Exceptionally Preserved Crustaceans from Western Canada Reveal a Cryptic Cambrian Radiation

Total Page:16

File Type:pdf, Size:1020Kb

Exceptionally Preserved Crustaceans from Western Canada Reveal a Cryptic Cambrian Radiation Exceptionally preserved crustaceans from western Canada reveal a cryptic Cambrian radiation Thomas H. P. Harveya,1, Maria I. Vélezb, and Nicholas J. Butterfielda aDepartment of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, United Kingdom; and bDepartment of Geology, University of Regina, Regina, SK, Canada S4S 0A2 Edited by Steven M. Stanley, University of Hawaii, Honolulu, HI, and approved December 16, 2011 (received for review September 16, 2011) The early history of crustaceans is obscured by strong biases in fossil Geological Context preservation, but a previously overlooked taphonomic mode yields The Deadwood Formation (broadly defined, to include the Earlie important complementary insights. Here we describe diverse crus- and Finnegan formations) encompasses a broad expanse of shal- tacean appendages of Middle and Late Cambrian age from shallow- low-marine, Middle to Late Cambrian sandstones and mudstones marine mudstones of the Deadwood Formation in western Canada. extending through eastern parts of the Western Canada Sedi- The fossils occur as flattened and fragmentary carbonaceous cuticles mentary Basin, the Williston Basin, and into the Black Hills of but provide a suite of phylogenetic and ecological data by virtue of South Dakota, its type locality (15, 16). In Canada, the formation their detailed preservation. In addition to an unprecedented range occurs primarily in the subsurface, with all of the specimens in this fi of complex, largely articulated ltering limbs, we identify at least study recovered from petroleum exploration drillcores in south- four distinct types of mandible. Together, these fossils provide the west Saskatchewan and southeast Alberta. Unoxidized mudstones earliest evidence for crown-group branchiopods and total-group from Ceepee Riley Lake 3-4-39-13W3 and Ceepee Reward 4-28- copepods and ostracods, extending the respective ranges of these 38-24W3 (Middle/Late Cambrian, Saskatchewan) (16) and Rio clades back from the Devonian, Pennsylvanian, and Ordovician. De- Bravo Ronald 1-6-38-15W4 (Late Cambrian, Alberta) (15) were tailed similarities with living forms demonstrate the early origins gently dissolved in hydrofluoric acid and the isolated SCFs in- and subsequent conservation of various complex food-handling dividually collected from the rinsed residues (see Materials and adaptations, including a directional mandibular asymmetry that Methods and SI Text for details of sample distributions and age). has persisted through half a billion years of evolution. At the same Among the several thousand recovered specimens are significant time, the Deadwood fossils indicate profound secular changes in subpopulations of cuticle fragments that bear distinctively ar- crustacean ecology in terms of body size and environmental distri- thropodan spines and setae, including an exceptionally rich di- bution. The earliest radiation of crustaceans is largely cryptic in the versity of crustacean body parts. fossil record, but “small carbonaceous fossils” reveal organisms of surprisingly modern aspect operating in an unfamiliar biosphere. Fossil Description and Identification The Deadwood crustaceans are distinguished from other ar- arthropods | phylogeny | taphonomy | Paleozoic thropodan remains by diagnostic cuticular ornamentations. They come from nine samples representing three separate assemblages, rustaceans are the dominant arthropods in the modern marine one from each drillcore (Table S1). Mandibles are the most widely Crealm and are renowned for their diversity, disparity, com- distributed elements and fall into four distinct categories: bran- plexity, and ecologic range (1, 2). Their fossil record, however, is chiopod-type, copepod-type, ostracod-type, and an unidentified heavily skewed toward biomineralizing post-Cambrian forms (3), morphology. Other crustacean remains include comparatively obscuring the higher-level relationships of crustaceans and their delicate arrays of spines and setae, which are generally less terrestrial mandibulate relatives, the myriapods and hexapods (4). abundant and informative, although one sample horizon has EVOLUTION Nonmineralizing (pan)crustaceans have been documented in the yielded a rich assemblage of extensively articulated branchiopod- Cambrian fossil record but, until recently, have been represented type limbs. almost exclusively by “Orsten-type” taxa of minute body size (< 2 Branchiopod-Type Mandibles. The first of two types of mandible mm) and limited appendage differentiation (5, 6). In contrast, the from the Riley Lake assemblage is distinguished by an extensive, larger-bodied crustacean-like forms preserved in Burgess Shale- D-shaped grinding (molar) surface (n =17)(Fig.1A–H). The type and other macroscopic assemblages are either assignable to specimens fall into at least three distinct “morphotypes” that ap- much deeper phylogenetic positions (1, 6, 7), or have yet to reveal pear to be independent of both size and preservational orienta- key diagnostic characters among the inner leg branches and tion/resolution. In the first morphotype (n =6)(Fig.1A–D), scaly EARTH, ATMOSPHERIC, mouthparts (8, 9). Notably, the only macroscopic Cambrian fossil lineations extend across the width of the molar surface, forming AND PLANETARY SCIENCES to exhibit convincing mandibles (“jaws”) is a Late Cambrian deep ridges at the straight/concave margin and a protruding fringe euthycarcinoid, a probable stem-group mandibulate (10). (sometimes also strong teeth) along the opposite edge (Fig. 1B). Despite this limited record, the identification of disarticulated The second morphotype (n =2)(Fig.1E and F)isdistinguished but unambiguously crustacean body parts among small carbona- by its opposite polarity (which is evident once images have been ceous fossils (SCFs) (11) in the Early Cambrian Mount Cap For- corrected for the “way-up” of slide-mounted specimens) and mation of NW Canada (12, 13) points to a cryptic but significant by lineations that do not extend across the width of the molar diversity of Cambrian crustaceans. Here we describe extensive SCF assemblages of exceptionally preserved filtering appendages and Author contributions: T.H.P.H., M.I.V., and N.J.B. performed research; T.H.P.H. analyzed mouthparts (mandibles) from the Middle and Upper Cambrian data; and T.H.P.H. and N.J.B. wrote the paper. ∼ Deadwood Formation of western Canada ( 488 to 510 Ma; The authors declare no conflict of interest. — Cambrian Series 3 Furongian) (14). By bridging a major tapho- This article is a PNAS Direct Submission. nomic gap in body size and preservational resolution, the Dead- 1To whom correspondence should be addressed. E-mail: [email protected]. wood fossils provide crucial phylogenetic and ecologic datapoints This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. for charting a major Cambrian radiation of crustaceans. 1073/pnas.1115244109/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1115244109 PNAS | January 31, 2012 | vol. 109 | no. 5 | 1589–1594 Downloaded by guest on September 28, 2021 Fig. 1. Fossil crustacean mandibles from the Middle and Late Cambrian Deadwood Formation. (A–H) Branchiopod-type mandibles from the Riley Lake assemblage. Morphotypes one (A–D) and two (E and F) are interpreted as the right and left mandibles from a single taxon, and morphotype three (G and H) as a distinct form. See Fig. S1 for detailed images of A, E, and F.(I–O) Copepod-type mandibles from the Riley Lake assemblage; detail I′ shows the platform and dorsal seta. (P) An ostracod-type mandible from the Rio Bravo Ronald assemblage; detail P′ magnifies the gnathal edge. Images have been reversed from slide-orientation in C, E, F, and H to show true polarity, and in J, K, N, and O for purposes of comparison. Grains of diagenetic pyrite show as opaque objects. See Table S2 for specimen numbers. (Scale bar, 50 μmforA–P;30μmforI′ and P′.) surface, but become confluent with an unornamented region various extant anostracan branchiopods (Fig. 2 A and B), which bounded by marginal nodes (Fig. S1). The third molar morpho- suggests that they come from a single taxon displaying a complex type (n =3)(Fig.1G and H) features a region with disconnected, pattern of mandibular asymmetry adapted for enhanced food- poorly aligned scales and no discrete bounding margin. In all three grinding efficiency (18, 21, 25). A comparable pattern of continu- morphotypes the mandibular profile, as far as it is preserved, ous scale rows on the right molar vs. a smooth region adjacent to appears to be similar: one or more long setae and a single stout dorsal marginal nodes on the left is a recognized synapomorphy spine are inserted in line with the more acute end of the molar (see character 15 in ref. 24) of extant anostracans and Lepidocaris, surface, beyond which the mandibular margin curves away form- a stem-anostracan from the Devonian Rhynie Chert (24, 25). The ing a pronounced “shoulder” (Fig. 1 A, C–E, G,andH). third fossil morphotype is sufficiently distinct to represent a sepa- Mandibles with extensive, scaly molar surfaces are known from rate—although still branchiopodan—taxon (18). among hexapods and myriapods as well as branchiopods, mala- Overall, the Deadwood molars range up to at least 230 μmlong, costracans, and remipedes (17). However, in both overall shape predicting a maximum body length of at least 10–15 mm based on and detailed ornamentation the fossil molars are conspicuously scaling relationships in extant anostracans (see figure S3 in ref. 13). similar to those of branchiopod
Recommended publications
  • Phylogenetic Analysis of Anostracans (Branchiopoda: Anostraca) Inferred from Nuclear 18S Ribosomal DNA (18S Rdna) Sequences
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 25 (2002) 535–544 www.academicpress.com Phylogenetic analysis of anostracans (Branchiopoda: Anostraca) inferred from nuclear 18S ribosomal DNA (18S rDNA) sequences Peter H.H. Weekers,a,* Gopal Murugan,a,1 Jacques R. Vanfleteren,a Denton Belk,b and Henri J. Dumonta a Department of Biology, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium b Biology Department, Our Lady of the Lake University of San Antonio, San Antonio, TX 78207, USA Received 20 February 2001; received in revised form 18 June 2002 Abstract The nuclear small subunit ribosomal DNA (18S rDNA) of 27 anostracans (Branchiopoda: Anostraca) belonging to 14 genera and eight out of nine traditionally recognized families has been sequenced and used for phylogenetic analysis. The 18S rDNA phylogeny shows that the anostracans are monophyletic. The taxa under examination form two clades of subordinal level and eight clades of family level. Two families the Polyartemiidae and Linderiellidae are suppressed and merged with the Chirocephalidae, of which together they form a subfamily. In contrast, the Parartemiinae are removed from the Branchipodidae, raised to family level (Parartemiidae) and cluster as a sister group to the Artemiidae in a clade defined here as the Artemiina (new suborder). A number of morphological traits support this new suborder. The Branchipodidae are separated into two families, the Branchipodidae and Ta- nymastigidae (new family). The relationship between Dendrocephalus and Thamnocephalus requires further study and needs the addition of Branchinella sequences to decide whether the Thamnocephalidae are monophyletic. Surprisingly, Polyartemiella hazeni and Polyartemia forcipata (‘‘Family’’ Polyartemiidae), with 17 and 19 thoracic segments and pairs of trunk limb as opposed to all other anostracans with only 11 pairs, do not cluster but are separated by Linderiella santarosae (‘‘Family’’ Linderiellidae), which has 11 pairs of trunk limbs.
    [Show full text]
  • Anchialine Cave Biology in the Era of Speleogenomics Jorge L
    International Journal of Speleology 45 (2) 149-170 Tampa, FL (USA) May 2016 Available online at scholarcommons.usf.edu/ijs International Journal of Speleology Off icial Journal of Union Internationale de Spéléologie Life in the Underworld: Anchialine cave biology in the era of speleogenomics Jorge L. Pérez-Moreno1*, Thomas M. Iliffe2, and Heather D. Bracken-Grissom1 1Department of Biological Sciences, Florida International University, Biscayne Bay Campus, North Miami FL 33181, USA 2Department of Marine Biology, Texas A&M University at Galveston, Galveston, TX 77553, USA Abstract: Anchialine caves contain haline bodies of water with underground connections to the ocean and limited exposure to open air. Despite being found on islands and peninsular coastlines around the world, the isolation of anchialine systems has facilitated the evolution of high levels of endemism among their inhabitants. The unique characteristics of anchialine caves and of their predominantly crustacean biodiversity nominate them as particularly interesting study subjects for evolutionary biology. However, there is presently a distinct scarcity of modern molecular methods being employed in the study of anchialine cave ecosystems. The use of current and emerging molecular techniques, e.g., next-generation sequencing (NGS), bestows an exceptional opportunity to answer a variety of long-standing questions pertaining to the realms of speciation, biogeography, population genetics, and evolution, as well as the emergence of extraordinary morphological and physiological adaptations to these unique environments. The integration of NGS methodologies with traditional taxonomic and ecological methods will help elucidate the unique characteristics and evolutionary history of anchialine cave fauna, and thus the significance of their conservation in face of current and future anthropogenic threats.
    [Show full text]
  • Ostracoda an Introduction.Pdf
    The Ostracoda (from Wikipedia, 5/5/2009: http://en.wikipedia.org/wiki/Ostracod) Ostracoda is a class of the Crustacea, sometimes known as the seed shrimp because of their appearance. Ostracods are small crustaceans, typically around one mm in size, but varying between 0.2 to 30 mm, laterally compressed and protected by a bivalve-like, chitinous or calcareous valve or "shell". The hinge of the two valves is in the upper, dorsal region of the body. Some 65,000 species (13,000 of which are extant taxa) have been identified, grouped into several orders. This group may not be monophyletic. Ostracod taxa are grouped into a Class based on gross morphology. Ecologically, marine ostracods can be part of the zooplankton or (most commonly) they are part of the benthos, living on or inside the upper layer of the sea floor. Many ostracods, especially the Podocopida, are also found in fresh water and some are known from humid continental forest soils. The body consists of a cephalon (head), separated from the thorax by a slight constriction. The segmentation is unclear. The abdomen is regressed or absent whereas the adult gonads are relatively large. There are 5–8 pairs of appendages. The branchial plates are responsible for oxygenation. The epidermal cells may also secrete calcium carbonate after the chitinous layer is formed, resulting in a chalk layer enveloped by chitin. This calcification is not equally pronounced in all orders. During every instar transition, the old carapace (chitinous and calcified) is rejected and a new, larger is formed and calcified. The outer lamella calcifies completely, while the inner lamella calcifies partially, with the rest remaining chitinous.
    [Show full text]
  • 788 RR MAKAROV & AI DANILOV (Eds.)
    788 R. R. MAKAROV& A. I. DANILOV(eds.), Investigations of the Weddell Gyre. Oceanographic conditions and peculiarities of the development of plankton communities: 140-160 [in Rus- sian]. (VNIRO Publication, Moscow). MAKAROV,R. R. & L. L. MENSHENINA,1992. Larvae of euphausiids off Queen Maud Land. Polar Biology, 11: 515-523. MAKAROV,R. R., L. L. MENSHENINA& V. I. LATOGURSKY,1993. Fishery of Antarctic krill (Euphausia superba Dana) and problems of rational exploitation of its resources. Antarctica, 32: 111-124 [in Russian]. MAKAROV,R. R. & V. A. SPIRIDONOV,1993. Life cycle and distribution of Antarctic krill. Some results of studies and problems. In: N. M. VORONINA(ed.), Pelagic ecosystems of the Southern Ocean: 158-168 [in Russian]. (Nauka, Moscow). BATHMANN,U. V., R. R. MAKAROV,V. A. SPIRIDONOV& G. ROHARDT,1993. Winter distribution and overwintering strategies of the Antarctic copepod species Calanoides acutus, Rhincalanus gigas and Calanus propinquus (Crustacea, Calanoida) in the Weddell Sea. Polar Biology, 13: 333-346. APPLICATION OF ULTRASOUND TECHNOLOGY TO CRUSTACEAN PHYSIOLOGY; MONITORING CARDIAC AND SCAPHOGNATHITE RATES IN BRACHYURA BY PAUL A. HAEFNER, JR. Rochester Institute of Technology, Department of Biology, Rochester, New York 14623, U.S.A. Machines used in diagnostic radiology and cardiology have application to crus- tacean organ systems. Gribble & Reynolds (1993), and Gribble (1994) demon- strated the use of angiography to describe cardiovascular function in a crab. In January 1994, I made preliminary ultrasound scans of a live crayfish. Although sagittal and transverse series of images produced little resolution of internal or- gans, movements of the heart and scaphognathites were easily detected. This paper reveals the ability to monitor the activities of these organs in brachyuran crabs.
    [Show full text]
  • Stomatopod Interrelationships: Preliminary Results Based on Analysis of Three Molecular Loci
    Arthropod Systematics & Phylogeny 91 67 (1) 91 – 98 © Museum für Tierkunde Dresden, eISSN 1864-8312, 17.6.2009 Stomatopod Interrelationships: Preliminary Results Based on Analysis of three Molecular Loci SHANE T. AHYONG 1 & SIMON N. JARMAN 2 1 Marine Biodiversity and Biodescurity, National Institute of Water and Atmospheric Research, Private Bag 14901, Kilbirnie, Wellington, New Zealand [[email protected]] 2 Australian Antarctic Division, 203 Channel Highway, Kingston, Tasmania 7050, Australia [[email protected]] Received 16.iii.2009, accepted 15.iv.2009. Published online at www.arthropod-systematics.de on 17.vi.2009. > Abstract The mantis shrimps (Stomatopoda) are quintessential marine predators. The combination of powerful raptorial appendages and remarkably developed sensory systems place the stomatopods among the most effi cient invertebrate predators. High level phylogenetic analyses have been so far based on morphology. Crown-group Unipeltata appear to have diverged in two broad directions from the outset – one towards highly effi cient ‘spearing’ with multispinous dactyli on the raptorial claws (dominated by Lysiosquilloidea and Squilloidea), and the other towards ‘smashing’ (Gonodactyloidea). In a preliminary molecular study of stomatopod interrelationships, we assemble molecular data for mitochondrial 12S and 16S regions, combined with new sequences from the 16S and two regions of the nuclear 28S rDNA to compare with morphological hypotheses. Nineteen species representing 9 of 17 extant families and 3 of 7 superfamilies were analysed. The molecular data refl ect the overall patterns derived from morphology, especially in a monophyletic Squilloidea, a monophyletic Lysiosquilloidea and a monophyletic clade of gonodactyloid smashers. Molecular analyses, however, suggest the novel possibility that Hemisquillidae and possibly Pseudosquillidae, rather than being basal or near basal in Gonodactyloidea, may be basal overall to the extant stomatopods.
    [Show full text]
  • Sub-Regional Report On
    EP United Nations Environment UNEP(DEPI)/MED WG 359/Inf.10 Programme October 2010 ENGLISH ORIGINAL: ENGLISH MEDITERRANEAN ACTION PLAN Tenth Meeting of Focal Points for SPAs Marseille, France 17-20 May 2011 Sub-regional report on the “Identification of important ecosystem properties and assessment of ecological status and pressures to the Mediterranean marine and coastal biodiversity in the Adriatic Sea” PNUE CAR/ASP - Tunis, 2011 Note : The designations employed and the presentation of the material in this document do not imply the expression of any opinion whatsoever on the part of UNEP concerning the legal status of any State, Territory, city or area, or of its authorities, or concerning the delimitation of their frontiers or boundaries. © 2011 United Nations Environment Programme 2011 Mediterranean Action Plan Regional Activity Centre for Specially Protected Areas (RAC/SPA) Boulevard du leader Yasser Arafat B.P.337 – 1080 Tunis Cedex E-mail : [email protected] The original version (English) of this document has been prepared for the Regional Activity Centre for Specially Protected Areas by: Bayram ÖZTÜRK , RAC/SPA International consultant With the participation of: Daniel Cebrian. SAP BIO Programme officer (overall co-ordination and review) Atef Limam. RAC/SPA International consultant (overall co-ordination and review) Zamir Dedej, Pellumb Abeshi, Nehat Dragoti (Albania) Branko Vujicak, Tarik Kuposovic (Bosnia ad Herzegovina) Jasminka Radovic, Ivna Vuksic (Croatia) Lovrenc Lipej, Borut Mavric, Robert Turk (Slovenia) CONTENTS INTRODUCTORY NOTE ............................................................................................ 1 METHODOLOGY ....................................................................................................... 2 1. CONTEXT ..................................................... ERREUR ! SIGNET NON DÉFINI.4 2. SCIENTIFIC KNOWLEDGE AND AVAILABLE INFORMATION........................ 6 2.1. REFERENCE DOCUMENTS AND AVAILABLE INFORMATION ...................................... 6 2.2.
    [Show full text]
  • Vertical Distribution and Population Structure of the Three Dominant Planktonic Ostracods (Discoconchoecia Pseudodiscophora
    Plankton Biol. Ecol. 49 (2): 66-74, 2002 plankton biology & ecology K> The Plankton Society of Japan 2002 Vertical distribution and population structure of the three dominant planktonic ostracods (Discoconchoecia pseudodiscophora, Orthoconchoecia haddoni and Metaconchoecia skogsbergi) in the Oyashio region, western North Pacific Hideki Kaeriyama & Tsutomu Ikeda Marine Biodiversity Laboratory, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido 041-0821, Japan Received 19 November 2001; accepted 4 April 2002 Abstract: Diel and seasonal vertical distribution and population structure of Discoconchoecia pseu- dodiscophora (Rudjakov), Orthoconchoecia haddoni (Brady & Norman) and Metaconchoecia skogs bergi (lies) were investigated in the Oyashio region during September 1996 through October 1997. Monthly samples were collected with 0.1 mm mesh closing nets hauled vertically through five con tiguous discrete depths between the surface and ~2000 m. D. pseudodiscophora occurred predomi nantly from the base of the thermocline to a depth of 500 m. O. haddoni and M. skogsbergi occurred somewhat deeper at depths of 250 to 1000 m, but were also moderately abundant below 1000 m. Sampling was undertaken both by day and by night during December 1996, April and October 1997 to assess diel vertical migration activity, but revealed no appreciable day/night differences in the ver tical distributions of the ostracods. All the instars sampled [instars II through VIII (adults) of D. pseu dodiscophora and O. haddoni, and instars III through VIII (adults) of M. skogsbergi] were collected throughout the entire period of the study. All three species showed evidence of ontogenetic vertical migration—the ranges of these migrations being from 300-1000 m in D.
    [Show full text]
  • Fatty Acid and Alcohol Composition of the Small Polar Copepods, Oithona and Oncaea : Indication on Feeding Modes
    Polar Biol (2003) 26: 666–671 DOI 10.1007/s00300-003-0540-x ORIGINAL PAPER G. Kattner Æ C. Albers Æ M. Graeve S. B. Schnack-Schiel Fatty acid and alcohol composition of the small polar copepods, Oithona and Oncaea : indication on feeding modes Received: 2 April 2003 / Accepted: 28 July 2003 / Published online: 27 August 2003 Ó Springer-Verlag 2003 Abstract The fatty acid and alcohol compositions of the (Paffenho¨ fer 1993). They occur from the polar seas to Antarctic copepods Oithona similis, Oncaea curvata, tropical regions at both hemispheres. Species of both Oncaea antarctica and the Arctic Oncaea borealis were genera can reach high concentrations, exceeding 5,000 determined to provide the first data on their lipid bio- individuals m)3 (Dagg et al. 1980; Koga 1986; chemistry and to expand the present knowledge on their Paffenho¨ fer 1993; Metz 1996). The high abundance of feeding modes and life-cycle strategies. All these tiny these tiny species compensates for the low biomass and, species contained high amounts of wax esters (on average thus, the populations can reach biomass levels of the 51.4–86.3% of total lipid), except females of Oithona same order as dominant calanoid species (Metz 1996). In similis (15.2%). The fatty-acid composition was clearly the Southern Ocean, Oithonidae and Oncaeidae can dominated by 18:1(n-9), especially in the wax-ester-rich account for between 20 and 24% of the total copepod Oncaea curvata (79.7% of total fatty acids). In all species, biomass (Schnack-Schiel et al. 1998). 16:0 and the polyunsaturated fatty acids 20:5(n-3) and The epipelagic species, Oithona similis, has been de- 22:6(n-3), which are structural components of all mem- scribed as the most numerous and widely distributed branes, occurred in significant proportions.
    [Show full text]
  • Taxonomy of Quaternary Deep-Sea Ostracods from the Western North Atlantic Ocean
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USGS Staff -- Published Research US Geological Survey 2009 Taxonomy Of Quaternary Deep-Sea Ostracods From The Western North Atlantic Ocean Moriaki Yasuhara National Museum of Natural History, Smithsonian Institution, [email protected] Hisayo Okahashi National Museum of Natural History, Smithsonian Institution, [email protected] Thomas M. Cronin U.S. Geological Survey, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/usgsstaffpub Part of the Earth Sciences Commons Yasuhara, Moriaki; Okahashi, Hisayo; and Cronin, Thomas M., "Taxonomy Of Quaternary Deep-Sea Ostracods From The Western North Atlantic Ocean" (2009). USGS Staff -- Published Research. 242. https://digitalcommons.unl.edu/usgsstaffpub/242 This Article is brought to you for free and open access by the US Geological Survey at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USGS Staff -- Published Research by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. [Palaeontology, Vol. 52, Part 4, 2009, pp. 879–931] TAXONOMY OF QUATERNARY DEEP-SEA OSTRACODS FROM THE WESTERN NORTH ATLANTIC OCEAN by MORIAKI YASUHARA*, HISAYO OKAHASHI* and THOMAS M. CRONIN *Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, PO Box 37012, Washington, DC 20013-7012, USA; e-mails: [email protected] or [email protected] (M.Y.), [email protected] (H.O.) U.S. Geological Survey,
    [Show full text]
  • On the Origin of Misophrioid Copepods from Anchialine
    JanH. Stock Memorial Issue ONTHEORIGIN OF MISOPHRIOID COPEPODS FROM ANCHIALINE CAVES BY GEOFF A.BOXSHALL 1) and DAMIAÁ JAUME2 ) 1)TheNatural History Museum, Cromwell Road, London SW7 5BD,U.K. 2 )InstitutoMediterr aneo de Estudios A vanzados(CSIC-UIB), Ctra. V alldemossa,km 7 0 5, E-07071Palma de Mallorca, Spain ABSTRACT Phylogeneticrelationships between the known genera of the order Misophrioida permit the identi®cation of two lineages: one consisting of the family Misophriidae Brady, 1878 which comprisesseven genera, and a new,monotypicfamily, the Palpophriidae Boxshall & Jaume,1999; theother consisting of anothernew family, the Speleophriidae Boxshall & Jaume,1999, comprising eightgenera. Habitat exploitation by these families is discussed: members of the Misophriidae are primarilyhyperbenthic, those of thePalpophriidae and Speleophriidae are primarily cavernicolous inanchialinehabitats. The occurrence of misophriids in littoraland submarine caves is interpreted asevidence of a relativelyrecent landward extension of the habitat range in this family, from ashallow-waterhyperbenthic ancestor. The distribution of speleophriids in anchialine caves is interpretedas resulting from a colonizationepisode prior to the closure of the Tethys Sea. The analysisalso indicates that deep-water forms may represent a secondarycolonization rather than anindication of deep-water ancestry for the entire order. RESUMEN El estudiode las relaciones ® logeneticas entre los distintos g eneros pertenecientes al orden Misophrioidaha permitido la identi®caci on dedos linajes principales: uno compuesto por la familia MisophriidaeBrady, 1878, integrada por siete g eneros, y unafamilia nueva, Palpophriidae Boxshall &Jaume,1999; el otro, integrado por otra nueva familia, Speleophriidae Boxshall & Jaume,1999, compuestapor ocho g eneros. Se discutela explotaci on que del habitat hacen estas familias: los Misophriidaeson primariamente hiperb enticos, mientras que Palpophriidae y Speleophriidaeson cavernõÂcolasen medio anquialino.
    [Show full text]
  • A Subjective Checklist of the Recent, Free-Living, Non-Marine Ostracoda (Crustacea)
    Zootaxa 2855: 1–79 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) ZOOTAXA 2855 A subjective checklist of the Recent, free-living, non-marine Ostracoda (Crustacea) KOEN MARTENS1 & SUKONTHIP SAVATENALINTON2 Royal Belgian Institute of Natural Sciences, Freshwater Biology, Vautierstraat 29, Brussels 1000, Belgium and University of Ghent, Department of Biology, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium Department of Biology, Faculty of Science, Mahasarakham University, Mahasarakham 44150, Thailand. E-mail: [email protected] (corresponding author) Magnolia Press Auckland, New Zealand Accepted by R. Matzke-Karasz: 21 Feb. 2011; published: 29 Apr. 2011 KOEN MARTENS & SUKONTHIP SAVATENALINTON A subjective checklist of the Recent, free-living, non-marine Ostracoda (Crustacea) (Zootaxa 2855) 79 pp.; 30 cm. 29 Apr. 2011 ISBN 978-1-86977-671-8 (paperback) ISBN 978-1-86977-672-5 (Online edition) FIRST PUBLISHED IN 2011 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2011 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 2855 © 2011 Magnolia Press MARTENS & SAVATENALINTON Table of contents Abstract .
    [Show full text]
  • Zooplankton Community Dynamics in Temporary Mediterranean Wetlands: Which Drivers Are Controlling the Seasonal Species Replacement?
    water Article Zooplankton Community Dynamics in Temporary Mediterranean Wetlands: Which Drivers Are Controlling the Seasonal Species Replacement? Juan Diego Gilbert 1, Inmaculada de Vicente 2, Fernando Ortega 1 and Francisco Guerrero 1,3,* 1 Departamento de Biología Animal, Biología Vegetal y Ecología, Campus de Las Lagunillas s/n., 23071 Jaén, Spain; [email protected] (J.D.G.); [email protected] (F.O.) 2 Departamento de Ecología, Campus de Fuentenueva s/n., 18071 Granada, Spain; [email protected] 3 Centro de Estudios Avanzados en Ciencias de la Tierra, Energía y Medio Ambiente, Campus de las Lagunillas s/n., 23071 Jaén, Spain * Correspondence: [email protected] Abstract: Temporary Mediterranean wetlands are characterized by both intra and interannual varia- tions in their environmental conditions. These inherent fluctuations in limnological features affect the seasonal variation in the structure and dynamics of the aquatic communities. In this study, we hypothesized that zooplankton community is coupled to seasonal changes of the environmental variables along the hydroperiod. To get this purpose, the study was focused in monitoring, by collecting monthly samples during an annual period, seven temporary Mediterranean ponds lo- cated in the south-eastern region of the Iberian Peninsula (Alto Guadalquivir region, Andalusia). The relationships between zooplankton community and the different limnological variables were analyzed based on two approaches: a Spearman correlation analysis and a correspondence canonical Citation: Gilbert, J.D.; de Vicente, I.; analysis (CCA). The results have shown that chlorophyll-a concentration, Secchi depth, total nitrogen Ortega, F.; Guerrero, F. Zooplankton concentration, wetland area and depth were the variables with a greater influence on the zooplankton Community Dynamics in Temporary community, explaining the zooplankton species replacement.
    [Show full text]