Spherical Aromaticity of Fullerenes

Total Page:16

File Type:pdf, Size:1020Kb

Spherical Aromaticity of Fullerenes Chem. Rev. 2001, 101, 1153−1183 1153 Spherical Aromaticity of Fullerenes Michael Bu¨hl*,† and Andreas Hirsch*,‡ Max-Planck-Institut fu¨r Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mu¨lheim an der Ruhr, Germany, and Institut fu¨r Organische Chemie der Universita¨t Erlangen-Nu¨rnberg, Henkestr. 42, D-91054 Erlangen, Germany Received August 21, 2000 Contents of a spherical aromatic molecule”. Later, at about the time when Kra¨tschmer and Huffman reported on the I. Introduction 1153 2 II. Structural Criteria 1154 synthesis of fullerenes in bulk quantities, he pointed out the vision that “it could be that we are entering III. Energetic Criteria 1158 a new age for just as the pre-Columbian assumption 1. MO Resonance Energies of Fullerenes 1158 that the earth was flat made way for a round world- 2. Topological Resonance Energies of 1159 view, it may be that, post buckminsterfullerene, the Fullerenes traditional assumption that polyaromatic organic 3. VB Model of C60 1159 chemistry is essentially a flat field may also make 4. Isodesmic Equations 1159 for a bright, nonplanar future”.3 The question whether 5. Heat of Hydrogenation 1160 fullerenes have to be considered aromatic or not has 6. Summary 1160 been a debate ever since their discovery. This has to IV. Reactivity Criteria 1160 do with initial lack of knowledge of fullerene proper- 1. Reactivity Indices 1160 ties, different interpretations of their newly discov- - 2. Principles of Fullerene Reactivity 1160 ered and unprecedented behavior,4 11 which is diffi- A. Retention of the Structural Type 1160 cult to compare with that of planar aromatics, and B. Chemical Indication of Cyclic Electron 1162 of course also with the fact that the definition of 12-14 Delocalization within C60:cis-1 Reactivity aromaticity itself is controversial and has changed C. Charge and Spin Localization in 1162 many times over the last 175 years. Monoadducts with Nucleophiles and The fullerenes form a unique class of spherical Radicals molecules containing a conjugated π system. Each D. Fullerene Adducts Containing 1163 fullerene represents a closed network of fused hexa- Two-Dimensional Aromatic Substructures gons and pentagons. This building principle is a 3. Summary 1165 consequence of the Euler theorem which states that V. Magnetic Criteria 1165 for the closure of each spherical network of n hexa- 1. Application of Magnetic Criteria to Fullerenes 1166 gons, 12 pentagons are required, with the exception A. “Exohedral” Probes 1167 of n ) 1. The presence of the pentagons allows for B. “Endohedral” Probes 1169 the introduction of the curvature which requires the C. “Theoretical” Probes 1171 C atoms to be pyramidalized. The smallest stable and 2. Application of Magnetic Criteria to Fullerene 1172 at the same time the most abundant fullerene is the Derivatives Ih-symmetrical buckminsterfullerene C60 (Figure 1). A. Anions 1172 The next stable homologue is C70 (Figure 1), followed by higher fullerenes15-17 like C ,C ,C C ,C , B. Adducts 1173 76 78 80, 82 84 etc. In terms of valence bond (VB) theory, there are C. Heterofullerenes 1177 12 500 Kekule´ structures for C60, suggesting, at a first 3. Summary 1177 glance, that it might be very aromatic. The structure VI. Nature of Aromaticity in Fullerenes and Count 1177 of the fullerenes, especially that of the icosahedral Rules representatives such as C , implies that they should − 60 1. Topological Count Rules “Magic Numbers” 1177 be considered as three-dimensional analogues of 2. Spherical Aromaticity in Ih Symmetrical 1178 benzene and other planar aromatics. In contrast to + 2 Fullerenes: The 2(N 1) Rule such classical systems, however, the sp2 networks of VII. Conclusion 1179 the fullerenes have no boundaries which are satu- VIII. Acknowledgment 1179 rated by hydrogen atoms.18 As a consequence, the IX. References 1179 characteristic aromatic substitution reactions retain- ing the conjugated π system are not possible for I. Introduction fullerenes. This is just one example for the general When buckminsterfullerene was discovered in 1985,1 problem to evaluate the aromaticity of fullerenes. Kroto suggested that it could be “the first example What are suitable aromaticity criteria for fullerenes? Against which standards should the aromatic proper- † Max-Planck-Institut fu¨ r Kohlenforschung. Fax: +49-208-3062996. ties of fullerenes be measured? Are there count rules E-mail: [email protected]. similar to the Hu¨ ckel rule for planar monocyclic ‡ Institut fu¨ r Organische Chemie der Universita¨t Erlangen- Nu¨ rnberg. Fax: +49-9131-8522537. E-mail: hirsch@organik. aromatics which express the occurrence of aromatic- uni-erlangen.de. ity with respect to the number of π electrons? 10.1021/cr990332q CCC: $36.00 © 2001 American Chemical Society Published on Web 03/21/2001 1154 Chemical Reviews, 2001, Vol. 101, No. 5 Bu¨hl and Hirsch Michael Bu¨hl was born in Wu¨rzburg, Germany, in 1962. He studied chemistry at the University of Erlangen, Germany, where he obtained his Ph.D. degree in 1992 under the supervision of Paul Schleyer. After a postdoctoral stay at the University of Georgia in Athens, GA, with Henry F. Schaefer III, he moved to the University of Zurich (Switzerland), where he finished his Habilitation in 1998. Since 1999 he has been Group Leader in the Theoretical Department of the Max-Planck-Institut fu¨r Kohlenfors- chung in Mu¨lheim/Ruhr (Germany). His main research interests are rooted in the application of modern quantum-chemical tools to study structures and reactivities of organic and transition-metal compounds, with emphasis on the computation of NMR properties. His main areas of application are fullerenes, computational support of experimentally determined structures, Figure 1. Schematic representation of C60 and C70. and homogeneous catalysis with transition-metal complexes. gated π system, is to a large extent driven by the reduction of strain.18 Analysis of the reactivity and regiochemistry of addition reactions reveals a behav- ior reminiscent of electron-deficient olefins. However, especially the magnetic properties of fullerenes clearly reflect delocalized character of the conjugated π system, which, depending on the number of π elec- trons, can cause the occurrence of diamagnetic or paramagnetic ring currents within the loops of the hexagons and pentagons (see section V). Neutral C60, for example, containing diatropic hexagons and para- tropic pentagons was labeled “ambiguously aro- matic”.18 Whereas in the early fullerene days the debate about the presence or absence of aromaticity Andreas Hirsch was born in Esslingen, Germany, in 1960. He studied in fullerenes was controversial, the accumulating chemistry at the University of Tu¨bingen, Germany, where he obtained his Ph.D. degree in 1990 under Michael Hanack. He has conducted amount of experimental and theoretical research postdoctoral research at the Institute for Polymers and Organic Solids in within the last years provided a much clearer inter- Santa Barbara, CA, with Fred Wudl. In 1991 he subsequently returned to pretation of this term with respect to this new class Tuebingen as Research Associate at the Institute of Organic Chemistry. of compounds. It is the aim of this review to sum- After his Habilitation in 1994, he joined the faculty of the Department of marize the research of fullerene aromaticity. The Chemistry at the University of Karlsruhe as Professor. Since October 1995, he has been Full Professor of Organic Chemistry at the Friedrich- evaluation of fullerene aromaticity is based on the Alexander-Universita¨t Erlangen-Nu¨rnberg. Andreas Hirsch’s main research classical aromaticity criteria, namely, structure, en- activities have been focused on the development of methodologies of ergy, reactivity, and magnetism, which are covered efficient syntheses of exohedral derivatives of fullerenes and the use of in this sequence in the following sections. Finally, the such compounds as structural templates and building blocks for supra- nature of fullerene aromaticity considering count molecular architectures and nanomaterials. Other research interests are in the area of synthesis of dendrimers, calixarene conjugates, new alkynes, rules involving the whole π-electron system and the new types of synthetic lipids and amphiphiles, model compounds for presence of two-dimensional Hu¨ ckel-aromatic sub- photoinduced charge separation, chemical derivatization, and solubilization structures will be discussed. of carbon nanotubes, including investigation of their synthetic potential and properties as new materials. II. Structural Criteria Compared to benzene, being the archetype of a two- dimensional aromatic molecule,19 the discussion of Icosahedral buckminsterfullerene is the only C60 aromaticity in fullerenes must take into account the isomer and the smallest possible fullerene that obeys strain provided by the pyramidalization of the C the ‘isolated pentagon rule’ (IPR).28,29 The IPR pre- atoms.18 The rich exohedral chemistry of fuller- dicts that those fullerene isomers with all pentagons enes,8,20-26 which is basically addition to the conju- isolated by hexagons will be stabilized against struc- Spherical Aromaticity of Fullerenes Chemical Reviews, 2001, Vol. 101, No. 5 1155 Table 1. Calculated and Measured Bond Distances in Table 2. Calculated and Experimental Structure of C60 [Å] C70 method [5,6]-bonds [6,6]-bonds ref bond length (Å) HF(STO-3G) 1.465 1.376 51 experiment theory HF(7s3p/4s2p) 1.453 1.369 52 bond type ab(dzp/SCF)60 LDF(11s6p) 1.43 1.39 53 HF 1.448 1.370 54 a 1.462 1.462 1.475 MP2 1.446 1.406 55 b 1.423 1.414 1.407 NMR 1.45 1.40 56 c 1.441 1.426 1.415 neutron diffraction 1.444 1.391 57 d 1.432 1.447 1.457 electron diffraction 1.458 1.401 58 e 1.372 1.378 1.361 X-ray 1.467 1.355 59 f 1.453 1.445 1.446 g 1.381 1.387 1.375 h 1.463 1.453 1.451 tures with adjacent pentagons.
Recommended publications
  • Introduction to Aromaticity
    Introduction to Aromaticity Historical Timeline:1 Spotlight on Benzene:2 th • Early 19 century chemists derive benzene formula (C6H6) and molecular mass (78). • Carbon to hydrogen ratio of 1:1 suggests high reactivity and instability. • However, benzene is fairly inert and fails to undergo reactions that characterize normal alkenes. - Benzene remains inert at room temperature. - Benzene is more resistant to catalytic hydrogenation than other alkenes. Possible (but wrong) benzene structures:3 Dewar benzene Prismane Fulvene 2,4- Hexadiyne - Rearranges to benzene at - Rearranges to - Undergoes catalytic - Undergoes catalytic room temperature. Faraday’s benzene. hydrogenation easily. hydrogenation easily - Lots of ring strain. - Lots of ring strain. - Lots of ring strain. 1 Timeline is computer-generated, compiled with information from pg. 594 of Bruice, Organic Chemistry, 4th Edition, Ch. 15.2, and from Chemistry 14C Thinkbook by Dr. Steven Hardinger, Version 4, p. 26 2 Chemistry 14C Thinkbook, p. 26 3 Images of Dewar benzene, prismane, fulvene, and 2,4-Hexadiyne taken from Chemistry 14C Thinkbook, p. 26. Kekulé’s solution: - “snake bites its own tail” (4) Problems with Kekulé’s solution: • If Kekulé’s structure were to have two chloride substituents replacing two hydrogen atoms, there should be a pair of 1,2-dichlorobenzene isomers: one isomer with single bonds separating the Cl atoms, and another with double bonds separating the Cl atoms. • These isomers were never isolated or detected. • Rapid equilibrium proposed, where isomers interconvert so quickly that they cannot be isolated or detected. • Regardless, Kekulé’s structure has C=C’s and normal alkene reactions are still expected. - But the unusual stability of benzene still unexplained.
    [Show full text]
  • On the Harmonic Oscillator Model of Electron Delocalization (HOMED) Index and Its Application to Heteroatomic Π-Electron Systems
    Symmetry 2010, 2, 1485-1509; doi:10.3390/sym2031485 OPEN ACCESS symmetry ISSN 2073-8994 www.mdpi.com/journal/symmetry Article On the Harmonic Oscillator Model of Electron Delocalization (HOMED) Index and its Application to Heteroatomic π-Electron Systems Ewa D. Raczyñska 1, *, Małgorzata Hallman 1, Katarzyna Kolczyñska 2 and Tomasz M. Stêpniewski 2 1 Department of Chemistry, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 159c, 02-776 Warszawa, Poland 2 Interdisciplinary Department of Biotechnology, Warsaw University of Life Sciences (SGGW), ul. Nowoursynowska 166, 02-776 Warszawa, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +48-22-59-37623; Fax: +49-22-59-37635. Received: 23 April 2010; in revised form: 19 May 2010 / Accepted: 7 July 2010 / Published: 12 July 2010 Abstract: The HOMA (Harmonic Oscillator Model of Aromaticity) index, reformulated in 1993, has been very often applied to describe π-electron delocalization for mono- and polycyclic π-electron systems. However, different measures of π-electron delocalization were employed for the CC, CX, and XY bonds, and this index seems to be inappropriate for compounds containing heteroatoms. In order to describe properly various resonance effects (σ-π hyperconjugation, n-π conjugation, π-π conjugation, and aromaticity) possible for heteroatomic π-electron systems, some modifications, based on the original HOMA idea, were proposed and tested for simple DFT structures containing C, N, and O atoms. An abbreviation HOMED was used for the modified index. Keywords: geometry-based index; π -electron delocalization; σ - π hyperconjugation; n-π conjugation; π-π conjugation; aromaticity; heteroatomic compounds; DFT 1.
    [Show full text]
  • Molecular Clusters of the Main Group Elements
    Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Further Titles of Interest: G. Schmid (Ed.) Nanoparticles From Theory to Application 2003 ISBN 3-527-30507-6 P. Jutzi, U. Schubert (Eds.) Silicon Chemistry From the Atom to Extended Systems 2003 ISBN 3-527-30647-1 P. Braunstein, L. A. Oro, P. R. Raithby (Eds.) Metal Clusters in Chemistry 1999 ISBN 3-527-29549-6 U. Schubert, N. Husing€ Synthesis of Inorganic Materials 2000 ISBN 3-527-29550-X P. Comba, T. W. Hambley Molecular Modeling of Inorganic Compounds 2001 ISBN 3-527-29915-7 Matthias Driess, Heinrich No¨th (Eds.) Molecular Clusters of the Main Group Elements Prof. Matthias Driess 9 This book was carefully produced. Ruhr-Universita¨t Bochum Nevertheless, authors, editors and publisher Fakulta¨tfu¨r Chemie do not warrant the information contained Lehrstuhl fu¨r Anorganische Chemie I: therein to be free of errors. Readers are Cluster- und Koordinations-Chemie advised to keep in mind that statements, 44780 Bochum data, illustrations, procedural details or Germany other items may inadvertently be inaccurate. Prof. Heinrich No¨th Ludwig-Maximilians-Universita¨tMu¨nchen Library of Congress Card No.: applied for Department Chemie A catalogue record for this book is available Butenandt Str. 5-13 (Haus D) from the British Library. 81377 Munich Bibliographic information published by Die Germany Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the Internet at http:// dnb.ddb.de ( 2004 WILEY-VCH Verlag GmbH & Co.
    [Show full text]
  • Aromaticity Sem- Ii
    AROMATICITY SEM- II In 1931, German chemist and physicist Sir Erich Hückel proposed a theory to help determine if a planar ring molecule would have aromatic properties .This is a very popular and useful rule to identify aromaticity in monocyclic conjugated compound. According to which a planar monocyclic conjugated system having ( 4n +2) delocalised (where, n = 0, 1, 2, .....) electrons are known as aromatic compound . For example: Benzene, Naphthalene, Furan, Pyrrole etc. Criteria for Aromaticity 1) The molecule is cyclic (a ring of atoms) 2) The molecule is planar (all atoms in the molecule lie in the same plane) 3) The molecule is fully conjugated (p orbitals at every atom in the ring) 4) The molecule has 4n+2 π electrons (n=0 or any positive integer Why 4n+2π Electrons? According to Hückel's Molecular Orbital Theory, a compound is particularly stable if all of its bonding molecular orbitals are filled with paired electrons. - This is true of aromatic compounds, meaning they are quite stable. - With aromatic compounds, 2 electrons fill the lowest energy molecular orbital, and 4 electrons fill each subsequent energy level (the number of subsequent energy levels is denoted by n), leaving all bonding orbitals filled and no anti-bonding orbitals occupied. This gives a total of 4n+2π electrons. - As for example: Benzene has 6π electrons. Its first 2π electrons fill the lowest energy orbital, and it has 4π electrons remaining. These 4 fill in the orbitals of the succeeding energy level. The criteria for Antiaromaticity are as follows: 1) The molecule must be cyclic and completely conjugated 2) The molecule must be planar.
    [Show full text]
  • A Post-Buckminsterfullerene View of Carbon Chemistry
    A POST-BUCKMINSTERFULLERENE VIEW OF CARBON CHEMISTRY Harold Kroto School of Chemistry and Molecular Sciences, University of Sussex, Brighton, BNI 9QJ UK Keywords: Cs0, Fullerenes, carbon particles INTRODUCTION The discovery of c60 Buckminsterfullerene, Fig 1, has its origins in a research programme involving synthetic chemistry, microwave spectroscopy and radioastronomyl. In 1915, at Sussex (with David Walton), the long chain polyyne H-CeC-CsC-CsN was synthesised and studied by microwave spectroscopy. Subsequently, with Takeshi Oka and NRC(0ttawa) astronomers, the molecule was discovered in space, Fig 2, by radioastronomy using the laboratory microwave frequencies. This discovery led on to the detection of the even longer carbon chain molecules HCTN, HCgN and HCl.lN in the space between the stars2. Further work aimed at understanding the formation of the chains in space focussed attention on the possibility that they are produced at the same time as carbon dust in red giant stars1,*. During experiments at Rice University in 1985 (with James Heath, Sean O'Brien, Robert Curl and Richard Smalley), designed to simulate the conditions in these stars and explore their capacity for carbon chain formation, the exciting discovery that C60 was remarkably stable was made3. It was found that under conditions where almost all the atoms in a carbon plasma had nucleated to form microparticles the molecule c60 remained behind - together with some CTO. This result was, as is now well 'known, rationalised on the basis of the closed cage structure shown in Fig 1. It was proposed that the geodesic and aromatic factors inherent in such a structure could account for the stability of the molecule.
    [Show full text]
  • Metallofullerene and Fullerene Formation from Condensing Carbon Gas Under Conditions of Stellar Outflows and Implication to Star
    Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust Paul W. Dunka,b,1, Jean-Joseph Adjizianc, Nathan K. Kaiserb, John P. Quinnb, Gregory T. Blakneyb, Christopher P. Ewelsc,1, Alan G. Marshalla,b,1, and Harold W. Krotoa,1 aDepartment of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306; bIon Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310; and cInstitut des Matériaux Jean Rouxel, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6502, Université de Nantes, BP 32229 Nantes, France Contributed by Harold W. Kroto, August 29, 2013 (sent for review June 13, 2013) Carbonaceous presolar grains of supernovae origin have long confirmed to exist in circumstellar and interstellar environments. been isolated and are determined to be the carrier of anomalous C60 and C70 were first unequivocally detected in a planetary 22Ne in ancient meteorites. That exotic 22Ne is, in fact, the decay nebula in 2010, which was thought to be hydrogen deficient (11). isotope of relatively short-lived 22Na formed by explosive nucleo- Thereafter, Buckminsterfullerene was detected in hydrogen- synthesis, and therefore, a selective and rapid Na physical trapping rich [including the least H-deficient R Coronae Borealis stars] mechanism must take place during carbon condensation in super- (12, 13) and oxygen-rich environments (14), as well as the ISM nova ejecta. Elucidation of the processes that trap Na and produce (15) and a protoplanetary nebula (16). Moreover, fullerenes large carbon molecules should yield insight into carbon stardust have been detected in a host of other circumstellar and in- enrichment and formation.
    [Show full text]
  • Formation of Buckminsterfullerene (C60) in Interstellar Space
    Formation of buckminsterfullerene ( ) C60 in interstellar space Olivier Berné1 and A. G. G. M. Tielens Leiden Observatory, Leiden University, P.O. Box 9513, NL- 2300 RA Leiden, The Netherlands Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved November 2, 2011 (received for review August 31, 2011) Buckminsterfullerene (C60) was recently confirmed as the largest region, at high angular resolution (Fig. 1). This measurement can molecule identified in space. However, it remains unclear how be used to derive the integrated intensity radiated by the nebula, and where this molecule is formed. It is generally believed that which can be used as a calibrator, to convert the Spitzer observa- C60 is formed from the buildup of small carbonaceous compounds tions of the PAHs and C60 bands into absolute chemical abun- in the hot and dense envelopes of evolved stars. Analyzing infrared dances of these species, allowing a quantitive study of PAH and observations, obtained by Spitzer and Herschel, we found that C60 C60 chemical evolution. is efficiently formed in the tenuous and cold environment of an interstellar cloud illuminated by strong ultraviolet (UV) radiation Measurement of the Far Infrared Integrated Intensity of Dust Emission I fields. This implies that another formation pathway, efficient at in the Nebula. The far infrared integrated intensity FIR was ex- low densities, must exist. Based on recent laboratory and theore- tracted by fitting the spectral energy distribution (SED) at each tical studies, we argue that polycyclic aromatic hydrocarbons are position in the cross-cut shown in Fig. 1. For these positions, we converted into graphene, and subsequently C60, under UV irradia- have used the brightnesses as measured by Herschel Photodetec- tion from massive stars.
    [Show full text]
  • Aromaticity in Polyhydride Complexes of Ru, Ir, Os, and Pt† Cite This: DOI: 10.1039/C5cp04330a Elisa Jimenez-Izala and Anastassia N
    PCCP View Article Online PAPER View Journal r-Aromaticity in polyhydride complexes of Ru, Ir, Os, and Pt† Cite this: DOI: 10.1039/c5cp04330a Elisa Jimenez-Izala and Anastassia N. Alexandrova*ab Transition-metal hydrides represent a unique class of compounds, which are essential for catalysis, organic i À i À synthesis, and hydrogen storage. In this work we study IrH5(PPh3)2,(RuH5(P Pr3)2) ,(OsH5(PPr3)2) ,and À OsH4(PPhMe2)3 polyhydride complexes, inspired by the recent discovery of the s-aromatic PtZnH5 cluster À anion. The distinctive feature of these molecules is that, like in the PtZnH5 cluster, the metal is five-fold Received 23rd July 2015, coordinated in-plane, and holds additional ligands attheaxialpositions.Thisworkshowsthattheunusual Accepted 17th September 2015 coordination in these compounds indeed can be explained by s-aromaticity in the pentagonal arrangement, DOI: 10.1039/c5cp04330a stabilized by the atomic orbitals on the metal. Based on this newly elucidated bonding principle, we additionally propose a new family of polyhydrides that display a uniquely high coordination. We also report the first www.rsc.org/pccp indications of how aromaticity may impact the reactivity of these molecules. 1 Introduction many catalytic cycles, where they have either been used as catalysts or invoked as key intermediates.15,16 Aromaticity in Aromaticity is a very important concept in the contemporary general is associated with high symmetry, stability, and specific chemistry: the particular electronic structure of aromatic reactivity. Therefore, the stability of transition-metal hydride systems, where electrons are delocalized, explains their large complexes might have an important repercussion in the kinetics energetic stabilization and low reactivity.
    [Show full text]
  • Reactions of Graphene Oxide and Buckminsterfullerene in the Aquatic Environment Yingcan Zhao Purdue University
    Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 8-2016 Reactions of graphene oxide and buckminsterfullerene in the aquatic environment Yingcan Zhao Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Environmental Engineering Commons Recommended Citation Zhao, Yingcan, "Reactions of graphene oxide and buckminsterfullerene in the aquatic environment" (2016). Open Access Dissertations. 896. https://docs.lib.purdue.edu/open_access_dissertations/896 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Yingcan Zhao Entitled REACTIONS OF GRAPHENE OXIDE AND BUCKMINSTERFULLERENE IN THE AQUATIC ENVIRONMENT For the degree of Doctor of Philosophy Is approved by the final examining committee: Chad T. Jafvert Chair Timothy R. Filley Inez Hua Ronald F. Turco To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Approved by Major Professor(s): Chad T. Jafvert Approved by: Dulcy M. Abraham 6/21/2016 Head of the Departmental Graduate Program Date i REACTIONS OF GRAPHENE OXIDE AND BUCKMINSTERFULLERENE IN THE AQUATIC ENVIRONMENT A Dissertation Submitted to the Faculty of Purdue University by Yingcan Zhao In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2016 Purdue University West Lafayette, Indiana ii To my parents and Liang, for their love, support and encouragement.
    [Show full text]
  • Carbon-Based Nanomaterials/Allotropes: a Glimpse of Their Synthesis, Properties and Some Applications
    materials Review Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications Salisu Nasir 1,2,* ID , Mohd Zobir Hussein 1,* ID , Zulkarnain Zainal 3 and Nor Azah Yusof 3 1 Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2 Department of Chemistry, Faculty of Science, Federal University Dutse, 7156 Dutse, Jigawa State, Nigeria 3 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; [email protected] (Z.Z.); [email protected] (N.A.Y.) * Correspondence: [email protected] (S.N.); [email protected] (M.Z.H.); Tel.: +60-1-2343-3858 (M.Z.H.) Received: 19 November 2017; Accepted: 3 January 2018; Published: 13 February 2018 Abstract: Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead.
    [Show full text]
  • Molecular Vibrational Modes of C60 and C70 Via Finite Element Method
    European Journal of Mechanics A/Solids 28 (2009) 948–954 Contents lists available at ScienceDirect European Journal of Mechanics A/Solids journal homepage: www.elsevier.com/locate/ejmsol Molecular vibrational modes of C60 and C70 via finite element method Du Jing a,b, Zeng Pan a,b,* a Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China b Key Laboratory for Advanced Materials Processing Technology, Ministry of Education of China, China article info abstract Article history: Molecular vibration spectra are of great significance in the study of molecular structures and characters. Received 26 September 2006 A widely-used analytical method of structural mechanics, finite element method, is imported into the Accepted 17 February 2009 domain of micro-scaled molecular spectra. The vibrational modes of fullerenes C60 and C70 are calculated Available online 28 February 2009 depending on uniform carbon–carbon bonding elements, each of which has three force constants that are determined by fitting the C60 Raman spectra experimental data and one ratio factor which is the Keywords: bond lengths ratio between the single and double bonds. The computational result shows reasonable Finite element method agreement with both calculated and experimental results published before. Fullerene Ó 2009 Published by Elsevier Masson SAS. C70 Molecular spectra 1. Introduction overlap (MNDO) (Stanton and Newton, 1988), Quantum-mechan- ical Consistent Force Field Method for Pi-Electron Systems (QCFF/ Since Kroto et al. discovered C60 by laser vaporizing graphite PI) (Negri et al., 1988), Austin Model 1 (AM1) (Slanina et al., 1989), into a helium stream (Kroto et al., 1985); an impressive experi- density functional theory (Adams et al., 1991; Choi et al., 2000; mental and theoretical effort has been undertaken towards this Schettino et al., 2001; Sun and Kertesz, 2002; Schettino et al., 2002).
    [Show full text]
  • Sc-Homoaromaticity
    This is a repository copy of Modern Valence-Bond Description of Homoaromaticity. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/106288/ Version: Accepted Version Article: Karadakov, Peter Borislavov orcid.org/0000-0002-2673-6804 and Cooper, David L. (2016) Modern Valence-Bond Description of Homoaromaticity. Journal of Physical Chemistry A. pp. 8769-8779. ISSN 1089-5639 https://doi.org/10.1021/acs.jpca.6b09426 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Modern Valence-Bond Description of Homoaromaticity Peter B. Karadakov; and David L. Cooper; Department of Chemistry, University of York, Heslington, York, YO10 5DD, U.K. Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K. Abstract Spin-coupled (SC) theory is used to obtain modern valence-bond (VB) descriptions of the electronic structures of local minimum and transition state geometries of three species that have been con- C sidered to exhibit homoconjugation and homoaromaticity: the homotropenylium ion, C8H9 , the C cycloheptatriene neutral ring, C7H8, and the 1,3-bishomotropenylium ion, C9H11.
    [Show full text]