Tic-Toc-Time - Geologic Time, Eon, Era, Period Tic-Toc-Time Geologic Time, Eon, Era, Period Earth and Life History Unit

Total Page:16

File Type:pdf, Size:1020Kb

Tic-Toc-Time - Geologic Time, Eon, Era, Period Tic-Toc-Time Geologic Time, Eon, Era, Period Earth and Life History Unit Tic-Toc-Time - geologic time, eon, era, period Tic-Toc-Time geologic time, eon, era, period Earth and Life History Unit The Earth is old. Ahem. Let me try that again. The Earth is OOOOOOOOOOLD. If it had a birthday cake, there would be around 4.6 billion candles on it. That's 4,600,000,000 candles! When scientists talk about what happened in the Earth's past, they can't use minutes, hours, days, weeks, months, or even years. There's just too much stuff that happened over too much time to hold it all in our heads. When big things happen on Earth, they happen very slowly. Plains turn into mountains. Lakes turn into deserts. Dinosaurs turn into birds. We had to come up with new terms for the Earth's time. Get ready to think big and think slow. Before we start, we need a good way to see just how much of Earth's history stretches behind us. Let's say you have a whole roll of toilet paper. Don't blow your nose on any of it yet. We need all of it. This roll represents the history of planet Earth. That's all 4.6 billion years. If we mark off the different eras and major events, the entire roll will be taken up by sections of all sizes. Some eras are two or three pieces long and others are fifteen pieces, depending on the amount of time that passed during each segment of time. Now let's unroll the whole toilet paper roll. The time humans have spent on Earth would be the thinnest pencil line that you can draw on the very end of the roll. Compared to the age of the Earth, we haven't been around very long at all. When we talk about the life of the Earth, we talk about BIG things that happened. We talk about when it was born, when land first showed up, when that land broke apart, when new living things showed up, and when they died. The word geology means the study of rocks. The geologic time scale uses events, or big things that have happened, instead of years to talk about the history of Earth. Can you remember the first time you crawled? Walked? How about when you first lost a baby tooth? Or moved into a new house? Sure, you may count your age by years. It's the things that happen that change your life, though. That's how we look at Earth: by the big things that changed it over a long, long time. Over 500 more free Science and History articles are waiting to inspire your students at Rocketlit Page 2 Tic-Toc-Time - geologic time, eon, era, period Still, we need ways to measure these BIG things that happen. So we have three important words to break up the history of Earth. Eons are the biggest piece of Earth time, and they cover a lot of time. Eons are so long, we haven't even come up with a number of years for them. If we were to talk about your life in school using eons, one eon would be like your time from first to fifth grade. Another would cover all of middle school. There are not a lot of these times, and the numbers are different for each one. Also, a lot of things happen to you during these times. That's how it is with eons, too. It only took three eons for Earth to make our air, make life, and have that life leave marks in the rocks. Did all of that fit in your head? I just hope it isn't too much. I don't want your head to blow up. Now that your head's all stretched out, you should be able to think about times that are a little shorter. Eras are the second biggest thing we use to measure the story of Earth. These would be more like one year in your school life, like fourth or fifth grade. Scientists choose eras when they find big changes in fossils. When the plants or animals we dig up look really different than the ones a little farther down in the rock, that makes an era. They are still hundreds of millions of years long. Since these eras can be really long or only kind of long, we do not have one number for them either. Maybe the Earth became really cold and a lot of living things died out, making way for new living things. That would be an era. What would make one for you? Losing all your baby teeth? I just hope that did not happen too quickly. Now we come to some names you might know. Ever heard of Jurassic, as in the movie Jurassic Park? Yes! This is a period, or the third biggest way to measure the story of Earth. As you might have already guessed, it's when most of the dinosaurs you know about lived. There are two periods in each era, and they track the times when different plants and animals first showed up on Earth. Because there are only two of them, you could think of these times as seasons in a school year. The animals springing up, and then their fall. Like the leaves in the trees . over millions of years. The Earth is OOOOOOOOOOLD. It's hard to wrap our heads around 4.6 billion years, so we have come up with new words to describe it. Earth time is really long, so it helps us to compare its many, many years to the times in your life. Eons, eras, and periods are kind of like changing schools, or years, or seasons. And when we look at the many beautiful things the Earth has made--the mountains, the animals, and the seas--we can be a little less surprised. It had a long time to make them. But that does not mean we are any less amazed. References: Esse.edu. "Geologic Time Scale" Esse, 2010. <http://www.esse.ou.edu/fund_concepts/Fundamental_Concepts4/Geologic_Time_Scale.html> University of California Museum of Paleontology. "The Proterozoic Eon" UCMP, 2009. Over 500 more free Science and History articles are waiting to inspire your students at Rocketlit Page 3 Tic-Toc-Time - geologic time, eon, era, period <http://www.ucmp.berkeley.edu/precambrian/proterozoic.php> Enchanted Learning. "Geologic Eons, Eras and Periods" Enchanted Learning, 2010. <http://www.enchantedlearning.com/subjects/dinosaurs/glossary/Period.shtml> National Geographic. "Jurassic Period" National Geographic, 2009. <http://science.nationalgeographic.com/science/prehistoric-world/jurassic/> Windows to the Universe. "Happenings During the Mesozoic Era" Windows to the Universe, 2008. <http://www.windows2universe.org/earth/geology/hist_mesozoic.html> Over 500 more free Science and History articles are waiting to inspire your students at Rocketlit Page 4 Powered by TCPDF (www.tcpdf.org).
Recommended publications
  • Islamic Calendar from Wikipedia, the Free Encyclopedia
    Islamic calendar From Wikipedia, the free encyclopedia -at اﻟﺘﻘﻮﻳﻢ اﻟﻬﺠﺮي :The Islamic, Muslim, or Hijri calendar (Arabic taqwīm al-hijrī) is a lunar calendar consisting of 12 months in a year of 354 or 355 days. It is used (often alongside the Gregorian calendar) to date events in many Muslim countries. It is also used by Muslims to determine the proper days of Islamic holidays and rituals, such as the annual period of fasting and the proper time for the pilgrimage to Mecca. The Islamic calendar employs the Hijri era whose epoch was Islamic Calendar stamp issued at King retrospectively established as the Islamic New Year of AD 622. During Khaled airport (10 Rajab 1428 / 24 July that year, Muhammad and his followers migrated from Mecca to 2007) Yathrib (now Medina) and established the first Muslim community (ummah), an event commemorated as the Hijra. In the West, dates in this era are usually denoted AH (Latin: Anno Hegirae, "in the year of the Hijra") in parallel with the Christian (AD) and Jewish eras (AM). In Muslim countries, it is also sometimes denoted as H[1] from its Arabic form ( [In English, years prior to the Hijra are reckoned as BH ("Before the Hijra").[2 .(ﻫـ abbreviated , َﺳﻨﺔ ﻫِ ْﺠﺮﻳّﺔ The current Islamic year is 1438 AH. In the Gregorian calendar, 1438 AH runs from approximately 3 October 2016 to 21 September 2017.[3] Contents 1 Months 1.1 Length of months 2 Days of the week 3 History 3.1 Pre-Islamic calendar 3.2 Prohibiting Nasī’ 4 Year numbering 5 Astronomical considerations 6 Theological considerations 7 Astronomical
    [Show full text]
  • Treasury's Emergency Rental Assistance
    FREQUENTLY ASKED QUESTIONS: TREASURY’SHEADING EMERGENCY1 HERE RENTAL ASSISTANCEHEADING (ERA)1 HERE PROGRAM AUGUST 2021 ongress established an Emergency Rental Assistance (ERA) program administered by the U.S. Department of the Treasury to distribute critically needed emergency rent and utility assistance to Cmillions of households at risk of losing their homes. Congress provided more than $46 billion for emergency rental assistance through the Consolidated Appropriations Act enacted in December 2020 and the American Rescue Plan Act enacted in March 2021. Based on NLIHC’s ongoing tracking and analysis of state and local ERA programs, including nearly 500 programs funded through Treasury’s ERA program, NLIHC has continued to identify needed policy changes to ensure ERA is distributed efficiently, effectively, and equitably. The ability of states and localities to distribute ERA was hindered early on by harmful guidance released by the Trump administration on its last day in office. Immediately after President Biden was sworn into office, the administration rescinded the harmful FAQ and released improved guidance to ensure ERA reaches households with the greatest needs, as recommended by NLIHC. The Biden administration issued revised ERA guidance in February, March, May, June, and August that directly addressed many of NLIHC’s concerns about troubling roadblocks in ERA programs. Treasury’s latest guidance provides further clarity and recommendations to encourage state and local governments to expedite assistance. Most notably, the FAQ provides even more explicit permission for ERA grantees to rely on self-attestations without further documentation. WHO IS ELIGIBLE TO RECEIVE EMERGENCY RENTAL ASSISTANCE? Households are eligible for ERA funds if one or more individuals: 1.
    [Show full text]
  • Geologic History of the Earth 1 the Precambrian
    Geologic History of the Earth 1 algae = very simple plants that Geologists are scientists who study the structure grow in or near the water of rocks and the history of the Earth. By looking at first = in the beginning at and examining layers of rocks and the fossils basic = main, important they contain they are able to tell us what the beginning = start Earth looked like at a certain time in history and billion = a thousand million what kind of plants and animals lived at that breathe = to take air into your lungs and push it out again time. carbon dioxide = gas that is produced when you breathe Scientists think that the Earth was probably formed at the same time as the rest out of our solar system, about 4.6 billion years ago. The solar system may have be- certain = special gun as a cloud of dust, from which the sun and the planets evolved. Small par- complex = something that has ticles crashed into each other to create bigger objects, which then turned into many different parts smaller or larger planets. Our Earth is made up of three basic layers. The cen- consist of = to be made up of tre has a core made of iron and nickel. Around it is a thick layer of rock called contain = have in them the mantle and around that is a thin layer of rock called the crust. core = the hard centre of an object Over 4 billion years ago the Earth was totally different from the planet we live create = make on today.
    [Show full text]
  • Critical Analysis of Article "21 Reasons to Believe the Earth Is Young" by Jeff Miller
    1 Critical analysis of article "21 Reasons to Believe the Earth is Young" by Jeff Miller Lorence G. Collins [email protected] Ken Woglemuth [email protected] January 7, 2019 Introduction The article by Dr. Jeff Miller can be accessed at the following link: http://apologeticspress.org/APContent.aspx?category=9&article=5641 and is an article published by Apologetic Press, v. 39, n.1, 2018. The problems start with the Article In Brief in the boxed paragraph, and with the very first sentence. The Bible does not give an age of the Earth of 6,000 to 10,000 years, or even imply − this is added to Scripture by Dr. Miller and other young-Earth creationists. R. C. Sproul was one of evangelicalism's outstanding theologians, and he stated point blank at the Legionier Conference panel discussion that he does not know how old the Earth is, and the Bible does not inform us. When there has been some apparent conflict, either the theologians or the scientists are wrong, because God is the Author of the Bible and His handiwork is in general revelation. In the days of Copernicus and Galileo, the theologians were wrong. Today we do not know of anyone who believes that the Earth is the center of the universe. 2 The last sentence of this "Article In Brief" is boldly false. There is almost no credible evidence from paleontology, geology, astrophysics, or geophysics that refutes deep time. Dr. Miller states: "The age of the Earth, according to naturalists and old- Earth advocates, is 4.5 billion years.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • How Long Is a Year.Pdf
    How Long Is A Year? Dr. Bryan Mendez Space Sciences Laboratory UC Berkeley Keeping Time The basic unit of time is a Day. Different starting points: • Sunrise, • Noon, • Sunset, • Midnight tied to the Sun’s motion. Universal Time uses midnight as the starting point of a day. Length: sunrise to sunrise, sunset to sunset? Day Noon to noon – The seasonal motion of the Sun changes its rise and set times, so sunrise to sunrise would be a variable measure. Noon to noon is far more constant. Noon: time of the Sun’s transit of the meridian Stellarium View and measure a day Day Aday is caused by Earth’s motion: spinning on an axis and orbiting around the Sun. Earth’s spin is very regular (daily variations on the order of a few milliseconds, due to internal rearrangement of Earth’s mass and external gravitational forces primarily from the Moon and Sun). Synodic Day Noon to noon = synodic or solar day (point 1 to 3). This is not the time for one complete spin of Earth (1 to 2). Because Earth also orbits at the same time as it is spinning, it takes a little extra time for the Sun to come back to noon after one complete spin. Because the orbit is elliptical, when Earth is closest to the Sun it is moving faster, and it takes longer to bring the Sun back around to noon. When Earth is farther it moves slower and it takes less time to rotate the Sun back to noon. Mean Solar Day is an average of the amount time it takes to go from noon to noon throughout an orbit = 24 Hours Real solar day varies by up to 30 seconds depending on the time of year.
    [Show full text]
  • The Little Metropolis at Athens 15
    Bucknell University Bucknell Digital Commons Honors Theses Student Theses 2011 The Littleetr M opolis: Religion, Politics, & Spolia Paul Brazinski Bucknell University Follow this and additional works at: https://digitalcommons.bucknell.edu/honors_theses Part of the Classics Commons Recommended Citation Brazinski, Paul, "The Little eM tropolis: Religion, Politics, & Spolia" (2011). Honors Theses. 12. https://digitalcommons.bucknell.edu/honors_theses/12 This Honors Thesis is brought to you for free and open access by the Student Theses at Bucknell Digital Commons. It has been accepted for inclusion in Honors Theses by an authorized administrator of Bucknell Digital Commons. For more information, please contact [email protected]. Paul A. Brazinski iv Acknowledgements I would like to acknowledge and thank Professor Larson for her patience and thoughtful insight throughout the writing process. She was a tremendous help in editing as well, however, all errors are mine alone. This endeavor could not have been done without you. I would also like to thank Professor Sanders for showing me the fruitful possibilities in the field of Frankish archaeology. I wish to thank Professor Daly for lighting the initial spark for my classical and byzantine interests as well as serving as my archaeological role model. Lastly, I would also like to thank Professor Ulmer, Professor Jones, and all the other Professors who have influenced me and made my stay at Bucknell University one that I will never forget. This thesis is dedicated to my Mom, Dad, Brian, Mark, and yes, even Andrea. Paul A. Brazinski v Table of Contents Abstract viii Introduction 1 History 3 Byzantine Architecture 4 The Little Metropolis at Athens 15 Merbaka 24 Agioi Theodoroi 27 Hagiography: The Saints Theodores 29 Iconography & Cultural Perspectives 35 Conclusions 57 Work Cited 60 Appendix & Figures 65 Paul A.
    [Show full text]
  • The Calendars of India
    The Calendars of India By Vinod K. Mishra, Ph.D. 1 Preface. 4 1. Introduction 5 2. Basic Astronomy behind the Calendars 8 2.1 Different Kinds of Days 8 2.2 Different Kinds of Months 9 2.2.1 Synodic Month 9 2.2.2 Sidereal Month 11 2.2.3 Anomalistic Month 12 2.2.4 Draconic Month 13 2.2.5 Tropical Month 15 2.2.6 Other Lunar Periodicities 15 2.3 Different Kinds of Years 16 2.3.1 Lunar Year 17 2.3.2 Tropical Year 18 2.3.3 Siderial Year 19 2.3.4 Anomalistic Year 19 2.4 Precession of Equinoxes 19 2.5 Nutation 21 2.6 Planetary Motions 22 3. Types of Calendars 22 3.1 Lunar Calendar: Structure 23 3.2 Lunar Calendar: Example 24 3.3 Solar Calendar: Structure 26 3.4 Solar Calendar: Examples 27 3.4.1 Julian Calendar 27 3.4.2 Gregorian Calendar 28 3.4.3 Pre-Islamic Egyptian Calendar 30 3.4.4 Iranian Calendar 31 3.5 Lunisolar calendars: Structure 32 3.5.1 Method of Cycles 32 3.5.2 Improvements over Metonic Cycle 34 3.5.3 A Mathematical Model for Intercalation 34 3.5.3 Intercalation in India 35 3.6 Lunisolar Calendars: Examples 36 3.6.1 Chinese Lunisolar Year 36 3.6.2 Pre-Christian Greek Lunisolar Year 37 3.6.3 Jewish Lunisolar Year 38 3.7 Non-Astronomical Calendars 38 4. Indian Calendars 42 4.1 Traditional (Siderial Solar) 42 4.2 National Reformed (Tropical Solar) 49 4.3 The Nānakshāhī Calendar (Tropical Solar) 51 4.5 Traditional Lunisolar Year 52 4.5 Traditional Lunisolar Year (vaisnava) 58 5.
    [Show full text]
  • It's About Time: Opportunities & Challenges for U.S
    I t’s About Time: Opportunities & Challenges for U.S. Geochronology About Time: Opportunities & Challenges for t’s It’s About Time: Opportunities & Challenges for U.S. Geochronology 222508_Cover_r1.indd 1 2/23/15 6:11 PM A view of the Bowen River valley, demonstrating the dramatic scenery and glacial imprint found in Fiordland National Park, New Zealand. Recent innovations in geochronology have quantified how such landscapes developed through time; Shuster et al., 2011. Photo taken Cover photo: The Grand Canyon, recording nearly two billion years of Earth history (photo courtesy of Dr. Scott Chandler) from near the summit of Sheerdown Peak (looking north); by J. Sanders. 222508_Cover.indd 2 2/21/15 8:41 AM DEEP TIME is what separates geology from all other sciences. This report presents recommendations for improving how we measure time (geochronometry) and use it to understand a broad range of Earth processes (geochronology). 222508_Text.indd 3 2/21/15 8:42 AM FRONT MATTER Written by: T. M. Harrison, S. L. Baldwin, M. Caffee, G. E. Gehrels, B. Schoene, D. L. Shuster, and B. S. Singer Reviews and other commentary provided by: S. A. Bowring, P. Copeland, R. L. Edwards, K. A. Farley, and K. V. Hodges This report is drawn from the presentations and discussions held at a workshop prior to the V.M. Goldschmidt in Sacramento, California (June 7, 2014), a discussion at the 14th International Thermochronology Conference in Chamonix, France (September 9, 2014), and a Town Hall meeting at the Geological Society of America Annual Meeting in Vancouver, Canada (October 21, 2014) This report was provided to representatives of the National Science Foundation, the U.S.
    [Show full text]
  • EDB Postgres™ Advanced Server Release 13
    EDB Postgres™ Advanced Server Release 13 Database Compatibility for Oracle® Developers Reference Guide Oct 20, 2020 Contents 1 Introduction 1 2 The SQL Language2 2.1 SQL Syntax..........................................3 2.1.1 Lexical Structure...................................3 2.1.2 Identifiers and Key Words..............................3 2.1.3 Constants.......................................4 2.1.3.1 String Constants...............................4 2.1.3.2 Numeric Constants.............................5 2.1.3.3 Constants of Other Types..........................5 2.1.4 Comments.......................................7 2.2 Data Types...........................................8 2.2.1 Numeric Types....................................8 2.2.1.1 Integer Types................................9 2.2.1.2 Arbitrary Precision Numbers........................9 2.2.1.3 Floating-Point Types............................. 10 2.2.2 Character Types.................................... 11 2.2.3 Binary Data...................................... 12 2.2.4 Date/Time Types................................... 13 2.2.4.1 INTERVAL Types.............................. 14 2.2.4.2 Date/Time Input............................... 15 2.2.4.3 Date/Time Output.............................. 16 2.2.4.4 Internals................................... 17 2.2.5 Boolean Types.................................... 17 2.2.6 XML Type...................................... 17 2.3 Functions and Operators.................................... 18 2.3.1 Logical Operators..................................
    [Show full text]
  • Geochronological Applications
    Paleomagnetism: Chapter 9 159 GEOCHRONOLOGICAL APPLICATIONS As discussed in Chapter 1, geomagnetic secular variation exhibits periodicities between 1 yr and 105 yr. We learn in this chapter that geomagnetic polarity intervals have a range of durations from 104 to 108 yr. In the next chapter, we shall see that apparent polar wander paths represent motions of lithospheric plates over time scales extending to >109 yr. As viewed from a particular location, the time intervals of magnetic field changes thus range from decades to billions of years. Accordingly, the time scales of potential geochrono- logic applications of paleomagnetism range from detailed dating within the Quaternary to rough estimations of magnetization ages of Precambrian rocks. Geomagnetic field directional changes due to secular variation have been successfully used to date Quaternary deposits and archeological artifacts. Because the patterns of secular variation are specific to subcontinental regions, these Quaternary geochronologic applications require the initial determination of the secular variation pattern in the region of interest (e.g., Figure 1.8). Once this regional pattern of swings in declination and inclination has been established and calibrated in absolute age, patterns from other Quaternary deposits can be matched to the calibrated pattern to date those deposits. This method has been developed and applied in western Europe, North America, and Australia. The books by Thompson and Oldfield (1986) and Creer et al. (1983) present detailed developments. Accordingly, this topic will not be developed here. This chapter will concentrate on the most broadly applied of geochronologic applications of paleomag- netism: magnetic polarity stratigraphy. This technique has been applied to stratigraphic correlation and geochronologic calibration of rock sequences ranging in age from Pleistocene to Precambrian.
    [Show full text]
  • Chronology of Michigan History 1618-1701
    CHRONOLOGY OF MICHIGAN HISTORY 1618-1701 1618 Etienne Brulé passes through North Channel at the neck of Lake Huron; that same year (or during two following years) he lands at Sault Ste. Marie, probably the first European to look upon the Sault. The Michigan Native American population is approximately 15,000. 1621 Brulé returns, explores the Lake Superior coast, and notes copper deposits. 1634 Jean Nicolet passes through the Straits of Mackinac and travels along Lake Michigan’s northern shore, seeking a route to the Orient. 1641 Fathers Isaac Jogues and Charles Raymbault conduct religious services at the Sault. 1660 Father René Mesnard establishes the first regular mission, held throughout winter at Keweenaw Bay. 1668 Father Jacques Marquette takes over the Sault mission and founds the first permanent settlement on Michigan soil at Sault Ste. Marie. 1669 Louis Jolliet is guided east by way of the Detroit River, Lake Erie, and Lake Ontario. 1671 Simon François, Sieur de St. Lusson, lands at the Sault, claims vast Great Lakes region, comprising most of western America, for Louis XIV. St. Ignace is founded when Father Marquette builds a mission chapel. First of the military outposts, Fort de Buade (later known as Fort Michilimackinac), is established at St. Ignace. 1673 Jolliet and Marquette travel down the Mississippi River. 1675 Father Marquette dies at Ludington. 1679 The Griffon, the first sailing vessel on the Great Lakes, is built by René Robert Cavelier, Sieur de La Salle, and lost in a storm on Lake Michigan. ➤ La Salle erects Fort Miami at the mouth of the St.
    [Show full text]