Installation of Rexcel
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to IDL®
Introduction to IDL® Revised for Print March, 2016 ©2016 Exelis Visual Information Solutions, Inc., a subsidiary of Harris Corporation. All rights reserved. ENVI and IDL are registered trademarks of Harris Corporation. All other marks are the property of their respective owners. This document is not subject to the controls of the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). Contents 1 Introduction To IDL 5 1.1 Introduction . .5 1.1.1 What is ENVI? . .5 1.1.2 ENVI + IDL, ENVI, and IDL . .6 1.1.3 ENVI Resources . .6 1.1.4 Contacting Harris Geospatial Solutions . .6 1.1.5 Tutorials . .6 1.1.6 Training . .7 1.1.7 ENVI Support . .7 1.1.8 Contacting Technical Support . .7 1.1.9 Website . .7 1.1.10 IDL Newsgroup . .7 2 About This Course 9 2.1 Manual Organization . .9 2.1.1 Programming Style . .9 2.2 The Course Files . 11 2.2.1 Installing the Course Files . 11 2.3 Starting IDL . 11 2.3.1 Windows . 11 2.3.2 Max OS X . 11 2.3.3 Linux . 12 3 A Tour of IDL 13 3.1 Overview . 13 3.2 Scalars and Arrays . 13 3.3 Reading Data from Files . 15 3.4 Line Plots . 15 3.5 Surface Plots . 17 3.6 Contour Plots . 18 3.7 Displaying Images . 19 3.8 Exercises . 21 3.9 References . 21 4 IDL Basics 23 4.1 IDL Directory Structure . 23 4.2 The IDL Workbench . 24 4.3 Exploring the IDL Workbench . -
A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya 1 Introduction
A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya Sai K. Popuri and Matthias K. Gobbert* Department of Mathematics and Statistics, University of Maryland, Baltimore County *Corresponding author: [email protected], www.umbc.edu/~gobbert Technical Report HPCF{2017{3, hpcf.umbc.edu > Publications Abstract Matlab is the most popular commercial package for numerical computations in mathematics, statistics, the sciences, engineering, and other fields. Octave is a freely available software used for numerical computing. R is a popular open source freely available software often used for statistical analysis and computing. Julia is a recent open source freely available high-level programming language with a sophisticated com- piler for high-performance numerical and statistical computing. They are all available to download on the Linux, Windows, and Mac OS X operating systems. We investigate whether the three freely available software are viable alternatives to Matlab for uses in research and teaching. We compare the results on part of the equipment of the cluster maya in the UMBC High Performance Computing Facility. The equipment has 72 nodes, each with two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) proces- sors with 8 cores per CPU, for a total of 16 cores per node. All nodes have 64 GB of main memory and are connected by a quad-data rate InfiniBand interconnect. The tests focused on usability lead us to conclude that Octave is the most compatible with Matlab, since it uses the same syntax and has the native capability of running m-files. R was hampered by somewhat different syntax or function names and some missing functions. -
Sage 9.4 Reference Manual: Finite Rings Release 9.4
Sage 9.4 Reference Manual: Finite Rings Release 9.4 The Sage Development Team Aug 24, 2021 CONTENTS 1 Finite Rings 1 1.1 Ring Z=nZ of integers modulo n ....................................1 1.2 Elements of Z=nZ ............................................ 15 2 Finite Fields 39 2.1 Finite Fields............................................... 39 2.2 Base Classes for Finite Fields...................................... 47 2.3 Base class for finite field elements.................................... 61 2.4 Homset for Finite Fields......................................... 69 2.5 Finite field morphisms.......................................... 71 3 Prime Fields 77 3.1 Finite Prime Fields............................................ 77 3.2 Finite field morphisms for prime fields................................. 79 4 Finite Fields Using Pari 81 4.1 Finite fields implemented via PARI’s FFELT type............................ 81 4.2 Finite field elements implemented via PARI’s FFELT type....................... 83 5 Finite Fields Using Givaro 89 5.1 Givaro Finite Field............................................ 89 5.2 Givaro Field Elements.......................................... 94 5.3 Finite field morphisms using Givaro................................... 102 6 Finite Fields of Characteristic 2 Using NTL 105 6.1 Finite Fields of Characteristic 2..................................... 105 6.2 Finite Fields of characteristic 2...................................... 107 7 Miscellaneous 113 7.1 Finite residue fields........................................... -
A Fast Dynamic Language for Technical Computing
Julia A Fast Dynamic Language for Technical Computing Created by: Jeff Bezanson, Stefan Karpinski, Viral B. Shah & Alan Edelman A Fractured Community Technical work gets done in many different languages ‣ C, C++, R, Matlab, Python, Java, Perl, Fortran, ... Different optimal choices for different tasks ‣ statistics ➞ R ‣ linear algebra ➞ Matlab ‣ string processing ➞ Perl ‣ general programming ➞ Python, Java ‣ performance, control ➞ C, C++, Fortran Larger projects commonly use a mixture of 2, 3, 4, ... One Language We are not trying to replace any of these ‣ C, C++, R, Matlab, Python, Java, Perl, Fortran, ... What we are trying to do: ‣ allow developing complete technical projects in a single language without sacrificing productivity or performance This does not mean not using components in other languages! ‣ Julia uses C, C++ and Fortran libraries extensively “Because We Are Greedy.” “We want a language that’s open source, with a liberal license. We want the speed of C with the dynamism of Ruby. We want a language that’s homoiconic, with true macros like Lisp, but with obvious, familiar mathematical notation like Matlab. We want something as usable for general programming as Python, as easy for statistics as R, as natural for string processing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs together as the shell. Something that is dirt simple to learn, yet keeps the most serious hackers happy.” Collapsing Dichotomies Many of these are just a matter of design and focus ‣ stats vs. linear algebra vs. strings vs. -
Introduction to Ggplot2
Introduction to ggplot2 Dawn Koffman Office of Population Research Princeton University January 2014 1 Part 1: Concepts and Terminology 2 R Package: ggplot2 Used to produce statistical graphics, author = Hadley Wickham "attempt to take the good things about base and lattice graphics and improve on them with a strong, underlying model " based on The Grammar of Graphics by Leland Wilkinson, 2005 "... describes the meaning of what we do when we construct statistical graphics ... More than a taxonomy ... Computational system based on the underlying mathematics of representing statistical functions of data." - does not limit developer to a set of pre-specified graphics adds some concepts to grammar which allow it to work well with R 3 qplot() ggplot2 provides two ways to produce plot objects: qplot() # quick plot – not covered in this workshop uses some concepts of The Grammar of Graphics, but doesn’t provide full capability and designed to be very similar to plot() and simple to use may make it easy to produce basic graphs but may delay understanding philosophy of ggplot2 ggplot() # grammar of graphics plot – focus of this workshop provides fuller implementation of The Grammar of Graphics may have steeper learning curve but allows much more flexibility when building graphs 4 Grammar Defines Components of Graphics data: in ggplot2, data must be stored as an R data frame coordinate system: describes 2-D space that data is projected onto - for example, Cartesian coordinates, polar coordinates, map projections, ... geoms: describe type of geometric objects that represent data - for example, points, lines, polygons, ... aesthetics: describe visual characteristics that represent data - for example, position, size, color, shape, transparency, fill scales: for each aesthetic, describe how visual characteristic is converted to display values - for example, log scales, color scales, size scales, shape scales, .. -
Rkward: a Comprehensive Graphical User Interface and Integrated Development Environment for Statistical Analysis with R
JSS Journal of Statistical Software June 2012, Volume 49, Issue 9. http://www.jstatsoft.org/ RKWard: A Comprehensive Graphical User Interface and Integrated Development Environment for Statistical Analysis with R Stefan R¨odiger Thomas Friedrichsmeier Charit´e-Universit¨atsmedizin Berlin Ruhr-University Bochum Prasenjit Kapat Meik Michalke The Ohio State University Heinrich Heine University Dusseldorf¨ Abstract R is a free open-source implementation of the S statistical computing language and programming environment. The current status of R is a command line driven interface with no advanced cross-platform graphical user interface (GUI), but it includes tools for building such. Over the past years, proprietary and non-proprietary GUI solutions have emerged, based on internal or external tool kits, with different scopes and technological concepts. For example, Rgui.exe and Rgui.app have become the de facto GUI on the Microsoft Windows and Mac OS X platforms, respectively, for most users. In this paper we discuss RKWard which aims to be both a comprehensive GUI and an integrated devel- opment environment for R. RKWard is based on the KDE software libraries. Statistical procedures and plots are implemented using an extendable plugin architecture based on ECMAScript (JavaScript), R, and XML. RKWard provides an excellent tool to manage different types of data objects; even allowing for seamless editing of certain types. The objective of RKWard is to provide a portable and extensible R interface for both basic and advanced statistical and graphical analysis, while not compromising on flexibility and modularity of the R programming environment itself. Keywords: GUI, integrated development environment, plugin, R. -
01 Introduction Lab.Pdf
AN INTRODUCTION TO R DEEPAYAN SARKAR Introduction and examples What is R?. R provides an environment in which you can perform statistical analysis and produce graphics. It is actually a complete programming language, although that is only marginally described in this book. |Peter Dalgaard, \Introductory Statistics with R", 2002 R can be viewed as a programming language that happens to come with a large library of pre-defined functions that can be used to perform various tasks. A major focus of these pre-defined functions is statistical data analysis, and these allow R to be used purely as a toolbox for standard statistical techniques. However, some knowledge of R programming is essential to use it well at any level. For advanced users in particular, the main appeal of R (as opposed to other data analysis software) is as a programming environment suited to data analysis. Our goal will be to learn R as a statistics toolbox, but with a fairly strong emphasis on its programming language aspects. In this tutorial, we will do some elementary statistics, learn to use the documentation system, and learn about common data structures and programming features in R. Some follow-up tutorials are available for self-study at http://www.isid.ac.in/~deepayan/R-tutorials/. For more resources, see the R Project homepage http://www.r-project.org, which links to various manuals and other user-contributed documentation. A list of books related to R is available at http://www.r-project.org/doc/bib/R-jabref.html. An excellent introductory book is Peter Dalgaard, \Introductory Statistics with R", Springer (2002). -
R-Based Strategies for DH in English Linguistics: a Case Study
R-based strategies for DH in English Linguistics: a case study Nicolas Ballier Paula Lissón Université Paris Diderot Université Paris Diderot UFR Études Anglophones UFR Études Anglophones CLILLAC-ARP (EA 3967) CLILLAC-ARP (EA 3967) nicolas.ballier@univ- [email protected] paris-diderot.fr paris-diderot.fr language for research in linguistics, both in a Abstract quantitative and qualitative approach. Developing a culture based on the program- This paper is a position statement advocating ming language R (R Core Team 2016) for NLP the implementation of the programming lan- among MA and PhD students doing English Lin- guage R in a curriculum of English Linguis- guistics is no easy task. Broadly speaking, most tics. This is an illustration of a possible strat- of the students have little background in mathe- egy for the requirements of Natural Language matics, statistics, or programming, and usually Processing (NLP) for Digital Humanities (DH) studies in an established curriculum. R feel reluctant to study any of these disciplines. plays the role of a Trojan Horse for NLP and While most PhD students in English linguistics statistics, while promoting the acquisition of are former students with a Baccalauréat in Sci- a programming language. We report an over- ences, some MA students pride themselves on view of existing practices implemented in an having radically opted out of Maths. However, MA and PhD programme at the University of we believe that students should be made aware of Paris Diderot in the recent years. We empha- the growing use of statistical and NLP methods size completed aspects of the curriculum and in linguistics and to be able to interpret and im- detail existing teaching strategies rather than plement these techniques. -
Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology Polina Lemenkova
Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology Polina Lemenkova To cite this version: Polina Lemenkova. Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology. International Journal of Environmental Trends (IJENT), 2019, 3 (1), pp.39 - 59. hal-02163671 HAL Id: hal-02163671 https://hal.archives-ouvertes.fr/hal-02163671 Submitted on 3 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License International Journal of Environmental Trends (IJENT) 2019: 3 (1),39-59 ISSN: 2602-4160 Research Article REGRESSION MODELS BY GRETL AND R STATISTICAL PACKAGES FOR DATA ANALYSIS IN MARINE GEOLOGY Polina Lemenkova 1* 1 ORCID ID number: 0000-0002-5759-1089. Ocean University of China, College of Marine Geo-sciences. 238 Songling Rd., 266100, Qingdao, Shandong, P. R. C. Tel.: +86-1768-554-1605. Abstract Received 3 May 2018 Gretl and R statistical libraries enables to perform data analysis using various algorithms, modules and functions. The case study of this research consists in geospatial analysis of Accepted the Mariana Trench, a hadal trench located in the Pacific Ocean. -
R for Statistics: First Steps
R for statistics: first steps CAR meeting, Raleigh, Feb 26 2011 Peter Aldhous, San Francisco Bureau Chief [email protected] A note of caution before using any stats package: Beware running with scissors! You can bamboozle yourself, and your readers, by misusing statistics. Make sure you understand the methods you are using, in particular the assumptions that must be met for them to be valid (e.g. normal distribution for many common tests). So before rushing in, consult: • IRE tipsheets (e.g. Donald & LaFleur, #2752; Donald & Hacker, #2731) • Statistical textbooks (e.g. http://www.statsoft.com/textbook/ is free online) • Experts who can provide a reality check on your analysis! Getting started: Download R, instructions at: http://www.r-project.org/ Start the program: Prepare the data: 1) Save as a csv file 2) Point R at the data First steps in the R command line: Load and examine the data: View a basic summary: What is the mean age and salary for CEOs in each sector? An alternative, computing mean and standard deviation in one go: Is there a correlation between age and salary? Draw a graph to explore the correlation analysis: Does mean CEO age differ significantly across sectors? Does mean CEO salary differ significantly across sectors? Draw a graph to explore the distribution of salary by sector: Moving beyond the basic functions: R packages The R community has written 2800+ extensions to R’s basic statistical and graphical functions, available from the CRAN repository: http://cran.r-project.org/web/packages/ Follow the links to find a PDF Reference Manual for each package. -
Deducer: a Data Analysis GUI for R
JSS Journal of Statistical Software June 2012, Volume 49, Issue 8. http://www.jstatsoft.org/ Deducer: A Data Analysis GUI for R Ian Fellows University of California, Los Angeles Abstract While R has proven itself to be a powerful and flexible tool for data exploration and analysis, it lacks the ease of use present in other software such as SPSS and Minitab. An easy to use graphical user interface (GUI) can help new users accomplish tasks that would otherwise be out of their reach, and improves the efficiency of expert users by replacing fifty key strokes with five mouse clicks. With this in mind, Deducer presents dialogs that are understandable for the beginner, and yet contain all (or most) of the options that an experienced statistician, performing the same task, would want. An Excel-like spreadsheet is included for easy data viewing and editing. Deducer is based on Java's Swing GUI library and can be used on any common operating system. The GUI is independent of the specific R console and can easily be used by calling a text-based menu system. Graphical menus are provided for the JGR console and the Windows R GUI. Keywords: GUI, R. 1. Introduction R (R Development Core Team 2012) is a powerful statistical programming language that places the latest statistical techniques at one's fingertips through thousands of add-on packages available on the Comprehensive R Archive Network (CRAN) download servers. The price for all of this power is complexity. Because R analyses must be called as text commands, the user is required to find out the name of the function that will accomplish their task, and then remember that name along with the names of the variables to feed it, and its argument options. -
R in a Nutshell
R IN A NUTSHELL Second Edition Joseph Adler Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo R in a Nutshell, Second Edition by Joseph Adler Copyright © 2012 Joseph Adler. All rights reserved. Printed in the United States of America. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (http://my.safaribooksonline.com). For more infor- mation, contact our corporate/institutional sales department: 800-998-9938 or [email protected]. Editors: Mike Loukides and Meghan Blanchette Indexer: Fred Brown Production Editor: Holly Bauer Cover Designer: Karen Montgomery Proofreader: Julie Van Keuren Interior Designer: David Futato Illustrators: Robert Romano and Re- becca Demarest September 2009: First Edition. October 2012: Second Edition. Revision History for the Second Edition: 2012-09-25 First release See http://oreilly.com/catalog/errata.csp?isbn=9781449312084 for release details. Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trade- marks of O’Reilly Media, Inc. R in a Nutshell, the image of a harpy eagle, and related trade dress are trademarks of O’Reilly Media, Inc. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps. While every precaution has been taken in the preparation of this book, the publisher and author assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.