A Close Encounter of the Massive Kind?

Total Page:16

File Type:pdf, Size:1020Kb

A Close Encounter of the Massive Kind? MNRAS 000,1{8 (2016) Preprint 10 September 2021 Compiled using MNRAS LATEX style file v3.0 A close encounter of the massive kind? J. Ma´ız Apell´aniz,1y H. Sana,2 R. H. Barb´a,3 J.-B. Le Bouquin,4 and R. C. Gamen5 1Centro de Astrobiolog´ıa. CSIC-INTA. Campus ESAC. Camino bajo del castillo s/n. E-28 692 Villanueva de la Ca~nada. Madrid. Spain. 2Institute of Astronomy. KU Leuven. Celestijnenlaan 200 D. B-3001 Leuven. Belgium. 3Departamento de F´ısica y Astronom´ıa.Universidad de La Serena. Av. Cisternas 1200 Norte. La Serena. Chile. 4Institut de Plan´etologie et d'Astrophysique de Grenoble (IPAG) UMR 5274. F-38 041. Grenoble. France. 5Instituto de Astrof´ısica de La Plata (CONICET, UNLP). Paseo del Bosque s/n. 1900 La Plata. Argentina. Accepted 2016 October 7. Received 2016 September 7; in original form 2016 August 16 ABSTRACT We have used (a) HST ACS imaging and STIS spectroscopy, (b) ground-based PIO- NIER/VLT long-baseline interferometry, and (c) ground-based spectroscopy from dif- ferent instruments to study the orbit of the extreme multiple system HD 93 129 Aa,Ab, which is composed of (at least) two very massive stars in a long-period orbit with e > 0:92 that will pass through periastron in 2017/2018. In several ways, the system is an η Car precursor. Around the time of periastron passage the two very strong winds will collide and generate an outburst of non-thermal hard X-ray emission with- out precedent in an O+O binary since astronomers have been able to observe above Earth's atmosphere. A coordinated multiwavelength monitoring in the next two years will enable a breakthrough understanding of the wind interactions in such extreme close encounters. Furthermore, we have found evidence that HD 93 129 Aa may be a binary system itself. In that case, we could witness a three-body interaction that may yield a runaway star or a stellar collision close to or shortly after the periastron passage. Either of those outcomes would be unprecedented, as they are predicted to be low-frequency events in the Milky Way. Key words: ephemerides { binaries: visual { stars: individual: HD 93 129 Aa,Ab { stars: kinematics and dynamics { stars: winds, outflows { X-rays: stars 1 INTRODUCTION sive young cluster Trumpler 14 in the Carina Nebula, has long been recognized as one of the hottest and most mas- Massive stars love company, with the vast majority of sive stellar systems in the Galaxy (Walborn 1971). It is the them (if not all) being born in multiple systems of two or prototype of the earliest O spectral subtype of supergiants more stars (Mason et al. 1998; Sana et al. 2012; Sota et al. (O2 If*) and its only example known in the Galaxy (Walborn 2014; Sana et al. 2014). Many of those systems are in low- et al. 2002; Sota et al. 2014). Nelan et al.(2004) resolved it eccentricity, short-period (1 day to a few months) orbits with the Fine Guidance Sensor (FGS) on board the Hub- that lead to slow, prolonged interactions that play an impor- ble Space Telescope (HST) as an astrometric binary (Aa,Ab tant role in their evolution (Pols 1994). Recent studies have components). Ma´ız Apell´aniz et al.(2008) detected a relative discovered a population of eccentric systems with periods astrometric motion between the two components, with the arXiv:1609.08521v2 [astro-ph.SR] 7 Oct 2016 around 1 year (Sim´on-D´ıaz et al. 2015; Ma´ız Apell´aniz et al. separation in the plane of the sky between them decreasing 2015), of which the most extraordinary case is η Car, a high- in a nearly inward direction, and suggested that the system eccentricity (e = 0:9) binary in a 5.54-year orbit (Damineli followed a highly eccentric and/or inclined orbit. The speed 1996; Damineli et al. 2000) where the periastron passages of the inward motion increased in subsequent years, lending have led to violent events that have changed the fate of the credence to the high eccentricity option (Sana et al. 2014; system in short time scales (Smith 2011). Benagl´ıa et al. 2015). The previously published data show a HD 93 129 A, the central system of the compact mas- decrease from a distance of 66 milliarcseconds (mas) in 1996 to 28 mas in 2012 (2.4 mas/a on average). ? Based on observations obtained with the Hubble Space Tele- scope under GO programs 10 205, 10 602, and 10 898 and at the European Southern Observatory under programs 094.C-0397, 506.D-0495, and 297.D-5038. y E-mail: [email protected] c 2016 The Authors 2 J. Ma´ızApell´anizet al. 2 METHODS telescope (La Silla Observatory, Chile) and the Echelle´ spectrograph attached to the du Pont 2.5 m (Las Campanas 2.1 Astrometric data Observatory, Chile). The data were obtained within the We measured the relative astrometric orbit of framework of the OWN Survey (Barb´aet al. 2010). The slit 00 00 HD 93 129 Aa,Ab using positions from: widths used in those observations (2 in FEROS, and 1 in Echelle)´ do not allow us to spatially resolve the Aa and • One previously published epoch from FGS/HST Ab components. They provide nominal resolving powers of (Ma´ızApell´aniz et al. 2008; Benagl´ıa et al. 2015). 48 000 and 45 000, respectively. The data were processed • Two epochs from the High Resolution Camera (HRC) using the FEROS Data Reduction System implemented of the Advanced Camera for Surveys (ACS) onboard HST within ESO-MIDAS software, and the ´echelle package (Ma´ızApell´aniz et al. 2008). in IRAF. Additional processing such as rectification and • Five epochs from the PIONIER four-beam combiner at telluric corrections were performed using IRAF. The final the Very Large Telescope and Interferometer (VLTI) at the signal-to-noise ratio of the one-dimensional extracted European Southern Observatory (ESO) (Le Bouquin et al. spectra depends on the wavelength and the observing night, 2011; Sana et al. 2014). Of those, only the first one had been varying between 100 and 400. We have measured the radial published before. velocity, equivalent width, and full width at half maximum for a number of absorption and emission lines in the spectra The measured values are listed in Table1. in order to determine the behavior of those parameters with The HRC data (from HST GO programs 10 205, 10 602, time. and 10 898) were processed using a crowded-field photome- UVES/VLT observations were obtained on the night of try package created by the lead author that works on the June 27, 2016 with the DIC2 436+760 and 346 + 820 setups, geometrically distorted (not on the drizzled) exposures (An- yielding a continuous wavelength coverage from 305 nm to derson & King 2004). Three different HRC filters (F330W, 498 nm and from 570 nm to 945 nm. Two back-to-back ex- F435W, and F850LP) were used. The excellent quality of the posures of 150 s were obtained in each setup. An entrance double PSF fit can be appreciated in Fig.1. The existence slit of 000: 6 was used for both arms, yielding a nominal spec- of seven unsaturated bright stars belonging to Trumpler 14 tral resolving power of 60 000. The data were processed in in the HRC field allowed us to measure not only relative the standard way using the ESO CPL pipeline v5.7.0 un- motions (in the plane of the sky) but also absolute motions der the REFLEX environment and calibration frames ob- by assuming that the rest of the stars remained station- tained within 12 h of the scientific observations. The ex- ary during the two-year span between the two HRC epochs tracted 1-dimensional spectra were rectified by fitting a low (2004.589 and 2006.586). The F435W and F850LP filters order polymial through the continuum and show a signal- were used for the absolute proper motion measurement. to-noise ratio per resolution element of about 400. To com- The new VLTI/PIONIER observations were obtained plement our time series, archival UVES observations of with the auxiliary telescopes in configuration A0-G1-J2-J3, HD 93 129 Aa,Ab from April 2013 and April 2015 were fur- which provides a maximum baseline of 132 m, correspond- ther retrieved from the ESO archive data base and processed ing to a spatial resolution element in the H-band of 2.5 mas. in a similar way. The observations were processed following the procedure de- scribed in Sana et al.(2014) and references therein. The HD 93 129 Aa,Ab binary was clearly resolved at each epoch. A binary model with three parameters (separation, position 3 RESULTS angle and brightness ratio) was fitted to the visibilities and 3.1 Relative astrometric orbit closure phases in order to obtain sub-milliarcsec precision relative astrometry of the two components of the system. Since only a fraction of the relative astrometric orbit is available and only seven epochs have been obtained so far (Table1), it was not possible to derive precise values for all 2.2 Spectroscopic data seven independent parameters that need to be determined, which we chose to be (among the different possible combi- We observed HD 93 129 Aa,Ab with the Space Tele- nations): [1] orbital period P , [2] periastron epoch T0, [3] scope Imaging Spectrograph (STIS) onboard HST using the eccentricity e, [4] periastron distance d, [5] inclination i, [6] G430M and G750M gratings in 2010.264 aligning the slit ascending node longitude Ω, and [7] the difference between with the position angle of the system at that time, when the the periastron argument and the ascending node longitude pair was separated by 36 mas, to obtain individually resolved ! − Ω.
Recommended publications
  • XMM-Newton X-Ray Study of Early Type Stars in the Carina OB1 Association,
    A&A 477, 593–609 (2008) Astronomy DOI: 10.1051/0004-6361:20065711 & c ESO 2007 Astrophysics XMM-Newton X-ray study of early type stars in the Carina OB1 association, I. I. Antokhin1,2,3,G.Rauw2,,J.-M.Vreux2, K. A. van der Hucht4,5, and J. C. Brown3 1 Sternberg Astronomical Institute, Moscow University, Universitetskij Prospect 13, Moscow 119992, Russia e-mail: [email protected] 2 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 août, 17 Bât. B5c, 4000 Liège, Belgium 3 Department of Physics and Astronomy, University of Glasgow, Kelvin Building, Glasgow G12 8QQ, Scotland, UK 4 SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands 5 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands Received 29 May 2006 / Accepted 10 October 2007 ABSTRACT Aims. X-ray properties of the stellar population in the Carina OB1 association are examined with special emphasis on early-type stars. Their spectral characteristics provide some clues to understanding the nature of X-ray formation mechanisms in the winds of single and binary early-type stars. Methods. A timing and spectral analysis of five observations with XMM-Newton is performed using various statistical tests and thermal spectral models. Results. 235 point sources have been detected within the field of view. Several of these sources are probably pre-main sequence stars with characteristic short-term variability. Seven sources are possible background AGNs. Spectral analysis of twenty four sources of type OB and WR 25 was performed. We derived spectral parameters of the sources and their fluxes in three energy bands.
    [Show full text]
  • Introduction to ASTR 565 Stellar Structure and Evolution
    Introduction to ASTR 565 Stellar Structure and Evolution Jason Jackiewicz Department of Astronomy New Mexico State University August 22, 2019 Main goal Structure of stars Evolution of stars Applications to observations Overview of course Outline 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Order in the H-R Diagram!! Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Motivation: Understanding the H-R Diagram Introduction to ASTR 565 Jason Jackiewicz HRD (2) HRD (3) Main goal Structure of stars Evolution of stars Applications to observations Overview of course 1 Main goal 2 Structure of stars 3 Evolution of stars 4 Applications to observations 5 Overview of course Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Basic structure - highly non-linear solution Introduction to ASTR 565 Jason Jackiewicz Main goal Structure of stars Evolution of stars Applications to observations Overview of course Massive-star nuclear burning Introduction
    [Show full text]
  • International Astronomical Union Commission G1 BIBLIOGRAPHY of CLOSE BINARIES No
    International Astronomical Union Commission G1 BIBLIOGRAPHY OF CLOSE BINARIES No. 104 Editor-in-Chief: W. Van Hamme Editors: R.H. Barb´a D.R. Faulkner P.G. Niarchos D. Nogami R.G. Samec C.D. Scarfe C.A. Tout M. Wolf M. Zejda Material published by March 15, 2017 BCB issues are available at the following URLs: http://ad.usno.navy.mil/wds/bsl/G1_bcb_page.html, http://faculty.fiu.edu/~vanhamme/IAU-BCB/. The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j. Mass loss and mass exchange k. Rotational velocities 6. Catalogues, discoveries, charts a. Catalogues b. Discoveries of new binaries and novae c.
    [Show full text]
  • International Astronomical Union Commission 42 BIBLIOGRAPHY
    International Astronomical Union Commission 42 BIBLIOGRAPHY OF CLOSE BINARIES No. 82 Editor-in-Chief: C.D. Scarfe Editors: H. Drechsel D.R. Faulkner L.V. Glazunova E. Lapasset C. Maceroni Y. Nakamura P.G. Niarchos R.G. Samec W. Van Hamme M. Wolf Material published by March 15, 2006 BCB issues are available via URL: http://www.konkoly.hu/IAUC42/bcb.html, http://www.sternwarte.uni-erlangen.de/ftp/bcb or http://orca.phys.uvic.ca/climenhaga/robb/bcb/comm42bcb.html or via anonymous ftp from: ftp://www.sternwarte.uni-erlangen.de/pub/bcb The bibliographical entries for Individual Stars and Collections of Data, as well as a few General entries, are categorized according to the following coding scheme. Data from archives or databases, or previously published, are identified with an asterisk. The observation codes in the first four groups may be followed by one of the following wavelength codes. g. γ-ray. i. infrared. m. microwave. o. optical r. radio u. ultraviolet x. x-ray 1. Photometric data a. CCD b. Photoelectric c. Photographic d. Visual 2. Spectroscopic data a. Radial velocities b. Spectral classification c. Line identification d. Spectrophotometry 3. Polarimetry a. Broad-band b. Spectropolarimetry 4. Astrometry a. Positions and proper motions b. Relative positions only c. Interferometry 5. Derived results a. Times of minima b. New or improved ephemeris, period variations c. Parameters derivable from light curves d. Elements derivable from velocity curves e. Absolute dimensions, masses f. Apsidal motion and structure constants g. Physical properties of stellar atmospheres h. Chemical abundances i. Accretion disks and accretion phenomena j.
    [Show full text]
  • The Electric Sun Hypothesis
    Basics of astrophysics revisited. II. Mass- luminosity- rotation relation for F, A, B, O and WR class stars Edgars Alksnis [email protected] Small volume statistics show, that luminosity of bright stars is proportional to their angular momentums of rotation when certain relation between stellar mass and stellar rotation speed is reached. Cause should be outside of standard stellar model. Concept allows strengthen hypotheses of 1) fast rotation of Wolf-Rayet stars and 2) low mass central black hole of the Milky Way. Keywords: mass-luminosity relation, stellar rotation, Wolf-Rayet stars, stellar angular momentum, Sagittarius A* mass, Sagittarius A* luminosity. In previous work (Alksnis, 2017) we have shown, that in slow rotating stars stellar luminosity is proportional to spin angular momentum of the star. This allows us to see, that there in fact are no stars outside of “main sequence” within stellar classes G, K and M. METHOD We have analyzed possible connection between stellar luminosity and stellar angular momentum in samples of most known F, A, B, O and WR class stars (tables 1-5). Stellar equatorial rotation speed (vsini) was used as main parameter of stellar rotation when possible. Several diverse data for one star were averaged. Zero stellar rotation speed was considered as an error and corresponding star has been not included in sample. RESULTS 2 F class star Relative Relative Luminosity, Relative M*R *eq mass, M radius, L rotation, L R eq HATP-6 1.29 1.46 3.55 2.950 2.28 α UMi B 1.39 1.38 3.90 38.573 26.18 Alpha Fornacis 1.33
    [Show full text]
  • Publications of the Astronomical Society of the Pacific 105: 588-594, 1993 June
    Publications of the Astronomical Society of the Pacific 105: 588-594, 1993 June The Frequency of Binary Stars in the Young Cluster Trumpler 14 Laura R. Penny, Douglas R. Gies,1 William I. Hartkopf,1 Brian D. Mason, and Nils H. Turner1 Department of Physics and Astronomy, Center for High Angular Resolution Astronomy, Georgia State University, Atlanta, Georgia 30303-3083 Electronic mail: [email protected], [email protected], [email protected], [email protected], nils @ chara.gsu.edu Received 1992 December 1; accepted 1993 March 8 ABSTRACT. We present radial-velocity data for the six brightest members of the open cluster Trumpler 14 based on high-dispersion spectra obtained over a five-night interval. None of these O-type stars appear to be spectroscopic binaries with periods of the order of a week or less, and none are speckle binaries. This binary fraction is low for O-type stars, and we suggest that the lack of primordial hard binaries and their dynamical interactions may explain how the cluster has maintained a high spatial density even after several cluster crossing times. 1. INTRODUCTION and Johnson 1993). In this paper we report on a radial- velocity study of the brighter members of the cluster de- Massive O- and B-type stars are often bom in compact, signed to find the binary content and to determine whether dense clusters (for example, R 136: Elson et al. 1992, Wal- or not conditions favor dynamical ejection. At the outset of bom et al. 1992, Campbell et al. 1992; NGC 3603: Moffat the project, only the brightest star in the cluster, HD 93129 1983, Baier et al.
    [Show full text]
  • Eta Carinae's Dusty Homunculus Nebula from Near-Infrared To
    The Astrophysical Journal, 842:79 (26pp), 2017 June 20 https://doi.org/10.3847/1538-4357/aa71b3 © 2017. The American Astronomical Society. All rights reserved. η Carinaeʼs Dusty Homunculus Nebula from Near-infrared to Submillimeter Wavelengths: Mass, Composition, and Evidence for Fading Opacity Patrick W. Morris1, Theodore R. Gull2, D. John Hillier3, M. J. Barlow4, Pierre Royer5, Krister Nielsen6, John Black7, and Bruce Swinyard8,9 1 California Institute of Technology, IPAC, M/C 100−22, Pasadena, CA 91125, USA; [email protected] 2 NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771, USA 3 Department of Physics & Astronomy, University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260, USA 4 Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK 5 Katholieke Universiteit Leuven, Institute of Astronomy, Celestijnenlaan 200 D, B-3001 Leuven, Belgium 6 Department of Physics, IACS, Catholic University of America, Washington, DC 20064, USA 7 Department of Earth & Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala, Sweden 8 Space Science & Technology Department, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, UK Received 2017 March 28; revised 2017 May 3; accepted 2017 May 4; published 2017 June 15 Abstract Infrared observations of the dusty, massive Homunculus Nebula around the luminous blue variable η Carinae are crucial to characterize the mass-loss history and help constrain the mechanisms leading to the great eruption. We present the 2.4–670 μm spectral energy distribution, constructed from legacy Infrared Space Observatory observations and new spectroscopy obtained with the Herschel Space Observatory. Using radiative transfer modeling, we find that the two best-fit dust models yield compositions that are consistent with CNO-processed material, with iron, pyroxene and other metal-rich silicates, corundum, and magnesium-iron sulfide in common.
    [Show full text]
  • Annual Report Rapport Annuel Jahresbericht 1997
    Annual Report Rapport annuel Jahresbericht 1997 E U R O P E A N S O U T H E R N O B S E R V A T O R Y COVER COUVERTURE UMSCHLAG In December 1997, the first VLT 8.2-m mir- En décembre 1997, le premier miroir de Im Dezember 1997 erreichte der erste 8,2- ror arrived at the port of Antofagasta. The 8.20 m du VLT arriva au port d’Antofagasta. m-Spiegel für das VLT den Hafen von An- photograph shows the transport box with La photo montre la caisse de transport avec tofagasta. Diese Aufnahme zeigt, wie die the M1 mirror being unloaded from the ship le miroir en train d’être débarqué du bateau Transportkiste mit dem Spiegel vom Schiff M/S Tarpon Santiago. M/S Tarpon Santiago. M/S Tarpon Santiago entladen wird. Annual Report / Rapport annuel / Jahresbericht 1997 presented to the Council by the Director General présenté au Conseil par le Directeur général dem Rat vorgelegt vom Generaldirektor Prof. Dr. R. Giacconi E U R O P E A N S O U T H E R N O B S E R V A T O R Y Organisation Européenne pour des Recherches Astronomiques dans l’Hémisphère Austral Europäische Organisation für astronomische Forschung in der südlichen Hemisphäre Table Table Inhalts- of Contents des matières verzeichnis FOREWORD ................................. 5 PRÉFACE ...................................... 5 VORWORT ................................... 5 INTRODUCTION ......................... 7 INTRODUCTION ......................... 7 EINLEITUNG ............................... 7 RESEARCH HIGHLIGHTS ......... 9 POINTS CULMINANTS HÖHEPUNKTE Symposia and Workshops .............. 22 DE RECHERCHE ..................... 9 DER FORSCHUNG .................. 9 Conférences et colloques ..............
    [Show full text]
  • December 2018 BRAS Newsletter
    Monthly Meeting & Christmas Potluck Monday, December 10th at 7PM at HRPO (Monthly meetings are on 2nd Mondays, Highland Road Park Observatory). Nominations and Election of Officers for 2019 – CAST YOUR VOTE!! What's In This Issue? President’s Message Secretary's Summary Outreach Report Astrophotography Group Comet and Asteroid News PILOT (by Steven Tilley) Light Pollution Committee Report “Free The Milky Way” Campaign Recent BRAS Forum Entries Messages from the HRPO Science Academy Friday Night Lecture Series Globe at Night Adult Astronomy Courses Observing Notes – Carina – The Keel & Mythology Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Newsletter of the Baton Rouge Astronomical Society December 2018 © 2018 President’s Message The LIGO picnic was great! Chris Desselles did a fantastic job of cooking the jambalaya. Although the weather was partly cloudy-to-cloudy, it was not too hot, and we got to see a sun dog or two. We should keep this in mind when we are planning next year's LIGO picnic. HIGHLIGHTS OF 2018: Our Astrophotography Group (BRAG) got off the ground. Starting such a group had been talked about for a few years but didn’t kick off until Scott Louque took the lead, holding the first meeting at his house and sharing his knowledge. Interest has grown ever since. Our first Asteroid Day was held. I believe we should hold Asteroid Day in Baton Rouge in 2019. Our Light Pollution Committee has acquired a UDC approved Light Meter, and made inroads into learning the codes that govern light pollution in EBRP.
    [Show full text]
  • The Spatial Evolution of Young Massive Clusters I
    A&A 622, A184 (2019) Astronomy https://doi.org/10.1051/0004-6361/201832936 & c ESO 2019 Astrophysics The spatial evolution of young massive clusters I. A new tool to quantitatively trace stellar clustering Anne S. M. Buckner1, Zeinab Khorrami2, Pouria Khalaj3, Stuart L. Lumsden1, Isabelle Joncour3,5, Estelle Moraux3, Paul Clark2, René D. Oudmaijer1, José Manuel Blanco4, Ignacio de la Calle4, José M. Herrera-Fernandez4, Frédérique Motte3, Jesús J. Salgado4, and Luis Valero-Martín4 1 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK e-mail: [email protected] 2 School of Physics and Astronomy, Cardiff University, The Parade CF24 3AA, UK 3 Université Grenoble Alpes, CNRS, IPAG, 38000 Grenoble, France 4 Quasar Science Resources, S.L., Edificio Ceudas, Ctra. de La Coruña, Km 22.300, 28232, Las Rozas de Madrid, Madrid, Spain 5 Department of Astronomy, University of Maryland, College Park, MD 20742, USA Received 2 March 2018 / Accepted 8 January 2019 ABSTRACT Context. There are a number of methods that identify stellar sub-structure in star forming regions, but these do not quantify the degree of association of individual stars – something which is required if we are to better understand the mechanisms and physical processes that dictate structure. Aims. We present the new novel statistical clustering tool “INDICATE” which assesses and quantifies the degree of spatial clustering of each object in a dataset, discuss its applications as a tracer of morphological stellar features in star forming regions, and to look for these features in the Carina Nebula (NGC 3372). Methods.
    [Show full text]
  • Biltyspr08.Pdf (9.916Mb)
    Examining Chandra X-Ray Images of Stellar Sources in the Carina Nebula Kati Bilty & Nathan Miller Department of Physics and Astronomy University of Wisconsin-Eau Claire Abstract As part of a collaboration formed to study the X-ray emission from hot stars, we have obtained X-ray spectra of two O-type stars (HD 93129 and HD 93250). In addition to the high-resolution spectra that were the focus of the collaboration, this data set contains a number of direct X-ray images of other hot stars in the Carina Nebula complex. Each star of the two main stars were observed multiple times with different instrument orientations, so our first goal was to combine all of the images for each star into a single master image. We constructed an "exposure map" which visually describes the measured sensitivity of different regions of the cluster. We placed circular regions around all the detected stellar sources in the X-ray images and attempted to identify which stars they corresponded to in the visual image. We then measured the properties of the photon counts within each HD93403 region and compared their X-ray properties with the properties of the stellar sources in other bands, if known. HD93128 HD303311 HD93129 HD93268 HD93160 HD93250 HD93161 HD93129 HD303308 HD93250 Eta Car HD93162 Eta Car HD93205 HD93204 HD93343 N N This is a Hubble image of the Carina Nebula, NGC 3372. The Trumpler 14 star cluster can be E E seen on the right side of the image with its main star HD93129. This star, along with the star HD93250, which can be seen near the top of the image in a darker spot, are the two stars main stars the X-ray telescope was pointed at when our data was taken.
    [Show full text]
  • Bakalářská Práce
    Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Pavel Bystřický Neobvyklá hmotná dvojhvězda Eta Carinae Astronomický ústav UK Vedoucí bakalářské práce: prof. RNDr. Petr Harmanec, DrSc Studijní program: Obecná fyzika 2009 Děkuji panu vedoucímu RNDr. Petru Harmanci, DrSc za vedení práce, rady při zpracování práce, doporučení zdrojů, ze kterých jsem čerpal, a navrhnutou koncepci. Prohlašuji že jsem svou bakalářskou práci napsal samostatně a výhradně s použitím citovaných pramenů. Souhlasím se zapůjčením práce a jejím zveřejňováním. V Praze dne: 28.5.2009 Pavel Bystřický Obsah 1 Úvod… …………………………………………………………….…….............5 2 Kde se Eta Carinae nachází……….…………………………………..………7 3 Historická fakta………………………………………………………………..…9 4 Rentgenová pozorování……………………………………………………….12 5 5,54-letý cyklus Eta Carinae a spektrum………………………………..….17 6 Detekce složky B pomocí vzdálené UV oblasti………………………...,…20 7 Prostředí Eta Carinae……………………………………………………….….23 8 Co bude dál……………………………………………………………….....…..29 9 SN 2006gy………………………………………………………………...………34 10 Ostatní hvězdy typu LBV a velmi jasné hvězdy………………...………..35 10.1 Hvězdy typu W, O, LBV……………………………………….………35 10.2 Nejsvítivější známé hvězdy…………………………………..………36 10.3 Pistolová hvězda a QPM-241………………………………..……….37 10.4 LBV 1806-20 Nejzářivější hvězda?................................................38 10.5 Cyg OB2-12…………………………………………………………….39 10.6 HD 93129A……………………………………………………..………40 10.7 HDE 319718…………………………………………………………...41 10.8 HD 5980…………………………………………………………...……41 10.9 HDE 269810……………………………………………………….…..42
    [Show full text]