The Red Bird Section of the Upper Cretaceous Pierre Shale in Wyoming

Total Page:16

File Type:pdf, Size:1020Kb

The Red Bird Section of the Upper Cretaceous Pierre Shale in Wyoming The Red Bird Section of the Upper Cretaceous Pierre Shale in Wyoming GEOLOGICAL SURVEY PROFESSIONAL PAPER 393-A The Red Bird Section of the Upper Cretaceous Pierre Shale in Wyoming By JAMES R. GILL and WILLIAM A. COBBAN With a section on A New Echinoid from the Cretaceous Pierre Shale of Eastern Wyoming By PORTER M. KIER STRATIGRAPHY, PALEONTOLOGY, AND SEDIMENTATION OF A CLASSIC REFERENCE LOCALITY OF THE PIERRE SHALE GEOLOGICAL SURVEY PROFESSIONAL PAPER 393-A Description, environmental interpretation, and correlation of a 3,IOO-foot-thick sequence of marine shale UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1966 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 CONTENTS Page Page Abstract _______________________________________ Al Megafossils Continued Introduction. __________________________________ 2 Brachiopods_________________-___-----------__ A25 Earlier work.__________________________________ 4 Mollusks.-_---_______--_--_---_--_-_-------- 25 Geographic and geologic setting._________________ 4 Arthropods.________-------------_-----------_- 26 Regional setting.___________________________ 4 Vertebrates..___-----_---------------_--------- 26 Local setting.______________________________ 4 Trace fossils__________________-__---_-------_- 26 Contiguous formations._________________________ 5 Range zones of ammonites________________-_---_--___ 28 Resume of the Pierre reference locality at Red Bird. 5 Age span_______-__-__---_-----------_------------- 34 Gammon Ferruginous Member_______________ 7 Depositional environment ____________-_____---_.__ 37 Sharon Springs Member.____________________ 8 Proximity to strandlines._____________._-_-----__ 37 Mitten Black Shale Member.________________ 12 Depth of the Pierre sea_____-___-_-----------_- 37 Red Bird Silty Member, ____________________ 15 Effects of currents._______________----_-------__ 38 Lower unnamed shale member._______________ 16 Dissolution of molluscan shells. ___________----___ 39 Kara Bentonitic Member____________________ 17 Rate of deposition__-__-_---------------------_- 41 Upper unnamed shale member______________ 19 Correlation of section._--__-----_-----_-----------__ 43 Megafossils_ _ __________________________________ 19 Regional geologic history.____-__--_--------_-------- 43 Relative abundance of fossil forms.___________ 19 Localities at which fossils were collected.______________ 48 Mineralogy of mollusk shells.________________ 21 Detailed measured section________-/--------_--_------ 49 Chamber fillings____________________________ 22 A new echinoid from the Cretaceous Pierre Shale of eastern Corals. ____________________________________ 23 Wyoming, by Porter M. Kier._____________________ 62 Worms ____________________________________ 23 Systematic description____________--__-_-_--.--- 63 Echinoderms_ ______________________________ 23 References cited.__ __-____-__-_---_---_-------_----- 6 Bryozoans_ ________________________________ 24 Index__________-_-___-----_------_---------------- 75 ILLUSTRATIONS [Plates 1-4 are in pocket, plates 5-12 follow index] PLATE 1. Geologic map showing location of reference locality and distribution of ammonite zones within the Pierre Shale, Red Bird area, T. 38 N., R. 62 W., Niobrara County, Wyo. 2. Reference section at Red Bird, Niobrara County, Wyo., showing subdivisions of the Pierre Shale, range span of ammonite zones, and correlation with the electric log of a nearby oil and gas test hole. 3. Fence diagram showing facies relations, nomenclature, and selected ammonite zones, Upper Cretaceous rocks, northern Great Plains. 4. Chart showing correlation of Red Bird section, Niobrara County, Wyo., with equivalent rocks in the Western Interior, southern Alberta, and east-central Texas. 5-12. Photographs showing 5-7. Trace fossils. 8-10. Dissolution features and trace fossils. 11. Trace fossils and baculite accumulations. 12. Fossil fillings. Page FIGURE 1. Geologic map of the Red Bird area on an aerial photograph_______-_--_-__---_--__--------------------- A.3 2. Geologic map showing location of Red Bird area__________________-_____----------------------------- 6 3-7. Photographs showing 3. Gammon outcrop at Red Bird-_______________________-____--_---_---_-----.------------------ 8 4. Gammon concretions.___________________________________-_-_------------------------------- 9 5. Type Ardmore Bentonite Bed_ ______________-______________-----_--------------------------- 10 6. Basal Sharon Springs at Red Bird____________________-_____-------------------------------- H 7. Typical Sharon Springs outcrop-_______________________---_----_----------------------------- 12 8. Electric and gamma-ray log of Sharon Springs and Gammon__-___-___-_------------_------------------ 13 IV CONTENTS FIGURE 9-14. Photographs showing Page 9. Ironstone cone-in-cone concretion. ___________________________________________________________ A15 10. Hard shale of basal Mitten_________________---_-----_---------_-_--_------__________________ 16 11. Limestone concretion of lime-cemented shale __________________________________________________ 17 12. Dark shale of lower unnamed shale member.___-_--___----------_-_--_-__-_____.______________ 18 13. Popcorn-weathering surface of Kara.__________--.__-_-----------_-_----_--____________________ 19 14. Outcrop of Kara and adjacent shales_________________________________________________________ 20 15. Outline map of Campanian seaway____________-__-__-_---_-_-_-------_____-_-_______-______________ 44 16. Strandline map of Wyoming.________.-________-_____----------------_-_-_-----_____._-.___________ 46 17. Sketch of Eurysalenia minima Kier, n. sp_____--_---------------------_----__-------------___________ 64 TABLES Page TABLE 1. X-ray determinations of aragonite and calcite in shells of fossil mollusks.______-______-___---_.----______ A21 2. Time relation of the Pierre Shale at Red Bird to the standard stages of the Upper Cretaceous, to potassium- argon dates, and to the Western Interior ammonite sequence______________________________________ 35 3. Thicknesses of ammonite range zones, and number of levels of fossil collections.__________________________ 41 STRATIGRAPHY, PALEONTOLOGY, AND SEDIMENTATION OF A CLASSIC REFERENCE LOCALITY OF THE PIERRE SHALE THE RED BIRD SECTION OF THE UPPER CRETACEOUS PIERRE SHALE IN WYOMING By JAMBS R. GILL and WILLIAM A. COBBAN ABSTRACT numerous fossiliferous yellowish-brown-weathering limestone The Pierre Shale of Late Cretaceous age (Campanian and concretions throughout. Maestriehtian) is well exposed and very fossiliferous in the The Red Bird Silty Member, 607 feet thick, is almost entirely a vicinity of Red Bird in Niobrara County, Wyo. A section meas­ soft silty shale that weathers a much lighter gray than the ured on the northwest flank of Old Woman anticline, a large adjoining dark-gray members. Yellow-, orange-, and tan-weath­ fold en echelon to structures of the Black Hills, is here presented ering fossiliferous limestone concretions are common. At the as a reference locality for the Pierre Shale of the northern top of the member and 284 feet below the top, limestone con­ Great Plains. The Pierre Shale is about 3,100 feet thick at cretions are so closely spaced that they are nearly continuous Red Bird and consists of dark- to light-gray-weathering non- in layers. calcareous clayey to silty shale that is entirely of marine origin. The lower unnamed shale member, 720 feet thick, consists of It rests on the chalky Niobrara Formation and is overlain by thick alternating units of dark-, medium-, and light-gray- the Fox Hills Sandstone; both contacts are conformable and weathering shale that give a banded appearance to the outcrop. gradational. Seven lithologic members compose the Pierre Fossiliferous limestone concretions are abundant throughout the Shale, from oldest to youngest: Gammon Ferruginous Member, member. Most weather gray, yellowish gray, or brown, but one Sharon Springs Member, Mitten Black Shale Member, Red conspicuous bed 306 feet below the top weathers bright orange Bird Silty Member, a lower unnamed shale member,' Kara brown. Dusky-red-weathering ferruginous concretions are pres­ Bentonitic Member, and an upper unnamed shale member. These ent at places and are especially noticeable at 140, 205, and 470 members are correlated with named and unnamed members of feet below the top. About 10 thin layers of bentonite are scat­ the Pierre Shale of eastern Colorado, western Kansas, central tered in the upper two-thirds of the member. South Dakota, eastern North Dakota, and southeastern Montana, The Kara Bentonitic Member, 36 feet thick, consists mostly of and with equivalent formations in southwestern Colorado, cen­ light-olive-gray-weathering silty bentonitic shale. It includes a tral Wyoming, Montana, southwestern Alberta, and east-central 6-foot-thick bed of bentonite at the base and thinner beds of Texas. bentonite near the top. The bentonite has a high swelling The Gammon Ferruginous Member, which is unusually thin capacity, and it weathers to gumbo soil bare of vegetation. (30 ft) at Red Bird, consists of hard platy-weathering gray Fossiliferous gray- and brown-weathering limestone concretions shale that contains a few layers of red-weathering siderite con­ are present; a bed of closely spaced concretions at the top of the cretions and several thin beds of nonswelling bentonite. member forms a ridge. The
Recommended publications
  • JVP 26(3) September 2006—ABSTRACTS
    Neoceti Symposium, Saturday 8:45 acid-prepared osteolepiforms Medoevia and Gogonasus has offered strong support for BODY SIZE AND CRYPTIC TROPHIC SEPARATION OF GENERALIZED Jarvik’s interpretation, but Eusthenopteron itself has not been reexamined in detail. PIERCE-FEEDING CETACEANS: THE ROLE OF FEEDING DIVERSITY DUR- Uncertainty has persisted about the relationship between the large endoskeletal “fenestra ING THE RISE OF THE NEOCETI endochoanalis” and the apparently much smaller choana, and about the occlusion of upper ADAM, Peter, Univ. of California, Los Angeles, Los Angeles, CA; JETT, Kristin, Univ. of and lower jaw fangs relative to the choana. California, Davis, Davis, CA; OLSON, Joshua, Univ. of California, Los Angeles, Los A CT scan investigation of a large skull of Eusthenopteron, carried out in collaboration Angeles, CA with University of Texas and Parc de Miguasha, offers an opportunity to image and digital- Marine mammals with homodont dentition and relatively little specialization of the feeding ly “dissect” a complete three-dimensional snout region. We find that a choana is indeed apparatus are often categorized as generalist eaters of squid and fish. However, analyses of present, somewhat narrower but otherwise similar to that described by Jarvik. It does not many modern ecosystems reveal the importance of body size in determining trophic parti- receive the anterior coronoid fang, which bites mesial to the edge of the dermopalatine and tioning and diversity among predators. We established relationships between body sizes of is received by a pit in that bone. The fenestra endochoanalis is partly floored by the vomer extant cetaceans and their prey in order to infer prey size and potential trophic separation of and the dermopalatine, restricting the choana to the lateral part of the fenestra.
    [Show full text]
  • Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas
    Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas GEOLOGICAL SURVEY PROFESSIONAL PAPER 1253 Stratigraphy and Paleontology of Mid-Cretaceous Rocks in Minnesota and Contiguous Areas By WILLIAM A. COBBAN and E. A. MEREWETHER Molluscan Fossil Record from the Northeastern Part of the Upper Cretaceous Seaway, Western Interior By WILLIAM A. COBBAN Lower Upper Cretaceous Strata in Minnesota and Adjacent Areas-Time-Stratigraphic Correlations. and Structural Attitudes By E. A. M EREWETHER GEOLOGICAL SURVEY PROFESSIONAL PAPER 1 2 53 UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director Library of Congress Cataloging in Publication Data Cobban, William Aubrey, 1916 Stratigraphy and paleontology of mid-Cretaceous rocks in Minnesota and contiguous areas. (Geological Survey Professional Paper 1253) Bibliography: 52 p. Supt. of Docs. no.: I 19.16 A. Molluscan fossil record from the northeastern part of the Upper Cretaceous seaway, Western Interior by William A. Cobban. B. Lower Upper Cretaceous strata in Minnesota and adjacent areas-time-stratigraphic correlations and structural attitudes by E. A. Merewether. I. Mollusks, Fossil-Middle West. 2. Geology, Stratigraphic-Cretaceous. 3. Geology-Middle West. 4. Paleontology-Cretaceous. 5. Paleontology-Middle West. I. Merewether, E. A. (Edward Allen), 1930. II. Title. III. Series. QE687.C6 551.7'7'09776 81--607803 AACR2 For sale by the Distribution Branch, U.S.
    [Show full text]
  • Annotated Checklist of Fossil Fishes from the Smoky Hill Chalk of the Niobrara Chalk (Upper Cretaceous) in Kansas
    Lucas, S. G. and Sullivan, R.M., eds., 2006, Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 35. 193 ANNOTATED CHECKLIST OF FOSSIL FISHES FROM THE SMOKY HILL CHALK OF THE NIOBRARA CHALK (UPPER CRETACEOUS) IN KANSAS KENSHU SHIMADA1 AND CHRISTOPHER FIELITZ2 1Environmental Science Program and Department of Biological Sciences, DePaul University,2325 North Clifton Avenue, Chicago, Illinois 60614; and Sternberg Museum of Natural History, Fort Hays State University, 3000 Sternberg Drive, Hays, Kansas 67601;2Department of Biology, Emory & Henry College, P.O. Box 947, Emory, Virginia 24327 Abstract—The Smoky Hill Chalk Member of the Niobrara Chalk is an Upper Cretaceous marine deposit found in Kansas and adjacent states in North America. The rock, which was formed under the Western Interior Sea, has a long history of yielding spectacular fossil marine vertebrates, including fishes. Here, we present an annotated taxo- nomic list of fossil fishes (= non-tetrapod vertebrates) described from the Smoky Hill Chalk based on published records. Our study shows that there are a total of 643 referable paleoichthyological specimens from the Smoky Hill Chalk documented in literature of which 133 belong to chondrichthyans and 510 to osteichthyans. These 643 specimens support the occurrence of a minimum of 70 species, comprising at least 16 chondrichthyans and 54 osteichthyans. Of these 70 species, 44 are represented by type specimens from the Smoky Hill Chalk. However, it must be noted that the fossil record of Niobrara fishes shows evidence of preservation, collecting, and research biases, and that the paleofauna is a time-averaged assemblage over five million years of chalk deposition.
    [Show full text]
  • Nautiloid Shell Morphology
    MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOWER STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO MEMOIR 13 Nautiloid Shell Morphology By ROUSSEAU H. FLOIVER 1964 STATEBUREAUOFMINESANDMINERALRESOURCES NEWMEXICOINSTITUTEOFMININGANDTECHNOLOGY CAMPUSSTATION SOCORRO, NEWMEXICO NEW MEXICO INSTITUTE OF MINING & TECHNOLOGY E. J. Workman, President STATE BUREAU OF MINES AND MINERAL RESOURCES Alvin J. Thompson, Director THE REGENTS MEMBERS EXOFFICIO THEHONORABLEJACKM.CAMPBELL ................................ Governor of New Mexico LEONARDDELAY() ................................................... Superintendent of Public Instruction APPOINTEDMEMBERS WILLIAM G. ABBOTT ................................ ................................ ............................... Hobbs EUGENE L. COULSON, M.D ................................................................. Socorro THOMASM.CRAMER ................................ ................................ ................... Carlsbad EVA M. LARRAZOLO (Mrs. Paul F.) ................................................. Albuquerque RICHARDM.ZIMMERLY ................................ ................................ ....... Socorro Published February 1 o, 1964 For Sale by the New Mexico Bureau of Mines & Mineral Resources Campus Station, Socorro, N. Mex.—Price $2.50 Contents Page ABSTRACT ....................................................................................................................................................... 1 INTRODUCTION
    [Show full text]
  • Cozzette Sandstone, Book Cliffs, Colorado, U.S.A
    Journal of Sedimentary Research, 2015, v. 85, 459–488 Research Article DOI: http://dx.doi.org/10.2110/jsr.2015.26 TECTONICALLY CONTROLLED NEARSHORE DEPOSITION: COZZETTE SANDSTONE, BOOK CLIFFS, COLORADO, U.S.A. 1 2 2 ANDREW S. MADOF, NICHOLAS CHRISTIE-BLICK, AND MARK H. ANDERS 1Chevron Energy Technology Company, Houston, Texas 77002-7308, U.S.A. 2Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964-8000, U.S.A. e-mail: [email protected] ABSTRACT: The Book Cliffs of eastern Utah and western Colorado have been pivotal in the development of outcrop-based sequence stratigraphic concepts for nonmarine to shallow marine siliciclastic depositional settings. Prior studies in this area, and more generally in the Cretaceous western interior foreland basin of North America, have concluded that nearshore accumulation is controlled for the most part by the interaction between oscillatory eustatic change and longer-term regional patterns of flexural subsidence. New outcrop and subsurface evidence reported here from the eastern Book Cliffs suggests that three-dimensional tectonic tilting at length scales of up to , 50 km (31 mi) and timescales of less than , 200 kyr also strongly influenced sedimentation. Continental ice sheets are thought to have been small at the time. Documented patterns of accumulation are inconsistent with those expected from interactions of eustasy and regional flexure alone. The upper Campanian Cozzette Sandstone Member of the Mount Garfield Formation consists of twelve lithofacies arranged into six lithofacies assemblages, inferred to have been deposited in shallow marine, marginal marine, and nonmarine depositional environments.
    [Show full text]
  • Montana Group and Equivalent Rocks, Montana, Wyoming, and North and South Dakota
    GEOLOGY LIBRARY-j 2nd SETi Stratigraphy and Geologic History of the Montana Group and Equivalent Rocks, Montana, Wyoming, and North and South Dakota GEOLOGICAL SURVEY PROFESSION AL PAPER 776 INSTITUTE OF Q / NT \T AU G 27 1973 volt TECHNOLOGY metadc303 96 6 I Stratigraphy and Geologic History of the Montana Group and Equivalent Rocks, Montana, Wyoming, and North and South Dakota By J. R. GILL and W. A. COBBAN GEOLOGICAL SURVEY PROFESSIONAL PAPER 776 Stratigraphic,paleontologic, and radiometric data are N r combined to determine the paleogeography for a part of the upper Upper Cretaceous UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1973 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 73-600136 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 85 cents domestic postpaid or 60 cents GPO Bookstore Stock Number 2401-00342 CONTENTS Page Page Abstract ..................................................................................... 1 Geologic history of the Montana Group ................................ 20 Introduction ................................................................................ 1 Telegraph Creek--Eagle regression..................................20 Geologic setting -......................................................................................................... ........ 2 0 Amm -onitesequence --------------------------------------- Judith
    [Show full text]
  • Preliminary Geologic Map of the Galena Canyon Quadrangle, Lander County, Nevada
    U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY To accompany the Preliminary Geologic Map of the Galena Canyon Quadrangle, Lander County, Nevada by JeffL.Doebrich1 Open-File Report 94-664 Prepared in cooperation with Santa Fe Pacific Mining Inc. under Cooperative Research and Development Agreement 9300-1-94 1994 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards or with the North America Stratigraphic Code. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. !U.S. Geological Survey, Reno Field Office, MS-176, Mackay School of Mines, University of Nevada, Reno, Nevada, 89557-0047 DESCRIPTION OF MAP UNITS Qd Mine dump (Holocene) Present around active and abandoned mining operations in the Copper Canyon, Iron Canyon, an Copper Basin areas Qfp Flood plain deposits (Quaternary) Includes sand, silt, and clay deposits in the flood plain of the Reese River in the southeast corner of the quadrangle. Contacts approximately located using large-scale color aerial photographs Qaf Younger alluvium and fanglomerate deposits (Quaternary) Clay, silt, sand, and gravel primarily in active stream channels but also covering outwash fans at the mouth of major drainages emanating from the range. Contacts of outwash fans approximately located using large-scale color aerial photographs Qc Colluvium (Quaternary) Includes talus, slope wash, and other colluvial deposits Qls Landslide deposits (Quaternary) Qoa Older alluvium (Quaternary) Poorly sorted gravel deposits with a silty to sandy matrix. Includes terrace and valley-fill deposits at higher elevations; dissected by stream channels containing younger alluvium (Qaf).
    [Show full text]
  • Redalyc.Taxonomic Review and Phylogenetic Analysis Of
    Anais da Academia Brasileira de Ciências ISSN: 0001-3765 [email protected] Academia Brasileira de Ciências Brasil SILVA, HILDA M.A.; GALLO, VALÉRIA Taxonomic review and phylogenetic analysis of Enchodontoidei (Teleostei: Aulopiformes) Anais da Academia Brasileira de Ciências, vol. 83, núm. 2, enero-junio, 2011, pp. 483-511 Academia Brasileira de Ciências Rio de Janeiro, Brasil Available in: http://www.redalyc.org/articulo.oa?id=32719267009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative “main” — 2011/5/11 — 19:20 — page 483 — #1 Anais da Academia Brasileira de Ciências (2011) 83(2): 483-511 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc Taxonomic review and phylogenetic analysis of Enchodontoidei (Teleostei: Aulopiformes) HILDA M.A. SILVA and VALÉRIA GALLO Laboratório de Sistemática e Biogeografia, Departamento de Zoologia, Instituto de Biologia, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, Maracanã, 20550-013 Rio de Janeiro, RJ, Brasil Manuscript received on September 24, 2010; accepted for publication on December 22, 2010 ABSTRACT Enchodontoidei are extinct marine teleost fishes with a long temporal range and a wide geographic distribution. As there has been no comprehensive phylogenetic study of this taxon, we performed a parsimony analysis using a data matrix with 87 characters, 31 terminal taxa for ingroup, and three taxa for outgroup. The analysis produced 93 equally parsimonious trees (L = 437 steps; CI = 0.24; RI = 0.49).
    [Show full text]
  • Download Curriculum Vitae
    NEIL H. LANDMAN CURATOR, CURATOR-IN-CHARGE AND PROFESSOR DIVISION OF PALEONTOLOGY HIGHEST DEGREE EARNED Ph.D. AREA OF SPECIALIZATION Evolution, life history, and systematics of externally shelled cephalopods EDUCATIONAL EXPERIENCE Ph.D. in Geology, Yale University, 1982 M. Phil. in Geology, Yale University, 1977 M.S. in Earth Sciences, Adelphi University, 1975 B.S. in Mathematics, summa cum laude, Polytechnic University of New York, 1972 PREVIOUS EXPERIENCE IN DOCTORAL EDUCATION FACULTY APPOINTMENTS Adjunct Professor, Department of Biology, City College Adjunct Professor, Department of Geology, Brooklyn College GRADUATE ADVISEES Susan Klofak, Biology, CUNY, 1999-present Krystal Kallenberg, Marine Sciences, Stony Brook, 2003-present GRADUATE COMMITTEES Christian Soucier, Biology, Brooklyn College, 2004-present Krystal Kallenberg, Marine Sciences, Stony Brook, 2003-present Yumiko Iwasaki, Geology, CUNY, 2000-2009 Emily Allen, Geology, University of Chicago, 2002-2005 Susan Klofak, Biology, CUNY, 1996-present Claude Monnet, University of Zurich, presently Sophie Low, Geology, Harvard University RESEARCH GRANT SUPPORT Kosciuszko Foundation. Comparative study of ammonite faunas from the United States Western Interior and Polish Lowland. Post-doc: Izabela Ploch, Geological Museum of Polish Geological Institute. 2011. NSF Grant MR1-R2 (Co-PI): Acquisition of a High Resolution CT-Scanner at the American Museum of Natural History: 2010-2013. NSF Grant No. DBI 0619559 (Co-PI): Acquisition of a Variable Pressure SEM at the AMNH: 2006-2009 NSF Grant No. EAR 0308926 (PI): Collaborative Research: Paleobiology, paleoceanography, and paleoclimatology of a time slice through the Western Interior Seaway: 2003-2006 National Science Foundation, Collaborative Research: Soft Tissues and Membrane Preservation in Permian Cephalopods, $40,000, February 1, 2002-January 31, 2006.
    [Show full text]
  • The Cretaceous-Tertiary Boundary Interval in Badlands National Park, South Dakota
    The Cretaceous-Tertiary Boundary Interval in Badlands National Park, South Dakota Philip W. Stoffer1 Paula Messina John A. Chamberlain, Jr. Dennis O. Terry, Jr. U.S. Geological Survey Open-File Report 01-56 2001 U.S. DEPARTMENT OF THE INTERIOR Gale A. Norton, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The Cretaceous/Tertiary (K-T) boundary study interval at the Rainbow Colors Overlook along Badlands Loop Road, North Unit of Badlands National Park. This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey (USGS) editorial standards or with the North American Stratigraphic Code. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. 1345 Middlefield Road, Menlo Park, CA 94025 http://geopubs.wr.usgs.gov/open-file/of01-056/ ABSTRACT A marine K-T boundary interval has been identified throughout the Badlands National Park region of South Dakota. Data from marine sediments suggest that deposits from two asteroid impacts (one close, one far away) may be preserved in the Badlands. These impact- generated deposits may represent late Maestrichtian events or possibly the terminal K-T event. Interpretation is supported by paleontological correlation, sequence stratigraphy, magnetostratigraphy, and strontium isotope geochronology. This research is founded on nearly a decade of NPS approved field work in Badlands National Park and a foundation of previously published data and interpretations. The K-T boundary occurs within
    [Show full text]
  • Highly Diversified Late Cretaceous Fish Assemblage Revealed by Otoliths (Ripley Formation and Owl Creek Formation, Northeast Mississippi, Usa)
    Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 126(1): 111-155. March 2020 HIGHLY DIVERSIFIED LATE CRETACEOUS FISH ASSEMBLAGE REVEALED BY OTOLITHS (RIPLEY FORMATION AND OWL CREEK FORMATION, NORTHEAST MISSISSIPPI, USA) GARY L. STRINGER1, WERNER SCHWARZHANS*2 , GEORGE PHILLIPS3 & ROGER LAMBERT4 1Museum of Natural History, University of Louisiana at Monroe, Monroe, Louisiana 71209, USA. E-mail: [email protected] 2Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, DK-2100, Copenhagen, Denmark. E-mail: [email protected] 3Mississippi Museum of Natural Science, 2148 Riverside Drive, Jackson, Mississippi 39202, USA. E-mail: [email protected] 4North Mississippi Gem and Mineral Society, 1817 CR 700, Corinth, Mississippi, 38834, USA. E-mail: [email protected] *Corresponding author To cite this article: Stringer G.L., Schwarzhans W., Phillips G. & Lambert R. (2020) - Highly diversified Late Cretaceous fish assemblage revealed by otoliths (Ripley Formation and Owl Creek Formation, Northeast Mississippi, USA). Riv. It. Paleontol. Strat., 126(1): 111-155. Keywords: Beryciformes; Holocentriformes; Aulopiformes; otolith; evolutionary implications; paleoecology. Abstract. Bulk sampling and extensive, systematic surface collecting of the Coon Creek Member of the Ripley Formation (early Maastrichtian) at the Blue Springs locality and primarily bulk sampling of the Owl Creek Formation (late Maastrichtian) at the Owl Creek type locality, both in northeast Mississippi, USA, have produced the largest and most highly diversified actinopterygian otolith (ear stone) assemblage described from the Mesozoic of North America. The 3,802 otoliths represent 30 taxa of bony fishes representing at least 22 families. In addition, there were two different morphological types of lapilli, which were not identifiable to species level.
    [Show full text]
  • TGI Strat Column 2009.Cdr
    STRATIGRAPHIC CORRELATION CHART TGI II: Williston Basin Architecture and Hydrocarbon Potential in Eastern Saskatchewan and Western Manitoba EASTERN MANITOBA PERIOD MANITOBA SUBSURFACE SASKATCHEWAN OUTCROP ERA glacial drift glacial drift glacial drift Quaternary Wood Mountain Formation Peace Garden Peace Garden Member Tertiary Member Ravenscrag Formation CENOZOIC Formation Goodlands Member Formation Goodlands Member Turtle Mountain Turtle Mountain Turtle Frenchman Formation Whitemud Formation Boissevain Formation Boissevain Formation Eastend Formation Coulter Member Coulter Member Bearpaw Formation Odanah Member Belly River “marker” Odanah Member Belly River Formation “lower” Odanah Member Millwood Member Lea Park Formation Millwood Member MONTANA GROUP Pembina Member Pembina Member Pierre Shale Pierre Shale Milk River Formation Gammon Ferruginous Member Gammon Ferruginous Member Niobrara Formation Chalky Unit Boyne Member Boyne Member Boyne Calcareous Shale Unit Member Carlile Morden Member Carlile upper Formation Morden Member Formation Morden Member Carlile Formation Assiniboine Marco Calcarenite Assiniboine Member Member CRETACEOUS Second White Specks Laurier Limestone Beds Favel Favel Keld Keld Member Member Formation Formation Belle Fourche Formation Belle Fourche Member MESOZOIC COLORADO GROUP Belle Fourche Member upper Fish Scale Formation Fish Scale Zone upper Base of Fish Scale marker Base of Fish Scale marker Westgate Formation Westgate Member lower Westgate Member Newcastle Formation Newcastle Member lower Viking Sandstone
    [Show full text]