Molecular Vibrational Modes of C60 and C70 Via Finite Element Method
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Carbon Nanostructures Doped with Transition Metals for Pollutant Gas Adsorption Systems
molecules Review Carbon Nanostructures Doped with Transition Metals for Pollutant Gas Adsorption Systems J. M. Ramirez-de-Arellano 1 , M. Canales 2 and L. F. Magaña 3,* 1 Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey 64849, Mexico; [email protected] 2 Universidad Autónoma Metropolitana Unidad Azcapotzalco, Av. San Pablo Xalpa No. 180, Colonia Reynosa Tamaulipas, Delegación Azcapotzalco, Ciudad de México 02200, Mexico; [email protected] 3 Instituto de Física, Universidad Nacional Autónoma de Mexico, Apartado Postal 20-364, Ciudad de México 01000, Mexico * Correspondence: fernando@fisica.unam.mx Abstract: The adsorption of molecules usually increases capacity and/or strength with the doping of surfaces with transition metals; furthermore, carbon nanostructures, i.e., graphene, carbon nanotubes, fullerenes, graphdiyne, etc., have a large specific area for gas adsorption. This review focuses on the reports (experimental or theoretical) of systems using these structures decorated with transition metals for mainly pollutant molecules’ adsorption. Furthermore, we aim to present the expanding application of nanomaterials on environmental problems, mainly over the last 10 years. We found a wide range of pollutant molecules investigated for adsorption in carbon nanostructures, including greenhouse gases, anticancer drugs, and chemical warfare agents, among many more. Keywords: carbon nanostructures; doping; adsorption; transition metals; pollutant gas; nanotubes; Citation: Ramirez-de-Arellano, -
Na‐Doped C70 Fullerene/N‐Doped Graphene/Fe‐Based Quantum Dot
Author Manuscript Title: Na-doped C70 fullerenes/N-doped graphene/Fe-based quantum dots nano- composites for sodium-ion batteries with ultra-high coulombic efficiency Authors: Chunlian Wang; Yang Zhang; Wen He; Xudong Zhang; Zhaoyang Wang; Guihua Yang; Manman Ren; Lianzhou Wang This is the author manuscript accepted for publication and has undergone full peer review but has not been through the copyediting, typesetting, pagination and proofrea- ding process, which may lead to differences between this version and the Version of Record. To be cited as: ChemElectroChem 10.1002/celc.201700899 Link to VoR: https://doi.org/10.1002/celc.201700899 ARTICLE 1 Na-doped C70 fullerenes/N-doped graphene/Fe-based quantum dots nanocomposites 2 for sodium-ion batteries with ultra-high coulombic efficiency 3 Chunlian Wang,[a] Yang Zhang,[b] Wen He,*[ad] Xudong Zhang,*[a] Guihua Yang,[c] Zhaoyang Wang,[a] Manman Ren,[ad] 4 Lianzhou Wang[d] 5 [5-8] 6 Abstract: We fabricate Na-doped C70 fullerenes (Na-C70)/N-doped39 better performance. Carbon materials showing potential using 7 graphene (N-GN)/Fe-based nanocomposites (Na-C70/N-GN/FBNCs)40 in other area, such as carbon silicon composites for 8 with the multiple morphologies via an in situ one step method used41 electromagnetic materials[9], poly/multi-walled carbon nanotubes 9 the multifunction sodium lignosulfonate (SLS) as the structural42 with conductive segregated structure[10], graphene quantum dots 10 template and the main raw material. Fe-based nanoparticles can43 decorated oxide as solar cells[11]. Nanocarbon materials are 11 embed in ordered mesoporous hybrid carbon structure of Na-C7044 recognized as the leading electrode material for commercial 12 and N-GN via spontancous chelation reaction of SLS with iron ions45 LIBs anodes because of their high electrical conductivity, low 13 and carbonization under relatively mild hydrothermal treatment. -
Arxiv:2108.12221V1 [Physics.Chem-Ph] 27 Aug 2021
Experimental Determination of the Interaction Potential between a Helium Atom and the Interior Surface of a C60 Fullerene Molecule George Razvan Bacanu,1 Tanzeeha Jafari,2 Mohamed Aouane,3 Jyrki Rantaharju,1 Mark Walkey,1 Gabriela Hoffman,1 Anna Shugai,2 Urmas Nagel,2 Monica Jiménez-Ruiz,3 Anthony J. Horsewill,4 Stéphane Rols,3 Toomas Rõõm,2 Richard J. Whitby,1 and Malcolm H. Levitt1 1)School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK 2)National Institute of Chemical Physics and Biophysics, Tallinn, 12618, Estonia 3)Institut Laue-Langevin, BP 156, 38042 Grenoble, France 4)School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD (*Electronic mail: [email protected]) (Dated: 30 August 2021) The interactions between atoms and molecules may be described by a potential energy function of the nuclear coordi- nates. Non-bonded interactions are dominated by repulsive forces at short range and attractive dispersion forces at long range. Experimental data on the detailed interaction potentials for non-bonded interatomic and intermolecular forces is scarce. Here we use terahertz spectroscopy and inelastic neutron scattering to determine the potential energy function for the non-bonded interaction between single He atoms and encapsulating C60 fullerene cages, in the helium endo- 3 4 fullerenes He@C60 and He@C60, synthesised by molecular surgery techniques. The experimentally derived potential is compared to estimates from quantum chemistry calculations, and from sums of empirical two-body potentials. 18 21 19 22 I. INTRODUCTION including H2@C60 ,H2@C70 ,H2O@C60 , HF@C60 , 23 CH4@C60 , and their isotopologues. Endofullerenes con- Non-bonded intermolecular interactions determine the taining noble gas atoms, and containing two encapsulated 21,24–30 structure and properties of most forms of matter. -
Fullerene C70 Derivatives Dampen Anaphylaxis and Allergic Asthma Pathogenesis in Mice
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2012 Fullerene C70 derivatives dampen anaphylaxis and allergic asthma pathogenesis in mice Sarah Norton Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Medicine and Health Sciences Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/2759 This Dissertation is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Fullerene C70 derivatives dampen anaphylaxis and allergic asthma pathogenesis in mice A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at Virginia Commonwealth University By Sarah Brooke Norton B.S., University of Virginia, 2003 M.S., Virginia Commonwealth University, 2007 Director: Daniel H. Conrad, Professor, Microbiology and Immunology Virginia Commonwealth University Richmond, Virginia April, 2012 DEDICATION This dissertation is dedicated to my family for all their encouragement and support throughout his process. My parents, Ronald Kennedy and Penny Kennedy have supported me at every stage of my education and strongly encouraged me to attend graduate school. All my life they have made sacrifices to ensure I was given every opportunity to succeed, and have done everything possible to make this journey easier and celebrated my accomplishments with me. To my aunt, Patricia Petro who sparked my interest in science at a young age and encouraged my studies throughout this journey. To my mother-in-law, Lorraine Norton who has a kind heart and a listening ear and helps me keep everything in perspective. -
A Post-Buckminsterfullerene View of Carbon Chemistry
A POST-BUCKMINSTERFULLERENE VIEW OF CARBON CHEMISTRY Harold Kroto School of Chemistry and Molecular Sciences, University of Sussex, Brighton, BNI 9QJ UK Keywords: Cs0, Fullerenes, carbon particles INTRODUCTION The discovery of c60 Buckminsterfullerene, Fig 1, has its origins in a research programme involving synthetic chemistry, microwave spectroscopy and radioastronomyl. In 1915, at Sussex (with David Walton), the long chain polyyne H-CeC-CsC-CsN was synthesised and studied by microwave spectroscopy. Subsequently, with Takeshi Oka and NRC(0ttawa) astronomers, the molecule was discovered in space, Fig 2, by radioastronomy using the laboratory microwave frequencies. This discovery led on to the detection of the even longer carbon chain molecules HCTN, HCgN and HCl.lN in the space between the stars2. Further work aimed at understanding the formation of the chains in space focussed attention on the possibility that they are produced at the same time as carbon dust in red giant stars1,*. During experiments at Rice University in 1985 (with James Heath, Sean O'Brien, Robert Curl and Richard Smalley), designed to simulate the conditions in these stars and explore their capacity for carbon chain formation, the exciting discovery that C60 was remarkably stable was made3. It was found that under conditions where almost all the atoms in a carbon plasma had nucleated to form microparticles the molecule c60 remained behind - together with some CTO. This result was, as is now well 'known, rationalised on the basis of the closed cage structure shown in Fig 1. It was proposed that the geodesic and aromatic factors inherent in such a structure could account for the stability of the molecule. -
Metallofullerene and Fullerene Formation from Condensing Carbon Gas Under Conditions of Stellar Outflows and Implication to Star
Metallofullerene and fullerene formation from condensing carbon gas under conditions of stellar outflows and implication to stardust Paul W. Dunka,b,1, Jean-Joseph Adjizianc, Nathan K. Kaiserb, John P. Quinnb, Gregory T. Blakneyb, Christopher P. Ewelsc,1, Alan G. Marshalla,b,1, and Harold W. Krotoa,1 aDepartment of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306; bIon Cyclotron Resonance Program, National High Magnetic Field Laboratory, Florida State University, Tallahassee, FL 32310; and cInstitut des Matériaux Jean Rouxel, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 6502, Université de Nantes, BP 32229 Nantes, France Contributed by Harold W. Kroto, August 29, 2013 (sent for review June 13, 2013) Carbonaceous presolar grains of supernovae origin have long confirmed to exist in circumstellar and interstellar environments. been isolated and are determined to be the carrier of anomalous C60 and C70 were first unequivocally detected in a planetary 22Ne in ancient meteorites. That exotic 22Ne is, in fact, the decay nebula in 2010, which was thought to be hydrogen deficient (11). isotope of relatively short-lived 22Na formed by explosive nucleo- Thereafter, Buckminsterfullerene was detected in hydrogen- synthesis, and therefore, a selective and rapid Na physical trapping rich [including the least H-deficient R Coronae Borealis stars] mechanism must take place during carbon condensation in super- (12, 13) and oxygen-rich environments (14), as well as the ISM nova ejecta. Elucidation of the processes that trap Na and produce (15) and a protoplanetary nebula (16). Moreover, fullerenes large carbon molecules should yield insight into carbon stardust have been detected in a host of other circumstellar and in- enrichment and formation. -
Formation of Buckminsterfullerene (C60) in Interstellar Space
Formation of buckminsterfullerene ( ) C60 in interstellar space Olivier Berné1 and A. G. G. M. Tielens Leiden Observatory, Leiden University, P.O. Box 9513, NL- 2300 RA Leiden, The Netherlands Edited by Neta A. Bahcall, Princeton University, Princeton, NJ, and approved November 2, 2011 (received for review August 31, 2011) Buckminsterfullerene (C60) was recently confirmed as the largest region, at high angular resolution (Fig. 1). This measurement can molecule identified in space. However, it remains unclear how be used to derive the integrated intensity radiated by the nebula, and where this molecule is formed. It is generally believed that which can be used as a calibrator, to convert the Spitzer observa- C60 is formed from the buildup of small carbonaceous compounds tions of the PAHs and C60 bands into absolute chemical abun- in the hot and dense envelopes of evolved stars. Analyzing infrared dances of these species, allowing a quantitive study of PAH and observations, obtained by Spitzer and Herschel, we found that C60 C60 chemical evolution. is efficiently formed in the tenuous and cold environment of an interstellar cloud illuminated by strong ultraviolet (UV) radiation Measurement of the Far Infrared Integrated Intensity of Dust Emission I fields. This implies that another formation pathway, efficient at in the Nebula. The far infrared integrated intensity FIR was ex- low densities, must exist. Based on recent laboratory and theore- tracted by fitting the spectral energy distribution (SED) at each tical studies, we argue that polycyclic aromatic hydrocarbons are position in the cross-cut shown in Fig. 1. For these positions, we converted into graphene, and subsequently C60, under UV irradia- have used the brightnesses as measured by Herschel Photodetec- tion from massive stars. -
A First Experimental Electron Density Study on a C Fullerene
A First Experimental Electron Density Study on a C70 Fullerene: (C70C2F5)10 Roman Kalinowskia, Manuela Webera, Sergey I. Troyanovb, Carsten Paulmannc, and Peter Lugera a Institut f¨ur Chemie und Biochemie /Anorganische Chemie, Freie Universit¨at Berlin, Fabeckstraße 36a, 14195 Berlin, Germany b Department of Chemistry, Moscow State University, 119991 Moscow, Leninskie Gory, Russia c Mineralogisch-Petrologisches Institut, Universit¨at Hamburg, Grindelallee 48, 20146 Hamburg, Germany Reprint requests to Prof. Dr. Peter Luger. Fax: +49-30-838 53464. E-mail: [email protected] Z. Naturforsch. 2010, 65b, 1 – 7; received October 1, 2009 The electron density of the C70 fullerene C70(C2F5)10 was determined from a high-resolution X-ray data set measured with synchrotron radiation (beamline F1 of Hasylab/DESY, Germany) at a temperature of 100 K. With 140 atoms in the asymmetric unit this fullerene belongs to the largest problems examined until now by electron density methods. Using the QTAIM formalism quantitative bond topological and atomic properties have been derived and compared with the results of theoretical calculations on the title compound and on free C70. Key words: Fullerenes, Electron Density, Topological Analysis, Synchrotron Radiation Introduction Although recent technical and methodical advances made experimental electron density (ED) determina- tions possible also on larger molecules, fullerenes with 60 or more atoms are still a major challenge. Their in- vestigation is complicated by the generally poor crystal quality and by the high mobility of these molecules in the crystal structure. Since their discovery in the mid- eighties a considerable number of more than 800 X-ray structures of fullerenes and fullerene derivatives are listed in the Cambridge Data File [1]. -
Reactions of Graphene Oxide and Buckminsterfullerene in the Aquatic Environment Yingcan Zhao Purdue University
Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations 8-2016 Reactions of graphene oxide and buckminsterfullerene in the aquatic environment Yingcan Zhao Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Part of the Environmental Engineering Commons Recommended Citation Zhao, Yingcan, "Reactions of graphene oxide and buckminsterfullerene in the aquatic environment" (2016). Open Access Dissertations. 896. https://docs.lib.purdue.edu/open_access_dissertations/896 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Graduate School Form 30 Updated PURDUE UNIVERSITY GRADUATE SCHOOL Thesis/Dissertation Acceptance This is to certify that the thesis/dissertation prepared By Yingcan Zhao Entitled REACTIONS OF GRAPHENE OXIDE AND BUCKMINSTERFULLERENE IN THE AQUATIC ENVIRONMENT For the degree of Doctor of Philosophy Is approved by the final examining committee: Chad T. Jafvert Chair Timothy R. Filley Inez Hua Ronald F. Turco To the best of my knowledge and as understood by the student in the Thesis/Dissertation Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32), this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of Integrity in Research” and the use of copyright material. Approved by Major Professor(s): Chad T. Jafvert Approved by: Dulcy M. Abraham 6/21/2016 Head of the Departmental Graduate Program Date i REACTIONS OF GRAPHENE OXIDE AND BUCKMINSTERFULLERENE IN THE AQUATIC ENVIRONMENT A Dissertation Submitted to the Faculty of Purdue University by Yingcan Zhao In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2016 Purdue University West Lafayette, Indiana ii To my parents and Liang, for their love, support and encouragement. -
Carbon-Based Nanomaterials/Allotropes: a Glimpse of Their Synthesis, Properties and Some Applications
materials Review Carbon-Based Nanomaterials/Allotropes: A Glimpse of Their Synthesis, Properties and Some Applications Salisu Nasir 1,2,* ID , Mohd Zobir Hussein 1,* ID , Zulkarnain Zainal 3 and Nor Azah Yusof 3 1 Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 2 Department of Chemistry, Faculty of Science, Federal University Dutse, 7156 Dutse, Jigawa State, Nigeria 3 Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; [email protected] (Z.Z.); [email protected] (N.A.Y.) * Correspondence: [email protected] (S.N.); [email protected] (M.Z.H.); Tel.: +60-1-2343-3858 (M.Z.H.) Received: 19 November 2017; Accepted: 3 January 2018; Published: 13 February 2018 Abstract: Carbon in its single entity and various forms has been used in technology and human life for many centuries. Since prehistoric times, carbon-based materials such as graphite, charcoal and carbon black have been used as writing and drawing materials. In the past two and a half decades or so, conjugated carbon nanomaterials, especially carbon nanotubes, fullerenes, activated carbon and graphite have been used as energy materials due to their exclusive properties. Due to their outstanding chemical, mechanical, electrical and thermal properties, carbon nanostructures have recently found application in many diverse areas; including drug delivery, electronics, composite materials, sensors, field emission devices, energy storage and conversion, etc. Following the global energy outlook, it is forecasted that the world energy demand will double by 2050. This calls for a new and efficient means to double the energy supply in order to meet the challenges that forge ahead. -
An Overview of Fullerene Chemistry
Bull. Mater. So., Vol. 20, No. 2, April 1997, pp. 141-230. © Printed in India. An overview of fullerene chemistry S SAMAL* and S K SAHOO Department of Chemistry, gavenshawCollege, Cuttack 753 003, India MS received 4 April 1996; revised 3 October 1996 Abstract. Fullerenes which were thought to be 'superaromatics' are actually 'super- alkenes'. Reactions in fuUerenesare varied, ranging from the addition of simple molecules like H 2 to large moleculeslike dendrimers.The synthesis,structure, characterization,along with simple reactions like halogenation, oxygenation, metalation,cydoaddition, polymeri- zation and dendrimer addition are discussed. Keywards. Fullerenes;C6o; C7o; characterization;reactions. 1. Introduction Fullerenes and their derivatives possess a number of potentially useful physical, biological and chemical properties. Our interest in the chemistry of fullerenes led us to present this review in which we have attempted to furnish an overall picture of the properties of these novel molecules. The scope of the review is however limited. The conclusion of the authors contributing to this rapidly growing field of research are accepted and presented in a concise manner highlighting the salient features of the original work. The technique developed by Kr/itschmer et al (1990) for preparing and isolating macroscopic quantities of C6o, 'a new form of carbon', opened the way for exploring the molecular and bulk properties of these novel species. Kroto et al (1985) reported the nature and chemical reactivity of C6o species produced during the nucleation of carbon plasma. C6o , which was found to be stable, was named buckminsterfullerene after Buckminster Fuller, American architect, engineer and constructor of geodesic dome. -
Molecules in Benzene Solutions Prepared by Various Methods
Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences Volume 1 Issue 2 Article 4 9-25-2018 Analysis of clusterization of C70 molecules in benzene solutions prepared by various methods U. Makhmanov Tashkent State Technical University O. Ismailova Tashkent State Technical University A. Kokhkharov Tashkent State Technical University S. Bakhramov Tashkent State Technical University Follow this and additional works at: https://uzjournals.edu.uz/mns_nuu Part of the Physics Commons Recommended Citation Makhmanov, U.; Ismailova, O.; Kokhkharov, A.; and Bakhramov, S. (2018) "Analysis of clusterization of C70 molecules in benzene solutions prepared by various methods," Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences: Vol. 1 : Iss. 2 , Article 4. Available at: https://uzjournals.edu.uz/mns_nuu/vol1/iss2/4 This Article is brought to you for free and open access by 2030 Uzbekistan Research Online. It has been accepted for inclusion in Bulletin of National University of Uzbekistan: Mathematics and Natural Sciences by an authorized editor of 2030 Uzbekistan Research Online. For more information, please contact [email protected]. Volume 1, Issue 2 (2018) ANALYSIS OF CLUSTERIZATION OF C70 MOLECULES IN BENZENE SOLUTIONS PREPARED BY VARIOUS METHODS Makhmanov U. K., Ismailova O. B., Kokhkharov A. M., Bakhramov S. A. Tashkent State Technical University, Tashkent, Uzbekistan Abstract Self-assembling features of molecules of C70 in benzene solution prepared in two various ways – equilibrium and non-equilibrium – has been investigated ex- perimentally by method of high-resolution transmission electron microscopy. It was demonstrated, that the formation of densely packed monomolecular fullerene aggregates with a diameter of not more than 30 nm in solutions pre- pared by the equilibrium method (without the use of external mechanical in- fluences on solution).