Insects of Forensic Significance in Argentina

Total Page:16

File Type:pdf, Size:1020Kb

Insects of Forensic Significance in Argentina Forensic Science International 120 2001) 145±154 Insects of forensic signi®cance in Argentina A. Oliva Museo Argentino de Ciencias Naturales, Av. A. Gallardo 470, C1405DJR Buenos Aires, Argentina Abstract Records from forensic expertises and trappings with beef baits conducted in Buenos Aires, Argentina 348360S), show that the dominating species are widespread ones Calliphora vicina and Phaenicia sericata), with different behaviour in each large latitudinal zone. It is suggested that the range of the yearly photoperiod variation has an in¯uence in the behaviour of the blow¯ies, making up for differences in the succession patterns. The Calliphorid blow¯ies Cochliomyia macellaria and Chysomya albiceps were found on indoors corpses; the latter also on outdoors corpses when blood was shed, and in that case as primary. Three species of beetles of the genus Dermestes, which had been associated with mummi®ed remains, appeared 10±30 days after death. The Silphid beetle Hyponecrodes sp. cf. erythrura was found on outdoor copses in rural environments. The Nitidulid beetle Carpophilus hemipterus was found in association with the cheese skipper Piophila sp. Diptera: Piophilidae) in medullar cavities of bones after ca. 30 days; to this association is often added the Clerid Necrobia ru®pes. Lepidoptera Tineidae appear on the head of mummi®ed indoors corpses. North of parallel 328S, the Muscid grave-¯y Ophyra sp. was found breeding on a corpse outdoors in summer. A division by latitude and climate is proposed for Argentina, and an extended system is proposed for the world. # 2001 Elsevier Science Ireland Ltd. All rights reserved. Keywords: Calliphora; Phaenicia; Ophyra; Carpophilus; Photoperiod variation 1. Introduction recording, as well as sightings of adults on the bait, oviposi- tion, development of larvae, pupariation and emergence of Methodical studies of insects found on human corpses adults. These are determined by the use of keys by Mariluis have been conducted in Argentina only, since 1993 exper- [1,2]. The nomenclature in this papers has also been fol- tises) and 1996 trapping and rearing at Buenos Aires). lowed, hence, the use of the name Phaenicia sericata. Expertises are based on determination of species and stages Nomenclature, one must point out, is the competence ®eld of development of individuals in samples sent in by medical of taxonomists, in this case of the specialists in Muscoidea. experts of the of®cial Forensic Medical Corps. The greatest The extension of the genus Lucilia, and the attribution of number come from Buenos Aires Federal District Capital some species to Phaenicia, is a matter of discussion, and it Federal), latitude taken as 348360S, through the Forensic appears quite clear that it can only be settled by a revision of Medical Corps of the National Justice Department Cuerpo Lucilia sensu lato for the whole world. Pending this, one Medico forense de la Justicia Nacional). should follow the criterium of one of the taxonomists. It may be pointed out that the species placed in Phaenicia by Mariluis and in Lucilia by European authors are those which 2. Material and methods have invaded large areas of the world and become near- cosmopolitan, while the species with Paleartic, or Paleartic Trapping is being conducted at Buenos Aires City, with plus Neartic distributions belong to Lucilia sensu stricto. beef as bait. Jars are placed in containers with water, as a This argues a different behaviour, weightier than the mor- deterrent to the Argentine ant Linepithema humile Mayr, phological characters which may be deemed rather trivial 1868). Post-feeding larvae are transferred to gardening to justify the splitting of the genus Lucilia. Also, ®eld sphagnum moss for pupariation. Daily records on macro- observations by European authors [3] have made abundantly scopical changes of the bait are recorded, together with clear the heliophily of common species of Lucilia, and the maximum and minimum temperatures and their hour of contrast of their behaviour with that of Calliphora spp. 0379-0738/01/$ ± see front matter # 2001 Elsevier Science Ireland Ltd. All rights reserved. PII: S 0379-073801)00423-6 146 A. Oliva / Forensic Science International 120 12001) 145±154 P. sericata certainly does not show heliophily in Buenos Aires. The tolerance of this species to poorly illuminated oviposition sites has been discussed in [4]. 3. Results The two species found on the bait with the greatest frequency proved to be very widespread ones: the bluebottle Calliphora vicina Robineau±Desvoidy, 1830 and the green- bottle P. sericata Meigen, 1826) Diptera: Calliphoridae). Contrary to literature based on European data [3], at Buenos Aires these species do not alternate spatially, but seasonally [5]. At ®rst, it was supposed that the activity of the adults might correlate to ranges of absolute temperatures. How- Fig. 1. ever, oviposition records for over 3 years show a more complex pattern. Both species may oviposit at the same time, especially at the end of spring November±December), when bluebottles are replaced by greenbottles. October 1996 began with low temperatures for the season Fig. 1, light stippling: C. vicina; dark stippling: P. sericata; squares: ovipositions; tringles; adults; circles: lar- vae; diamonds: pupae). It can be observed that the ®rst oviposition by P. sericata followed a drop in mimimum temperature and coincided with a rise in this Fig. 1). Ovipositions by C. vicina and P. sericata during the last 3 months of 1996 are recorded in Table 1. On the 30 November Fig. 2, light square) a bluebottle was observed ovipositing at 18.45 h, on the lower side of the bait suggest- ing behaviour to avoid sunlight). The last conjoint oviposi- tion of the year occurred on the 1 December Fig. 3, light and dark squares). Fig. 2. So far, data con®rm the well-known fact that greenbottles prefer warmer weather than bluebottles, as suggested by was very hot during this month minimum seldom below their brilliant sheen which should enable them to endure 208C, maximum above 308C, as high as 34.68C). For the ®rst warm sunlight. But in January 1997, there was a single months of 1997, the weather remained warm, moderated by greenbottle oviposition Fig. 4, 23±31.48C). The weather rainy spells; temperature rarely fell below 168C. However, Table 1 Ovipositions in October±December spring) 1996 [5] Date Minimum Maximum Oviposition by Oviposition by temperature 8C) temperature 8C) C. vicina P. sericata 4October 1996 15.8 21.8 Ã 10 October 1996 17.5 25.6 Ã 25 October 1996 13.2 26.6 Ã 3 November 1996 17.1 26.8 ÃÃ 5 November 1996 19.3 29 ÃÃ 21 November 1996 Ã 24November 1996 11.4 23.6 Ã 30 November 1996 13.6 25.9 1 December 1996 17.9 30.2 ÃÃ 2 November 1996 Ã 3 November 1996 Ã 14December 1996 20.3 30.2 Ã 17 November 1996 17.426.6 Ã A. Oliva / Forensic Science International 120 12001) 145±154 147 Fig. 3. Fig. 5. 7.5±15.28C). When a hiatus appears between February middle of summer) and March±April early fall), it is partially ®lled by the yellow cof®n-¯y Megaselia scalaris Loew, 1866) Diptera: Phoridae) and to a lesser degreee by ¯esh¯ies Parasarcophaga spp. Diptera: Sarcophagidae). These were the results that I took into account in my paper of 1997 [5]. Table 2). Warm summers 21 December to 21 March) are the rule at Buenos Aires. But 1998 was an unusual year all the world round. The weather was rainy, or clouded and windy, moderating the heath Fig. 4, Table 3). P. sericata oviposited the 10 January Fig. 6, square); then for some time the weather was moderately warm but with minimum tempera- tures remarkably variable, 14±238C); greenbottles were observed feeding Figs. 6 and 7, dark-stippled triangles), Fig. 4. but did not oviposit until the 10 February Fig. 7). Figs. 6±9 show the remarkable variation in temperature for the ®rst 4 for a few days at the end of May middle fall), the minimum months of 1998. On the 16 February, there was an interesting dropped below 58C. After a gradual rise in temperature, record of two greenbottles ovipositing together at 11:00 a.m. the ®rst oviposition by C. vicina was recorded the 4± Fig. 7). The ®rst record of C. vicina Fig. 8, light square) on 6 June Fig. 5, temperatures: 13.6±18.3, 14.1±18.6 and the 20 March coincided with a small drop in the minimum Table 2 Results for 1996±1997 [5] Month C. vicina P. sericata Parasarcophaga spp Megaselia scalaris January Not found No oviposition All stages All stages February Not found No oviposition All stages All stages March Not found Not found Not found Larvae April Not found Not found Not found Not found May Oviposition begins Not found Not found Larvae, pupae June All stages Not found Not found Pupae, adults July All stages Not found Not found All stages August All stages Not found Adults Not found September All stages Not found Larvae Larvae, pupae October All stages Oviposition begins All stages Pupae November All stages All stages All stages All stages December All stages All stages All stages Not found 148 A. Oliva / Forensic Science International 120 12001) 145±154 Table 3 Ovipositions in January±April late summer±early fall) 1998 Date Minimum Maximum Oviposition by Oviposition bt temperature 8C) Temperature 8C) C. vicina P. sericata 10 January 1998 21.6 29.8 Ã 10 February 1998 12.6 26.4 Ã 16 February 1998 21.6 29.5 Ã 20 March 1998 17 28.8 ÃÃ 7 April 1998 13.9 18.8 Ã 8 April 1998 14.5 21.4 Ã 9 April 1998 9 20.9 ÃÃ temperatures, but it should be noted that on the 11 March dropping on the 7 March, when there was oviposition by there had been an abrupt descent in temperatures, which may P.
Recommended publications
  • Anatomical Leaf Adaptations in Vascular Plants of a Salt Marsh in the Atacama Desert (Chile)
    Revista Chilena de Historia Natural 64:65-75,1991 Anatomical leaf adaptations in vascular plants of a salt marsh in the Atacama Desert (Chile) Adaptaciones anat6micas foliares en plantas vasculares de un pantano salobre en el Desierto de Atacama (Chile) 1 2 1 VERONICA POBLETE , VICTORIANO CAMPOS , LUIS GONZALEZ and GLORIA MONTENEGR0 1 1 Facultad de Ciencias Bio16gicas, P. Universidad Cat6lica de Chile, Casilla 114-D, Santiago, Chile. 2 Facultad de Ciencias Basicas yMatematicas, U. Cat6lica de Valparaiso, Av. Brasil 2530, Valparaiso, Chile. ABSTRACT A community of vascular plants living in a salt marsh in the Atacama Desert (northern Chile) was studied. Environmental parameters such as high solar radiation, drought, wind and high salt concentration are the most important limiting factors. Above-ground vegetative organs of twelve species living in this environment were morphologically and mi- croscopically analyzed in terms of adaptive features that allow them to survive under these conditions. These species showed an interesting display of traits such as extremely reduced leaf area, striated cuticles, sunken stomata, compact leaf tissues, salt crystals, salt glands and vertically oriented photosynthetic parenchyma. These characteristics were statistically tested in order to establish the clustering degree among them; two leaf patterns were found within the sample. The particular leaf anatomy exhibited is discussed, considering it as being adaptive to the stressful environmental conditions of the area. Key words: Atacama Desert, salt marsh, leaf anatomy. RESUMEN Se analizaron las plantas vasculares que conforman una comunidad de pantano salino ubicada en el Desierto de Ata- cama. La alta radiaci6n solar, sequedad atmosferica, viento y alta concentraci6n salina son los factores limitantes para Ia sobrevivencia de estas especies.
    [Show full text]
  • Phylogeny and Evolution of Achenial Trichomes In
    Luebert & al. • Achenial trichomes in the Lucilia-group (Asteraceae) TAXON 66 (5) • October 2017: 1184–1199 Phylogeny and evolution of achenial trichomes in the Lucilia-group (Asteraceae: Gnaphalieae) and their systematic significance Federico Luebert,1,2,3 Andrés Moreira-Muñoz,4 Katharina Wilke2 & Michael O. Dillon5 1 Freie Universität Berlin, Institut für Biologie, Botanik, Altensteinstraße 6, 14195 Berlin, Germany 2 Universität Bonn, Nees-Institut für Biodiversität der Pflanzen, Meckenheimer Allee 170, 53115 Bonn, Germany 3 Universidad de Chile, Departamento de Silvicultura y Conservación de la Naturaleza, Santiago, Chile 4 Pontificia Universidad Católica de Valparaíso, Instituto de Geografía, Avenida Brasil 2241, Valparaíso, Chile 5 The Field Museum, Integrative Research Center, 1400 South Lake Shore Drive, Chicago, Illinois 60605, U.S.A. Author for correspondence: Federico Luebert, [email protected] ORCID FL, http://orcid.org/0000­0003­2251­4056; MOD, http://orcid.org/0000­0002­7512­0766 DOI https://doi.org/10.12705/665.11 Abstract The Gnaphalieae (Asteraceae) are a cosmopolitan tribe with around 185 genera and 2000 species. The New World is one of the centers of diversity of the tribe with 24 genera and over 100 species, most of which form a clade called the Lucilia­group with 21 genera. However, the generic classification of the Lucilia­group has been controversial with no agreement on delimitation or circumscription of genera. Especially controversial has been the taxonomic value of achenial trichomes and molecular studies have shown equivocal results so far. The major aims of this paper are to provide a nearly complete phylogeny of the Lucilia­ group at generic level and to discuss the evolutionary trends and taxonomic significance of achenial trichome morphology.
    [Show full text]
  • Trillium Reliquum)
    REPRODUCTIVE BIOLOGY OF RELICT TRILLIUM (Trillium reliquum) Except where reference is made to the work of others, the work described in this thesis is my own or was done in collaboration with my advisory committee. This thesis does not include proprietary or classified information. _________________________________________ Melissa Gwynne Brooks Waddell Certificate of Approval: ________________________ _________________________ Robert Boyd Debbie R. Folkerts, Chair Professor Assistant Professor Biological Sciences Biological Sciences _____________________ _________________________ Robert Lishak Stephen L. McFarland Associate Professor Acting Dean Biological Sciences Graduate School REPRODUCTIVE BIOLOGY OF RELICT TRILLIUM (Trillium reliquum) Melissa Gwynne Brooks Waddell A Thesis Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Master of Science Auburn, Alabama August 7, 2006 REPRODUCTIVE BIOLOGY OF RELICT TRILLIUM (Trillium reliquum) Melissa Gwynne Brooks Waddell Permission is granted to Auburn University to make copies of this thesis at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights. ______________________________ Signature of Author ______________________________ Date of Graduation iii VITA Melissa Gwynne (Brooks) Waddell, daughter of Robert and Elaine Brooks, graduated from the University of North Alabama in 1996 with a bachelor’s degree in Geography and a minor in Biology. She graduated from Auburn University in 1998, in Horticulture and Landscape Design, and returned to Auburn University to pursue a master’s of science in 1999. Married in May 2004 to Erik Waddell, she accepted a position teaching seventh grade science and environmental science in December 2005. In July 2006, she begins a master’s degree in Education at the University of North Alabama.
    [Show full text]
  • Specific Gene Disruption in the Major Livestock Pests Cochliomyia
    INVESTIGATION Specific Gene Disruption in the Major Livestock Pests Cochliomyia hominivorax and Lucilia cuprina Using CRISPR/Cas9 Daniel F. Paulo,*,† Megan E. Williamson,‡ Alex P. Arp,§ Fang Li,‡ Agustin Sagel,** Steven R. Skoda,** Joel Sanchez-Gallego,** Mario Vasquez,** Gladys Quintero,** Adalberto A. Pérez de León,§ Esther J. Belikoff,‡ Ana M. L. Azeredo-Espin,* W. Owen McMillan,† Carolina Concha,†,1 and Maxwell J. Scott‡,1 *Centre for Molecular Biology and Genetic Engineering, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, †Laboratory of Ecological and Evolutionary Genomics, Smithsonian Tropical Research Institute, Gamboa, Panama, ‡Department of Entomology and Plant Pathology, North Carolina State University, § Raleigh NC, USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville TX, and **USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Screwworm Research Site, Pacora, Panama ORCID ID: 0000-0001-6536-4735 (M.J.S.) ABSTRACT Cochliomyia hominivorax and Lucilia cuprina are major pests of livestock. Their larvae infest KEYWORDS warm-blooded vertebrates and feed on host’s tissues, resulting in severe industry losses. As they are serious Functional pests, considerable effort has been made to develop genomic resources and functional tools aiming to genomics improve their management and control. Here, we report a significant addition to the pool of genome reverse genetics manipulation tools through the establishment of efficient CRISPR/Cas9 protocols for the generation of myiasis directed and inheritable modifications in the genome of these flies. Site-directed mutations were intro- New World duced in the C. hominivorax and L. cuprina yellow genes (ChY and LcY) producing lightly pigmented adults.
    [Show full text]
  • NHBSS 044 1L Banziger Pollin
    NAT. NAT. HIST. BUL L. SIAM Soc. 44: 113-142 , 1996 POLLINATION OF A FLOWERING ODDITY: RHIZANTHES ZIPPELll (BLUME) SPACH (RAFFLESIACEAE) Hans Banzige ,J ABSTRACT In In a pollination syndrome based mainly on brood-site deception , female carrion flies flies Lucilia porphyrina ,Chrysomya pinguis. C. challi and C. vil/ eneuvei are R. zippelii's main pollinators pollinators among a further six scarce/potential calliphorid (Diptera) pollinator species. A stuffy ‘stuffy room' and a weaker excrement- Ii ke odour attract flies presumably from dozens of meters; meters; at close range fleshy colours and a tangle of hairs probably dissimulate a mammal carcass ,orifices andlor wounds. Pollinators are lured down the hairy tube towards the circumambulator circumambulator which is mistaken for an oviposition cavity. Entering the circumambulator requires requires intrusion through the annular gap topped by the ring of anthers from which pollen mush is smeared onto the flies' back. More pollen is acquired at the gap on leaving the circumambulator. circumambulator. The mush then clots and hardens while keeping some germinability for 2-3 we 唱ks. Pollen delivery on a female flower is analogous ,the clot being readily reliquefied and sponged' ‘sponged' off by the fluid-soaked papillae 0 1' the stigma. Flies may act as long distance pollinators pollinators as they are strong flyers (50 kmlweek) and long- Ii ved (4-7 weeks). 50% of the flowers flowers we 陀 oviposited upon by up to a thousand eggs whose hatchlings die of starvation or ant ant predation. Very few males visited the flower where they sucked nectar (as females did) and/or and/or mated but did not pollinate.
    [Show full text]
  • The Community Ecology, Dynamics and Productivity of Tropical Grasslands in the Andes
    The Pdramo Vegetation of Ecuador: the Community Ecology, Dynamics and Productivity of Tropical Grasslands in the Andes. by Paul Michael Ramsay A thesis submitted for the degree of Philosophiae Doctor of the University of Wales. December 1992 School of Biological Sciences, University of Wales, Bangor, Gwynedd, LL57 2UW. i Dedicated to the memory of Jack Higgins, my grandfather. "... a naturalist's life would be a happy one if he had only to observe and never to write." Charles Darwin ii Table of Contents Preface AcknoWledgements vii Summary ix Resumen Chapter 1. Introduction to the Ecuadorian P6ramos 1 Ecuador 2 The Pâramos of the Andes 2 Geology and Edaphology of the Paramos 6 Climate 8 Flora 11 Fauna 14 The Influence of Man 14 Chapter 2. The Community Ecology of the Ecuadorian P6ramos 17 Introduction 18 Methods 20 Results 36 The Zonal Vegetation of the Ecuadorian Paramos 51 Discussion 64 Chapter 3. Plant Form in the Ecuadorian Paramos 77 Section I. A Growth Form Classification for the Ecuadorian Paramos 78 Section II. The Growth Form Composition of the Ecuadorian Pâramos Introduction 94 Methods 95 Results 97 Discussion 107 Section III. Temperature Characteristics of Major Growth Forms in the Ecuadorian PSramos Introductio n 112 Methods 113 Results 118 Discussion 123 III Table of Contents iv Chapter 4. Aspects of Plant Community Dynamics in the Ecuadorian Pgramos 131 Introduction 132 Methods 133 Results 140 Discussion 158 Chapter 5. An Assessment of Net Aboveground Primary Productivity in the Andean Grasslands of Central Ecuador 165 Introduction 166 Methods 169 Results 177 Discussion 189 Chapter 6.
    [Show full text]
  • A Revision of the Neotropical Species of Lucilia Robineau-Desvoidy (Diptera: Calliphoridae)
    Zootaxa 3810 (1): 001–076 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3810.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C68A152F-33DD-4E49-900D-213DEE6591D8 ZOOTAXA 3810 A revision of the Neotropical species of Lucilia Robineau-Desvoidy (Diptera: Calliphoridae) TERRY WHITWORTH 2533 Inter Avenue, Puyallup, WA 98372. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by James E. O'Hara: 18 Apr. 2014; published: 29 May 2014 TERRY WHITWORTH A revision of the Neotropical species of Lucilia Robineau-Desvoidy (Diptera: Calliphoridae) (Zootaxa 3810) 76 pp.; 30 cm. 29 May 2014 ISBN 978-1-77557-407-1 (paperback) ISBN 978-1-77557-408-8 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3810 (1) © 2014 Magnolia Press WHITWORTH Table of contents Abstract . 3 Introduction . 4 Material and methods . 5 Subfamily Luciliinae . 8 Genus Lucilia Robineau-Desvoidy .
    [Show full text]
  • WO 2016/092376 Al 16 June 2016 (16.06.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/092376 Al 16 June 2016 (16.06.2016) W P O P C T (51) International Patent Classification: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, A61K 36/18 (2006.01) A61K 31/465 (2006.01) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, A23L 33/105 (2016.01) A61K 36/81 (2006.01) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, A61K 31/05 (2006.01) BO 11/02 (2006.01) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, A61K 31/352 (2006.01) SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (21) International Application Number: PCT/IB20 15/002491 (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (22) International Filing Date: GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 14 December 2015 (14. 12.2015) TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (25) Filing Language: English TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (26) Publication Language: English LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, (30) Priority Data: SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, 62/09 1,452 12 December 201 4 ( 12.12.20 14) US GW, KM, ML, MR, NE, SN, TD, TG).
    [Show full text]
  • This Article Was Published in an Elsevier Journal. the Attached Copy
    This article was published in an Elsevier journal. The attached copy is furnished to the author for non-commercial research and education use, including for instruction at the author’s institution, sharing with colleagues and providing to institution administration. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Available online at www.sciencedirect.com The evolution of floral gigantism Charles C Davis1, Peter K Endress2 and David A Baum3 Flowers exhibit tremendous variation in size (>1000-fold), visitation rates between smaller and larger flowers can ranging from less than a millimeter to nearly a meter in result in selection for increased floral size (e.g. [1,2–6]). diameter. Numerous studies have established the importance of increased floral size in species that exhibit relatively normal- Despite broad interest in size increase and its importance sized flowers, but few studies have examined the evolution of in organismal evolution [7], we know relatively little floral size increase in species with extremely large flowers or about whether flower size evolution at the extremes of flower-like inflorescences (collectively termed blossoms). Our the range is governed by the same rules that act on review of these record-breakers indicates that blossom average-sized flowers.
    [Show full text]
  • Title Flowering Phenology and Anthophilous Insect Community In
    Flowering Phenology and Anthophilous Insect Community in Title the Cool-Temperate Subalpine Forests and Meadows at Mt. Kushigata in the Central Part of Japan Author(s) KATO, Makoto; MATSUMOTO, Masamichi; KATO, Tôru Contributions from the Biological Laboratory, Kyoto Citation University (1993), 28(2): 119-172 Issue Date 1993-03-31 URL http://hdl.handle.net/2433/156107 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University Contr. bioi. Lab. Kyoto Univ., Vol. 28, pp. 119-172, Pl. 52 Issued 31 March 1993 Flowering Phenology and Anthophilous Insect Community in the Cool-Temperate Subalpine Forests and Meadows at Mt. Kushigata in the Central Part of Japan Makoto KATo, Masamichi MATSUMOTO and Toru KATO ABSTRACT We studied flowering phenology and anthophilous insect commumttes bimonthly in 1990-1991 in the primary cool-temperate subalpine forests and meadows at Mt. Kushigata, Yamanashi Prefecture, Japan. One hundred and fifty-one plant species of 41 families flowered sequentially from late May to mid September. A total of 2127 individuals of 370 species in eight orders of Insecta were collected. The most abundant order was Hymenoptera (35% of individuals) and followed by Diptera (33%), Coleoptera (28%) and Lepidoptera (4%). The number of species was highest in Diptera (47%) and followed by Hymenoptera (24% ), Coleoptera (18%) and Lepidoptera (9% ). The numbers of both spe­ cies and individuals peaked in late July and early August. Bee fauna was composed of six families, nine genera and 34 species, lacking Xylocopinae and wild Apinae. The most abundant genus in bees was Bombus (76.7% of individuals) and followed by Lasioglossum (20.2%).
    [Show full text]
  • Seasonal Abundance and Distribution of Necrophagous Diptera in Western São Paulo State, Brazil
    Functional Ecosystems and Communities ©2007 Global Science Books Seasonal Abundance and Distribution of Necrophagous Diptera in Western São Paulo State, Brazil Nelice M. B. Serbino • Wesley A. C. Godoy* Departamento de Parasitologia, Instituto de Biociências, Universidade Estadual Paulista, Rubião Junior, 18618-000 Botucatu, São Paulo, Brazil Corresponding author : * [email protected] ABSTRACT The diversity and abundance of necrophagous Diptera were investigated in urban, farm and wild areas in Botucatu, São Paulo State, Brazil, from March 2003 through February 2004, in order to evaluate the current distribution and abundance of flies important in a forensic context. Members of the family Sarcophagidae were most abundant, followed by Drosophilidae, Calliphoridae and Phoridae. Members of Muscidae were least abundant. Flies were more abundant in spring and summer than in fall and winter. Members of Sarcophagidae, Calliphoridae and Phoridae were most abundant in urban areas. Chrysomya albiceps was the most abundant calliphorid species, followed by Lucilia eximia, Chrysomya megacephala, Cochliomyia macellaria and Lucilia cuprina. The implications of these results for the necrophagous fauna structure are discussed. _____________________________________________________________________________________________________________ Keywords: forensic entomology, necrophagous flies, seasonal abundance INTRODUCTION farm areas, especially in locations in which the environ- mental conditions differ in terms of altitude and tempera- After death, animal tissues, including those of humans, are ture. attractive to many kinds of organisms, especially insects. In this study, we investigated the diversity and abun- Hence, the decomposition of terrestrial vertebrates is cha- dance of necrophagous Diptera in Botucatu, São Paulo State, racterised not only by the action of fungi and bacteria, but Brazil, from March 2003 through February 2004, in order to also by an ample number of arthropods, mainly necropha- evaluate the current distribution of species.
    [Show full text]
  • NRCS West Virginia Pollinator Handbook
    West Virginia Pollinator Handbook NRCS West Virginia Pollinator Handbook WV NRCS Ecological Sciences In conjunction with the WV Division of Natural Resources and The Xerces Society for Invertebrate Conservation A Field Office Technical Guide Reference to management of pollinators and their habitats 1 West Virginia Pollinator Handbook Cover Photo: Eastern tiger swallowtail on milkweed in Randolph County, WV. Photo: C. Shrader NRCS, WV 2 West Virginia Pollinator Handbook ACKNOWLEDGEMENTS PARTNERING AGENCIES: U.S. DEPARTMENT OF AGRICULTURE, NATURAL RESOURCES CONSERVATION SERVICE WEST VIRGINIA DIVISION OF NATURAL RESOURCES THE XERCES SOCIETY FOR INVERTEBRATE CONSERVATION CONTRIBUTORS: Elizabeth Byers, Wildlife Diversity Biologist, WVDNR, Elkins, WV Harry W. Godwin, Research Scientist, Agricultural Research Service, Beaver, WV Walt Kordek, Assistant Chief, Wildlife Div. & Tech. Support Units, WVDNR, Elkins, WV Barbara McWhorter, Forester, USDA NRCS, Morgantown, WV Eric Mader, Assistant Pollinator Program Director, The Xerces Society, Portland Oregon Susan Olcott, Wildlife Diversity Biologist, WVDNR, Elkins, WV Casey Shrader, WV State Biologist, USDA Natural Resources Conservation Service, Morgantown, WV 3 West Virginia Pollinator Handbook 4 West Virginia Pollinator Handbook Table of Contents PAGE INTRODUCTION 7 POLLINATION SERVICES IN WEST VIRGINIA 8 WEST VIRGINIA NATIVE BEE AND BUTTERFLY DIVERSITY 10 POLLINATOR BIOLOGY AND HABITAT 13 POLLINATOR CONSERVATION AND FARM PLANNING 15 I RECOGNIZING EXISTING POLLINATOR HABITAT 17 A Existing Plant
    [Show full text]