacology Department, School of Pharmacy, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam, 4 Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, A´ NTSZ Regional Institute of State Public Health Service, Pe´cs, Hungary, 5 Stanford Genome Technology Center, Stanford, California, United States of America, 6 Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR Abstract Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia) from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads), as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses. -
Computational Exploration of Virus Diversity on Transcriptomic Datasets
Computational Exploration of Virus Diversity on Transcriptomic Datasets Digitaler Anhang der Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.) der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn vorgelegt von Simon Käfer aus Andernach Bonn 2019 Table of Contents 1 Table of Contents 1 Preliminary Work - Phylogenetic Tree Reconstruction 3 1.1 Non-segmented RNA Viruses ........................... 3 1.2 Segmented RNA Viruses ............................. 4 1.3 Flavivirus-like Superfamily ............................ 5 1.4 Picornavirus-like Viruses ............................. 6 1.5 Togavirus-like Superfamily ............................ 7 1.6 Nidovirales-like Viruses .............................. 8 2 TRAVIS - True Positive Details 9 2.1 INSnfrTABRAAPEI-14 .............................. 9 2.2 INSnfrTADRAAPEI-16 .............................. 10 2.3 INSnfrTAIRAAPEI-21 ............................... 11 2.4 INSnfrTAORAAPEI-35 .............................. 13 2.5 INSnfrTATRAAPEI-43 .............................. 14 2.6 INSnfrTBERAAPEI-19 .............................. 15 2.7 INSytvTABRAAPEI-11 .............................. 16 2.8 INSytvTALRAAPEI-35 .............................. 17 2.9 INSytvTBORAAPEI-47 .............................. 18 2.10 INSswpTBBRAAPEI-21 .............................. 19 2.11 INSeqtTAHRAAPEI-88 .............................. 20 2.12 INShkeTCLRAAPEI-44 .............................. 22 2.13 INSeqtTBNRAAPEI-11 .............................. 23 2.14 INSeqtTCJRAAPEI-20 -
Common Poultry Diseases 1 G
PS47 Common Poultry Diseases 1 G. D. Butcher, J. P. Jacob, and F. B. Mather2 Respiratory Diseases respiratory distress by obstructing the upper air passages. Chickens may be affected with either or both forms of fowl There are many common and important diseases which can pox at one time. affect the respiratory system (air passages, lungs, air sacs) of poultry (see Table 1). Poultry refers to birds that people Transmission: Fowl pox is transmitted by direct contact keep for their use and generally includes the chicken, between infected and susceptible birds or by mosquitos. turkey, duck, goose, quail, pheasant, pigeon, guinea fowl, Virus-containing scabs also can be sloughed from affected pea fowl, ostrich, emu, and rhea. Due to modern systems birds and serve as a source of infection. The virus can of management, usually with high poultry densities, these enter the blood stream through the eye, skin wounds, or diseases are able to readily spread. respiratory tract. Mosquitos become infected from feeding on birds with fowl pox in their blood stream. There is Fowl Pox some evidence that the mosquito remains infective for life. Synonyms: chicken pox (not to be confused with chicken Mosquitos are the primary reservoir and spreaders of fowl pox in humans; the human disease does not affect poultry pox on poultry ranges. Several species of mosquito can and vice versa), sore head, avian diphtheria, bird pox transmit fowl pox. Often mosquitos winter-over in poultry houses so, outbreaks can occur during winter and early Species affected: Most poultry—chickens, turkeys, pheas- spring. ants, quail, ducks, psittacine, and ratites—of all ages are susceptible. -
On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater
water Review On the Coronaviruses and Their Associations with the Aquatic Environment and Wastewater Adrian Wartecki 1 and Piotr Rzymski 2,* 1 Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Pozna´n,Poland; [email protected] 2 Department of Environmental Medicine, Poznan University of Medical Sciences, 60-806 Pozna´n,Poland * Correspondence: [email protected] Received: 24 April 2020; Accepted: 2 June 2020; Published: 4 June 2020 Abstract: The outbreak of Coronavirus Disease 2019 (COVID-19), a severe respiratory disease caused by betacoronavirus SARS-CoV-2, in 2019 that further developed into a pandemic has received an unprecedented response from the scientific community and sparked a general research interest into the biology and ecology of Coronaviridae, a family of positive-sense single-stranded RNA viruses. Aquatic environments, lakes, rivers and ponds, are important habitats for bats and birds, which are hosts for various coronavirus species and strains and which shed viral particles in their feces. It is therefore of high interest to fully explore the role that aquatic environments may play in coronavirus spread, including cross-species transmissions. Besides the respiratory tract, coronaviruses pathogenic to humans can also infect the digestive system and be subsequently defecated. Considering this, it is pivotal to understand whether wastewater can play a role in their dissemination, particularly in areas with poor sanitation. This review provides an overview of the taxonomy, molecular biology, natural reservoirs and pathogenicity of coronaviruses; outlines their potential to survive in aquatic environments and wastewater; and demonstrates their association with aquatic biota, mainly waterfowl. It also calls for further, interdisciplinary research in the field of aquatic virology to explore the potential hotspots of coronaviruses in the aquatic environment and the routes through which they may enter it. -
Ectoparasites of the Laughing Dove Streptopelia Senegalensis (Linnaeus, 1766) (Aves: Columbidae) in Zaria, Nigeria
Lundiana 9(1):67-71, 2008 © 2009 Instituto de Ciências Biológicas - UFMG ISSN 1676-6180 Ectoparasites of the Laughing Dove Streptopelia senegalensis (Linnaeus, 1766) (Aves: Columbidae) in Zaria, Nigeria 1Lucas K. Adang, 2Sonnie J. Oniye, 2Augustine U. Ezealor, 3Paul A. Abdu, 4Joseph O. Ajanusi & 1Kennedy P. Yoriyo 1 Department of Biological Sciences, Gombe State University, Gombe, Nigeria. E-mail: [email protected] 2 Department of Biological Sciences, 3 Department of Surgery and Medicine, 4 Department of Veterinary Parasitology and Entomology, Ahmadu Bello University, Zaria, Nigeria. Abstract A survey of ectoparasites of the Laughing Dove (Streptopelia senegalensis Linnaeus, 1766) was carried out in Zaria, Nigeria, to determine the prevalence, intensity and mean intensity of infestation. A total of 382 (231 males and 151 females) doves trapped from different locations in Zaria, Nigeria, were examined through plumage brushing. Eighty-eight (23.0%) of the birds were infested by the following six species of ectoparasites: lice – 32 (8.4%) Menopon gallinae Linnaeus, 1758, 37 (9.7%) Columbicola columbae Linnaeus, 1758, and 18(4.7%) Goniodes sp.; flies – 19 (5.0%) Pseudolynchia canariensis Macquart, 1840; ticks – 12 (3.1%) Argas persicus Oken, 1818; and mite: 1 (0.23%) Dermanyssus gallinae (Degeer, 1778). The frequency of single infestations (59 – 15.4%), was higher than that of double (27 – 7.1%) and triple (2 – 0.52%) infestations, though the difference was not statistically significant (p > 0.05). The males had a higher prevalence (55 – 23.8%) than the females (33 – 21.9%). However, this difference was also not significant (p > 0.05). Ectoparasites were collected from the birds through out the year, with highest prevalence (60.0%) in November. -
Understanding Human Astrovirus from Pathogenesis to Treatment
University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 6-2020 Understanding Human Astrovirus from Pathogenesis to Treatment Virginia Hargest University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Diseases Commons, Medical Sciences Commons, and the Viruses Commons Recommended Citation Hargest, Virginia (0000-0003-3883-1232), "Understanding Human Astrovirus from Pathogenesis to Treatment" (2020). Theses and Dissertations (ETD). Paper 523. http://dx.doi.org/10.21007/ etd.cghs.2020.0507. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Understanding Human Astrovirus from Pathogenesis to Treatment Abstract While human astroviruses (HAstV) were discovered nearly 45 years ago, these small positive-sense RNA viruses remain critically understudied. These studies provide fundamental new research on astrovirus pathogenesis and disruption of the gut epithelium by induction of epithelial-mesenchymal transition (EMT) following astrovirus infection. Here we characterize HAstV-induced EMT as an upregulation of SNAI1 and VIM with a down regulation of CDH1 and OCLN, loss of cell-cell junctions most notably at 18 hours post-infection (hpi), and loss of cellular polarity by 24 hpi. While active transforming growth factor- (TGF-) increases during HAstV infection, inhibition of TGF- signaling does not hinder EMT induction. However, HAstV-induced EMT does require active viral replication. -
Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris Spelaea)
viruses Article Diversity and Evolution of Viral Pathogen Community in Cave Nectar Bats (Eonycteris spelaea) Ian H Mendenhall 1,* , Dolyce Low Hong Wen 1,2, Jayanthi Jayakumar 1, Vithiagaran Gunalan 3, Linfa Wang 1 , Sebastian Mauer-Stroh 3,4 , Yvonne C.F. Su 1 and Gavin J.D. Smith 1,5,6 1 Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; [email protected] (D.L.H.W.); [email protected] (J.J.); [email protected] (L.W.); [email protected] (Y.C.F.S.) [email protected] (G.J.D.S.) 2 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore 3 Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore; [email protected] (V.G.); [email protected] (S.M.-S.) 4 Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore 5 SingHealth Duke-NUS Global Health Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore 168753, Singapore 6 Duke Global Health Institute, Duke University, Durham, NC 27710, USA * Correspondence: [email protected] Received: 30 January 2019; Accepted: 7 March 2019; Published: 12 March 2019 Abstract: Bats are unique mammals, exhibit distinctive life history traits and have unique immunological approaches to suppression of viral diseases upon infection. High-throughput next-generation sequencing has been used in characterizing the virome of different bat species. The cave nectar bat, Eonycteris spelaea, has a broad geographical range across Southeast Asia, India and southern China, however, little is known about their involvement in virus transmission.