Chapter 0 Math 3210 Course Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 0 Math 3210 Course Introduction Introduction to Applied Statistical Computing Math 3210 Dr. Zeng Department of Mathematics California State University, Bakersfield Outline • Introduction to Applied Statistical Computing • Course Introduction • SAS Introduction • R Introduction • Difference between SAS and R • SAS Installation Guide • R Installation Guide A Data Driven World • A data driven world: from daily life to every scientific fields (e.g. medical research, DNA Microarray data, agriculture, social network, banking, economic & finance, political polls et al.). • Data are more than facts and figures, it is the lifeblood of all business. • Statisticians help us to turn large amounts of data into useful knowledge. • Statistical programming involves doing computations to aid in statistical analysis. Statistical Computing • Statistics is the study of collection, organization, analysis and the interpretation of data. • In statistical modeling, it is often necessary to use computer software to aid the implementation of large data sets and to obtain useful results. • For example, data must be summarized and displayed. Models must be fit to data, and the results displayed. • In statistical research, computer software is also used for statistical simulation which is a way to model random events, such that simulated outcomes closely match real-world outcomes. Statistical Software • Point-and-click Interface (menu driven) Minitab, SPSS • Command Syntax SAS, R, S-Plus • Both JMP, Stata • General Excel, MATLAB, et al. Why use Command Line? • Menu-based interfaces are very convenient when applied to a limited set of commands, from a few to one or two hundred. • Programming allows you to create a new program that no one has done before. • Learning how to use one command-line interface will give you some insight into how a menu-driven interface is implemented. Course Introduction • This course offers foundations of two most popular programming language SAS and R. Specifically, you will learn SAS data management and exploratory data analysis. Elementary R programming and R data management Using SAS for multivariate statistical analysis • Course Project Explore a research question using a large dataset Use inferential techniques that you learned before or here Introduce and use new SAS steps and R functions Roadmap of Statistical Courses • After completing this course, you are encouraged to take the following courses in order to better understand and practice a series of applied statistical modeling methods in SAS and R Math 4210: Applied Regression Analysis Math 4220: Statistical Design of Experiments • The courses below also offers theoretical foundations to advanced classes Math 3200: Probability Math 4200: Mathematical Statistics EXPLORING SAS SAS: History • The root of SAS (Statistical Analysis System) software reach back to the 1970s at North Carolina State University when it started out as a software package for statistical analysis, but SAS didn’t stop there. • By the mid-1980s SAS had already branched out into graphics, online data entry, and compilers for the C programming language. • In the 1990s the SAS family tree grew to include tools for visualizing data, administering data warehouses, and building interfaces to the World Wide Web. • In the new century, SAS has continued to grow with products designed for cleansing messy data, discovering and developing drugs, and detecting money laundering. SAS: Overview • Major statistical software in many industries • Multiple add-ons and extensions available, including integration of SQL programming language and integration with JMP • Extensive online help manuals and forums • Used by many statisticians and computer scientists for data mining, data analysis, and development of statistical methodology • Not case-sensitive language • Offers various certifications, which many employers value highly • Common fields: – Statistical science – Sociology – Manufacturing – Pharmaceutical science – Agriculture – Computer science – Quantitative finance – Engineering Who use SAS? SAS is used at more than 75,000 sites in 135 countries, including 93 of the top 100 companies on the 2014 Fortune Global 500® list. • Bank of America • Google • Twitter • Netflix • DIRECTV • US Census Bureau • USDA National Agricultural Statistical Service • HP • Kelly Blue Book • Many more banks and IT Companies • SAS Customer stories: https://www.sas.com/en_us/customers.html SAS: pros and cons Pros: – Data warehousing • Widely used in both industry and academia – Multivariate analysis • High-performance architecture that – Nonparametric methods supports computationally-intensive – Hypothesis testing algorithms – Categorical analysis • Flexible and customizable analyses and – Time series analysis graphics – Sample size calculation/power • Great for: analysis – Data manipulation, editing, and – Design of experiments coding – Optimization – Data mining – Graphical analysis Cons: – Data summary • Scripting programming language – Exploratory analysis • Expensive – Simulations • Some versions are not 100% compatible – Forecasting • Not as useful for: – Survival analysis – Simple analysis and manipulation – Linear and nonlinear modeling – Quality assessment and improvement SAS: usage • Data can be read in through a command or imported through menu-driven prompts • Variables and functions can be created and renamed • Multiple data sets can be handled at once and are stored in various workspaces (“libraries”) • Four types of commands: DATA step (read & edit data); Procedure steps (run built-in functions); macros (create and run own function); ODS statements (set output settings, styles, etc.) • Editor window is used to write and save commands • Log window reads commands and displays any errors or comments • Output window displays some output created by commands • Results viewer window displays most output, including graphs • Can save only commands, only data, or whole project EXPLORING R R: History • R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New Zealand, and is currently developed by the R Development Core Team, of which Chambers is a member. • In 1980s, a newly developed statistical programming package named S-Plus was in widespread use among statisticians of all kinds. • Ross Ihaka and Robert Gentleman chose to write a reduced version of S-Plus for teaching purposes, and what was more natural than choosing the immediately preceding letter? Their initials may also have played a role. • The project was conceived in 1992, with an initial version released in 1995 and a stable beta version in 2000. R: Overview • Free, open-source software; similar to S-plus • Multiple add-ons and extensions available, including integration with LaTeX ( a word processor) via RStudio, and Excel via RExcel • Extensive online help manuals and forums • Used by many statisticians and computer scientists for data mining, data analysis, and development of statistical methodology • Case-sensitive language • Common fields – Statistical science – Computational biology – Computer science – Quantitative finance – Engineering Who use R? R is used by more than 2 million data scientists and statisticians worldwide. • Facebook uses R to understand how its users interact with the service (data visualization) • The New York Times uses R as the basis for interactive data analysis features that forecast upcoming elections • Oracle has its own enterprise version of R R: usage • Data can be read in through code or created • Variables and functions can be created and renamed • Multiple data sets can be handled at once • Editor window is used to write and save commands • Console window reads commands and displays output, which is best saved by copying and pasting into a word processing document • Graphs are outputted in separate window, which is overwritten for each new graph unless otherwise indicated in commands • Workspaces can be saved, meaning data sets and variables do not need to be recreated (especially useful if data creation and manipulation take a long time to run) R: pros and cons Pros: Cons: • Widely used in both industry and academia • Scripting programming language • Flexible and customizable analyses and graphics • Mediocre graphics • Great for: • Not as useful for: – Data manipulation, editing, and coding – Graphical analysis – Data mining – Data summary – Simulations – Exploratory analysis – Survival analysis – Quality assessment and improvement – Linear and nonlinear modeling – Design of experiments – Data warehousing – Multivariate analysis – Nonparametric methods – Hypothesis testing – Categorical analysis – Time series analysis – Sample size calculation/power analysis – Optimization Installation: SAS and SAS Studio SAS Enterprise licenses are very expensive, but there are two ways to access SAS for free: 1. SAS OnDemand for Academics: a cloud-based system. Free for academics. 2. SAS Studio: a web-based system. Create and interact with SAS anywhere, anytime for free. SAS OnDemand for Academics is available in the following locations on campus: 1. Science III Room 239 2. WSL Lab 16 3. Science III Math Major Study Room Instructions for free access to SAS Studio and SAS Enterprise Guide: 1. Register for SAS OnDemand for Academics. Create your account by following this instruction http://support.sas.com/software/products/ondemand- academics/manuals/EnterpriseGuideStudent.pdf 2. Use the course enrollment link to enroll in this course (you need to type in the log in information created on step 1 first): https://odamid.oda.sas.com/SASODAControlCenter/enroll.ht
Recommended publications
  • R-Based Strategies for DH in English Linguistics: a Case Study
    R-based strategies for DH in English Linguistics: a case study Nicolas Ballier Paula Lissón Université Paris Diderot Université Paris Diderot UFR Études Anglophones UFR Études Anglophones CLILLAC-ARP (EA 3967) CLILLAC-ARP (EA 3967) nicolas.ballier@univ- [email protected] paris-diderot.fr paris-diderot.fr language for research in linguistics, both in a Abstract quantitative and qualitative approach. Developing a culture based on the program- This paper is a position statement advocating ming language R (R Core Team 2016) for NLP the implementation of the programming lan- among MA and PhD students doing English Lin- guage R in a curriculum of English Linguis- guistics is no easy task. Broadly speaking, most tics. This is an illustration of a possible strat- of the students have little background in mathe- egy for the requirements of Natural Language matics, statistics, or programming, and usually Processing (NLP) for Digital Humanities (DH) studies in an established curriculum. R feel reluctant to study any of these disciplines. plays the role of a Trojan Horse for NLP and While most PhD students in English linguistics statistics, while promoting the acquisition of are former students with a Baccalauréat in Sci- a programming language. We report an over- ences, some MA students pride themselves on view of existing practices implemented in an having radically opted out of Maths. However, MA and PhD programme at the University of we believe that students should be made aware of Paris Diderot in the recent years. We empha- the growing use of statistical and NLP methods size completed aspects of the curriculum and in linguistics and to be able to interpret and im- detail existing teaching strategies rather than plement these techniques.
    [Show full text]
  • R for Statistics: First Steps
    R for statistics: first steps CAR meeting, Raleigh, Feb 26 2011 Peter Aldhous, San Francisco Bureau Chief [email protected] A note of caution before using any stats package: Beware running with scissors! You can bamboozle yourself, and your readers, by misusing statistics. Make sure you understand the methods you are using, in particular the assumptions that must be met for them to be valid (e.g. normal distribution for many common tests). So before rushing in, consult: • IRE tipsheets (e.g. Donald & LaFleur, #2752; Donald & Hacker, #2731) • Statistical textbooks (e.g. http://www.statsoft.com/textbook/ is free online) • Experts who can provide a reality check on your analysis! Getting started: Download R, instructions at: http://www.r-project.org/ Start the program: Prepare the data: 1) Save as a csv file 2) Point R at the data First steps in the R command line: Load and examine the data: View a basic summary: What is the mean age and salary for CEOs in each sector? An alternative, computing mean and standard deviation in one go: Is there a correlation between age and salary? Draw a graph to explore the correlation analysis: Does mean CEO age differ significantly across sectors? Does mean CEO salary differ significantly across sectors? Draw a graph to explore the distribution of salary by sector: Moving beyond the basic functions: R packages The R community has written 2800+ extensions to R’s basic statistical and graphical functions, available from the CRAN repository: http://cran.r-project.org/web/packages/ Follow the links to find a PDF Reference Manual for each package.
    [Show full text]
  • R in a Nutshell
    R IN A NUTSHELL Second Edition Joseph Adler Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo R in a Nutshell, Second Edition by Joseph Adler Copyright © 2012 Joseph Adler. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more infor- mation, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Editors: Mike Loukides and Meghan Blanchette Indexer: Fred Brown Production Editor: Holly Bauer Cover Designer: Karen Montgomery Proofreader: Julie Van Keuren Interior Designer: David Futato Illustrators: Robert Romano and Re- becca Demarest September 2009: First Edition. October 2012: Second Edition. Revision History for the Second Edition: 2012-09-25 First release See http://oreilly.com/catalog/errata.csp?isbn=9781449312084 for release details. Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trade- marks of O’Reilly Media, Inc. R in a Nutshell, the image of a harpy eagle, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.
    [Show full text]
  • Eviews 9 Command and Programming Reference Eviews 9 Command and Programming Reference Copyright © 1994–2015 IHS Global Inc
    EViews 9 Command and Programming Reference EViews 9 Command and Programming Reference Copyright © 1994–2015 IHS Global Inc. All Rights Reserved ISBN: 978-1-880411-29-2 This software product, including program code and manual, is copyrighted, and all rights are reserved by IHS Global Inc. The distribution and sale of this product are intended for the use of the original purchaser only. Except as permitted under the United States Copyright Act of 1976, no part of this product may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of IHS Global Inc. Disclaimer The authors and IHS Global Inc. assume no responsibility for any errors that may appear in this manual or the EViews program. The user assumes all responsibility for the selection of the pro- gram to achieve intended results, and for the installation, use, and results obtained from the pro- gram. Trademarks EViews® is a registered trademark of IHS Global Inc. Windows, Excel, PowerPoint, and Access are registered trademarks of Microsoft Corporation. PostScript is a trademark of Adobe Corpora- tion. X11.2 and X12-ARIMA Version 0.2.7, and X-13ARIMA-SEATS are seasonal adjustment pro- grams developed by the U. S. Census Bureau. Tramo/Seats is copyright by Agustin Maravall and Victor Gomez. Info-ZIP is provided by the persons listed in the infozip_license.txt file. Please refer to this file in the EViews directory for more information on Info-ZIP. Zlib was written by Jean-loup Gailly and Mark Adler.
    [Show full text]
  • The Use of Statistical Software to Teach Nonparametric Curve Estimation: from Excel to R
    ICOTS8 (2010) Invited Paper Refereed Cao & Naya THE USE OF STATISTICAL SOFTWARE TO TEACH NONPARAMETRIC CURVE ESTIMATION: FROM EXCEL TO R Ricardo Cao and Salvador Naya Research Group MODES, Department of Mathematics, University of A Coruña, Spain [email protected] The advantages of using R and Excel for teaching nonparametric curve estimation are presented in this paper. The use of these two tools for teaching nonparametric curve estimation is illustrated by means of several well-known data sets. Computation of histogram and kernel density estimators as well as kernel and local polynomial regression estimators is presented using Excel and R. Interactive changes in the sample and the smoothing parameter are illustrated using both tools. R incorporates sophisticated routines for crucial issues in nonparametric curve estimation, as smoothing parameter selection. The paper concludes summarizing the relative merits of these two tools for teaching nonparametric curve estimation and presenting RExcel, a free add-in for Excel that can be downloaded from the R distribution network. INTRODUCTION There has been an enormous expansion, over the past few years, on the use of computer and communication technologies for teaching statistics at different levels. Microsoft Excel is the most popular spreadsheet program that is used to store information in columns and rows, which can then be organized and/or processed. Many authors consider Microsoft Excel as an excellent tool for statistical education (see, for example, Giles, 2002). On the other hand, the use of free software is also one of the most interesting available tools for teaching statistics. Universal access to the Internet enables easy installation of free software.
    [Show full text]
  • Appendix C Some Details of Matrix.Xla(M)
    Appendix C Some details of Matrix.xla(m) C.1 Matrix nomenclature For the sake of notational compactness, we will denote a square diagonal matrix by D with elements dii, a square tridiagonal matrix by T with elements tij where | j – i | ≤ 1, most other square matrices by S, rectangular matrices by R, and all matrix elements by mij. A vector will be shown as v, with elements vi, and a scalar as s. Particular values are denoted by x when real, and by z when complex. All optional pa- rameters are shown in straight brackets, [ ]. All matrices, vectors, and scalars are assumed to be real, ex- cept when specified otherwise. All matrices are restricted to two dimensions, and vectors to one dimen- sion. Table C.1 briefly explains some matrix terms that will be used in subsequent tables. With some functions, the user is given the integer option Int of applying integer arithmetic. When a matrix only contains integer elements, selecting integer arithmetic may avoid most round-off problems. On the other hand, the range of integer arithmetic is limited, so that overflow errors may result if the ma- trix is large and/or contains large numbers. Another common option it Tiny, which defines the absolute value of quantities that can be regarded as most likely resulting from round-off errors, and are therefore set to zero. When not activated, the routine will use its user-definable default value. Condition of a matrix: ratio of its largest to smallest singular value Diagonal of a square matrix: the set of terms mij where i = j Diagonal matrix D square matrix with mij = 0 for all off-diagonal elements i ≠ j.
    [Show full text]
  • R Course for the Nsos in the Arab Countries Part 3: R Data Management
    R Course for the NSOs in the Arab countries Part 3: R Data Management Valentin Todorov1 1United Nations Industrial Development Organization, Vienna 18-20 May 2015 Todorov (UNIDO) R Course for the NSOs in the Arab countriesPart 3: R Data Management18-20 May 2015 1 / 41 Outline 1 Motivation 2 Data exchange with other statistical tools 3 Reading and Writing in Excel Format 4 Reading Data in SDMX Format 5 R data base interfaces and Relational DBMSs 6 Case study: UNIDO database 7 R packages for database access 8 Exercise: The Data Expo 2006 9 Accessing international statistical databases 10 Summary and conclusions Todorov (UNIDO) R Course for the NSOs in the Arab countriesPart 3: R Data Management18-20 May 2015 2 / 41 Motivation Motivation 1. A number of statistical software tools and other programs are in use in a statistical organization 2. The data exchange between such systems (SAS, SPSS, EViews, Stata, Excel, Matlab, Octave, etc) is essential 3. Reading and writing data from/to Excel is very important due to its extreme popularity 4. Often data are stored in relational databases (MS Access, MySql, DB2, MS SQL server, Sybase, etc.) and the size do not allow to extract them into flat files before analysis 5. Using SDMX for data and metadata exchange becomes more and more important Todorov (UNIDO) R Course for the NSOs in the Arab countriesPart 3: R Data Management18-20 May 2015 3 / 41 Data exchange with other statistical tools R as a mediator Todorov (UNIDO) R Course for the NSOs in the Arab countriesPart 3: R Data Management18-20 May 2015 4 / 41 Data exchange with other statistical tools Package foreign • Package foreign reads data stored by Minitab, S, SAS, SPSS, Stata, Systat, Weka, dBase and others and writes in the format of some of these.
    [Show full text]
  • ASA JSM Program Book 06.Indd
    GENERAL PROGRAM SCHEDULE ✪ Themed Session ● Applied Session ❖ Presenter CC-Washington State Convention & Trade Center H-Grand Hyatt Seattle S-Sheraton Seattle Hotel & Towers TUESDAY, AUGUST 8 7:00 a.m.–10:00 p.m. CC-Level 4 South Lobby Cyber Center Tuesday 7:00 a.m.–10:00 a.m. S-Metropolitan Ballroom A Tours Council of Chapters Business Meeting and Breakfast (closed) 9:00 a.m.–1:00 p.m. CC-Convention Place Chair(s): Ronald Wasserstein, Washburn University TR06 - Historical Seattle Tour (fee event) 7:00 a.m.–10:00 a.m. S-Ballard 1:00 p.m.–5:00 p.m. CC-Convention Place Section on Physical and Engineering Sciences TR07 - Glassblowing Tour (fee event) Executive Committee Meeting (closed) Chair(s): Robert Wilkinson, Lubrizol Committee/Business Meetings 7:00 a.m.–6:00 p.m. CC-507, CC-508 & Other Activities Speaker Work Rooms 5:15 a.m.–7:00 a.m. Off Property 7:30 a.m.–9:00 a.m. H-Cayuse Gertrude Cox Scholarship Race Project on Filming of Distinguished Statisticians (closed) 7:00 a.m.–8:30 a.m. S-Cedar Room Organizer(s): Nitis Mukhopadhyay, University of Connecticut Section on Statisticians in Defense and National 7:30 a.m.–12:00 p.m. S-Aspen Room Security Business Meeting Chair(s): Ron Fricker, Naval Postgraduate School Biopharmaceutical Section Executive Committee Meeting (closed) 7:00 a.m.–8:30 a.m. H-Excelsior Chair(s): Stacy Lindborg, Eli Lilly and Company Technometrics Editorial Board Meeting (closed) Chair(s): Randy R. Sitter, Simon Fraser University 7:30 a.m.–4:30 p.m.
    [Show full text]
  • Creating and Deploying an Application with (R)Excel and R
    CONTRIBUTED RESEARCH ARTICLES 5 Creating and Deploying an Application with (R)Excel and R Thomas Baier, Erich Neuwirth and Michele De Meo Prediction of a quantitative or categorical variable, is done through a tree structure, which even non- Abstract We present some ways of using R in professionals can read and understand easily. The Excel and build an example application using the application of a computationally complex algorithm package rpart. Starting with simple interactive thus results in an intuitive and easy to use tool. Pre- use of rpart in Excel, we eventually package the diction of a categorical variable is performed by a code into an Excel-based application, hiding all classification tree, while the term regression tree is used details (including R itself) from the end user. In for the estimation of a quantitative variable. the end, our application implements a service- Our application will be built for Microsoft Excel oriented architecture (SOA) with a clean separa- and will make use of R and rpart to implement the tion of presentation and computation layer. functionality. We have chosen Excel as the primary tool for performing the analysis because of various advantages: Motivation • Excel has a familiar and easy-to-use user inter- Building an application for end users is a very chal- face. lenging goal. Building a statistics application nor- • Excel is already installed on most of the work- mally involves three different roles: application de- stations in the industries we mentioned. veloper, statistician, and user. Often, statisticians are programmers too, but are only (or mostly) fa- • In many cases, data collection has been per- miliar with statistical programming (languages) and formed using Excel, so using Excel for the anal- definitely are not experts in creating rich user inter- ysis seems to be the logical choice.
    [Show full text]
  • Non-Programming Introduction to R
    sheepsqueezers.com Non-Programming Introduction to R Copyright ©2011 sheepsqueezers.com Legal Stuff sheepsqueezers.com This work may be reproduced and redistributed, in whole or in part, without alteration and without prior written permission, provided all copies contain the following statement: Copyright ©2011 sheepsqueezers.com. This work is reproduced and distributed with the permission of the copyright holder. This presentation as well as other presentations and documents found on the sheepsqueezers.com website may contain quoted material from outside sources such as books, articles and websites. It is our intention to diligently reference all outside sources. Occasionally, though, a reference may be missed. No copyright infringement whatsoever is intended, and all outside source materials are copyright of their respective author(s). Copyright ©2011 sheepsqueezers.com R Lecture Series sheepsqueezers.com Non- Programming Programming Programming I II Introduction Graphics Advanced I Topics Copyright ©2011 sheepsqueezers.com Charting Our Course Goal of this Presentation sheepsqueezers.com What is R? Installing the Software Installing R Commander and Rattle Packages Installing RExcel for R Commander Installing RGGobi Installing Additional Packages Introducing Rterm and RGui Introducing R Commander Introducing Rattle Introducing RExcel Introducing RGGobi Appendix A: References Appendix B: R-Related Websites Copyright ©2011 sheepsqueezers.com Goal of this Presentation The goal of this presentation is to show you how to use R through its many sheepsqueezers.com graphical user interfaces (GUIs). We decided to start with this instead of charging directly into programming to ease you into R rather than throwing you to the wolves. Many of you will be casual R users and will not need or not want to learn the R programming language itself and it is our hope that this presentation will be to your benefit.
    [Show full text]
  • Installation of Rexcel
    Appendix A Installation of RExcel Abstract • Excel is the most prevalent software used for data storage, analysis, and interpre- tation. Elementary and medium-quality mathematical and statistical functions are included with Excel. Good statistical analysis in Excel with more advanced methods than just frequency counts, however, requires an add-in package. • R is one of the best and most powerful statistics programs currently available. • RExcel integrates a menu system, based on the R Commander package, that puts complete access to the full power of R onto the Excel menu bar. Results from the analyses in R can be returned to the spreadsheet. Ordinary formulas in spread- sheet cells can use functions written in R. A.1 Basic Installation Procedures The easiest way to install R, RExcel, and the additionally needed software mod- ules and tools is to download the current version of RAndFriendsSetup from http://rcom.univie.ac.at. Running this program will install everything needed for a working configuration on your machine. A detailed description of the installation is in Section A.3. You will need a working internet connection during the installa- tion process because one module, statconnDCOM, is not under the GPL license that covers most of R. statconnDCOM must be downloaded separately during the installation. More information on the license is in Section A.8. If you already have a working version of R (version 2.8.1 or later) on your ma- chine, you can simply install the R packages RExcelInstaller and RthroughExcel- WorkbooksInstaller (and the packages they require) from CRAN. Section A.4 gives more details about this process.
    [Show full text]
  • R for Dummies
    R 2nd Edition by Andrie de Vries and Joris Meys R For Dummies®, 2nd Edition Published by: John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030‐5774, www.wiley.com Copyright © 2015 by John Wiley & Sons, Inc., Hoboken, New Jersey Media and software compilation copyright © 2015 by John Wiley & Sons, Inc. All rights reserved. Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit- ted under Sections 107 or 108 of the 1976 United States Copyright Act, without the prior written permis- sion of the Publisher. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748‐6011, fax (201) 748‐6008, or online at http://www.wiley.com/go/permissions. Trademarks: Wiley, For Dummies, the Dummies Man logo, Dummies.com, Making Everything Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and may not be used without written permission. All trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book. LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITHOUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS.
    [Show full text]