Multivariate and Multiple Poisson Distributions Carol Bates Edwards Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Efficient Estimation of Parameters of the Negative Binomial Distribution
E±cient Estimation of Parameters of the Negative Binomial Distribution V. SAVANI AND A. A. ZHIGLJAVSKY Department of Mathematics, Cardi® University, Cardi®, CF24 4AG, U.K. e-mail: SavaniV@cardi®.ac.uk, ZhigljavskyAA@cardi®.ac.uk (Corresponding author) Abstract In this paper we investigate a class of moment based estimators, called power method estimators, which can be almost as e±cient as maximum likelihood estima- tors and achieve a lower asymptotic variance than the standard zero term method and method of moments estimators. We investigate di®erent methods of implementing the power method in practice and examine the robustness and e±ciency of the power method estimators. Key Words: Negative binomial distribution; estimating parameters; maximum likelihood method; e±ciency of estimators; method of moments. 1 1. The Negative Binomial Distribution 1.1. Introduction The negative binomial distribution (NBD) has appeal in the modelling of many practical applications. A large amount of literature exists, for example, on using the NBD to model: animal populations (see e.g. Anscombe (1949), Kendall (1948a)); accident proneness (see e.g. Greenwood and Yule (1920), Arbous and Kerrich (1951)) and consumer buying behaviour (see e.g. Ehrenberg (1988)). The appeal of the NBD lies in the fact that it is a simple two parameter distribution that arises in various di®erent ways (see e.g. Anscombe (1950), Johnson, Kotz, and Kemp (1992), Chapter 5) often allowing the parameters to have a natural interpretation (see Section 1.2). Furthermore, the NBD can be implemented as a distribution within stationary processes (see e.g. Anscombe (1950), Kendall (1948b)) thereby increasing the modelling potential of the distribution. -
Effect of Probability Distribution of the Response Variable in Optimal Experimental Design with Applications in Medicine †
mathematics Article Effect of Probability Distribution of the Response Variable in Optimal Experimental Design with Applications in Medicine † Sergio Pozuelo-Campos *,‡ , Víctor Casero-Alonso ‡ and Mariano Amo-Salas ‡ Department of Mathematics, University of Castilla-La Mancha, 13071 Ciudad Real, Spain; [email protected] (V.C.-A.); [email protected] (M.A.-S.) * Correspondence: [email protected] † This paper is an extended version of a published conference paper as a part of the proceedings of the 35th International Workshop on Statistical Modeling (IWSM), Bilbao, Spain, 19–24 July 2020. ‡ These authors contributed equally to this work. Abstract: In optimal experimental design theory it is usually assumed that the response variable follows a normal distribution with constant variance. However, some works assume other probability distributions based on additional information or practitioner’s prior experience. The main goal of this paper is to study the effect, in terms of efficiency, when misspecification in the probability distribution of the response variable occurs. The elemental information matrix, which includes information on the probability distribution of the response variable, provides a generalized Fisher information matrix. This study is performed from a practical perspective, comparing a normal distribution with the Poisson or gamma distribution. First, analytical results are obtained, including results for the linear quadratic model, and these are applied to some real illustrative examples. The nonlinear 4-parameter Hill model is next considered to study the influence of misspecification in a Citation: Pozuelo-Campos, S.; dose-response model. This analysis shows the behavior of the efficiency of the designs obtained in Casero-Alonso, V.; Amo-Salas, M. -
Lecture.7 Poisson Distributions - Properties, Normal Distributions- Properties
Lecture.7 Poisson Distributions - properties, Normal Distributions- properties Theoretical Distributions Theoretical distributions are 1. Binomial distribution Discrete distribution 2. Poisson distribution 3. Normal distribution Continuous distribution Discrete Probability distribution Bernoulli distribution A random variable x takes two values 0 and 1, with probabilities q and p ie., p(x=1) = p and p(x=0)=q, q-1-p is called a Bernoulli variate and is said to be Bernoulli distribution where p and q are probability of success and failure. It was given by Swiss mathematician James Bernoulli (1654-1705) Example • Tossing a coin(head or tail) • Germination of seed(germinate or not) Binomial distribution Binomial distribution was discovered by James Bernoulli (1654-1705). Let a random experiment be performed repeatedly and the occurrence of an event in a trial be called as success and its non-occurrence is failure. Consider a set of n independent trails (n being finite), in which the probability p of success in any trail is constant for each trial. Then q=1-p is the probability of failure in any trail. 1 The probability of x success and consequently n-x failures in n independent trails. But x successes in n trails can occur in ncx ways. Probability for each of these ways is pxqn-x. P(sss…ff…fsf…f)=p(s)p(s)….p(f)p(f)…. = p,p…q,q… = (p,p…p)(q,q…q) (x times) (n-x times) Hence the probability of x success in n trials is given by x n-x ncx p q Definition A random variable x is said to follow binomial distribution if it assumes non- negative values and its probability mass function is given by P(X=x) =p(x) = x n-x ncx p q , x=0,1,2…n q=1-p 0, otherwise The two independent constants n and p in the distribution are known as the parameters of the distribution. -
1 One Parameter Exponential Families
1 One parameter exponential families The world of exponential families bridges the gap between the Gaussian family and general dis- tributions. Many properties of Gaussians carry through to exponential families in a fairly precise sense. • In the Gaussian world, there exact small sample distributional results (i.e. t, F , χ2). • In the exponential family world, there are approximate distributional results (i.e. deviance tests). • In the general setting, we can only appeal to asymptotics. A one-parameter exponential family, F is a one-parameter family of distributions of the form Pη(dx) = exp (η · t(x) − Λ(η)) P0(dx) for some probability measure P0. The parameter η is called the natural or canonical parameter and the function Λ is called the cumulant generating function, and is simply the normalization needed to make dPη fη(x) = (x) = exp (η · t(x) − Λ(η)) dP0 a proper probability density. The random variable t(X) is the sufficient statistic of the exponential family. Note that P0 does not have to be a distribution on R, but these are of course the simplest examples. 1.0.1 A first example: Gaussian with linear sufficient statistic Consider the standard normal distribution Z e−z2=2 P0(A) = p dz A 2π and let t(x) = x. Then, the exponential family is eη·x−x2=2 Pη(dx) / p 2π and we see that Λ(η) = η2=2: eta= np.linspace(-2,2,101) CGF= eta**2/2. plt.plot(eta, CGF) A= plt.gca() A.set_xlabel(r'$\eta$', size=20) A.set_ylabel(r'$\Lambda(\eta)$', size=20) f= plt.gcf() 1 Thus, the exponential family in this setting is the collection F = fN(η; 1) : η 2 Rg : d 1.0.2 Normal with quadratic sufficient statistic on R d As a second example, take P0 = N(0;Id×d), i.e. -
ONE SAMPLE TESTS the Following Data Represent the Change
1 WORKED EXAMPLES 6 INTRODUCTION TO STATISTICAL METHODS EXAMPLE 1: ONE SAMPLE TESTS The following data represent the change (in ml) in the amount of Carbon monoxide transfer (an indicator of improved lung function) in smokers with chickenpox over a one week period: 33, 2, 24, 17, 4, 1, -6 Is there evidence of significant improvement in lung function (a) if the data are normally distributed with σ = 10, (b) if the data are normally distributed with σ unknown? Use a significance level of α = 0.05. SOLUTION: (a) Here we have a sample of size 7 with sample mean x = 10.71. We want to test H0 : μ = 0.0, H1 : μ = 0.0, 6 under the assumption that the data follow a Normal distribution with σ = 10.0 known. Then, we have, in the Z-test, 10.71 0.0 z = − = 2.83, 10.0/√7 which lies in the critical region, as the critical values for this test are 1.96, for significance ± level α = 0.05. Therefore we have evidence to reject H0. The p-value is given by p = 2Φ( 2.83) = 0.004 < α. − (b) The sample variance is s2 = 14.192. In the T-test, we have test statistic t given by x 0.0 10.71 0.0 t = − = − = 2.00. s/√n 14.19/√7 The upper critical value CR is obtained by solving FSt(n 1)(CR) = 0.975, − where FSt(n 1) is the cdf of a Student-t distribution with n 1 degrees of freedom; here n = 7, so − − we can use statistical tables or a computer to find that CR = 2.447, and note that, as Student-t distributions are symmetric the lower critical value is CR. -
Univariate and Multivariate Skewness and Kurtosis 1
Running head: UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 1 Univariate and Multivariate Skewness and Kurtosis for Measuring Nonnormality: Prevalence, Influence and Estimation Meghan K. Cain, Zhiyong Zhang, and Ke-Hai Yuan University of Notre Dame Author Note This research is supported by a grant from the U.S. Department of Education (R305D140037). However, the contents of the paper do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. Correspondence concerning this article can be addressed to Meghan Cain ([email protected]), Ke-Hai Yuan ([email protected]), or Zhiyong Zhang ([email protected]), Department of Psychology, University of Notre Dame, 118 Haggar Hall, Notre Dame, IN 46556. UNIVARIATE AND MULTIVARIATE SKEWNESS AND KURTOSIS 2 Abstract Nonnormality of univariate data has been extensively examined previously (Blanca et al., 2013; Micceri, 1989). However, less is known of the potential nonnormality of multivariate data although multivariate analysis is commonly used in psychological and educational research. Using univariate and multivariate skewness and kurtosis as measures of nonnormality, this study examined 1,567 univariate distriubtions and 254 multivariate distributions collected from authors of articles published in Psychological Science and the American Education Research Journal. We found that 74% of univariate distributions and 68% multivariate distributions deviated from normal distributions. In a simulation study using typical values of skewness and kurtosis that we collected, we found that the resulting type I error rates were 17% in a t-test and 30% in a factor analysis under some conditions. Hence, we argue that it is time to routinely report skewness and kurtosis along with other summary statistics such as means and variances. -
Poisson Versus Negative Binomial Regression
Handling Count Data The Negative Binomial Distribution Other Applications and Analysis in R References Poisson versus Negative Binomial Regression Randall Reese Utah State University [email protected] February 29, 2016 Randall Reese Poisson and Neg. Binom Handling Count Data The Negative Binomial Distribution Other Applications and Analysis in R References Overview 1 Handling Count Data ADEM Overdispersion 2 The Negative Binomial Distribution Foundations of Negative Binomial Distribution Basic Properties of the Negative Binomial Distribution Fitting the Negative Binomial Model 3 Other Applications and Analysis in R 4 References Randall Reese Poisson and Neg. Binom Handling Count Data The Negative Binomial Distribution ADEM Other Applications and Analysis in R Overdispersion References Count Data Randall Reese Poisson and Neg. Binom Handling Count Data The Negative Binomial Distribution ADEM Other Applications and Analysis in R Overdispersion References Count Data Data whose values come from Z≥0, the non-negative integers. Classic example is deaths in the Prussian army per year by horse kick (Bortkiewicz) Example 2 of Notes 5. (Number of successful \attempts"). Randall Reese Poisson and Neg. Binom Handling Count Data The Negative Binomial Distribution ADEM Other Applications and Analysis in R Overdispersion References Poisson Distribution Support is the non-negative integers. (Count data). Described by a single parameter λ > 0. When Y ∼ Poisson(λ), then E(Y ) = Var(Y ) = λ Randall Reese Poisson and Neg. Binom Handling Count Data The Negative Binomial Distribution ADEM Other Applications and Analysis in R Overdispersion References Acute Disseminated Encephalomyelitis Acute Disseminated Encephalomyelitis (ADEM) is a neurological, immune disorder in which widespread inflammation of the brain and spinal cord damages tissue known as white matter. -
6.1 Definition: the Density Function of Th
CHAPTER 6: Some Continuous Probability Distributions Continuous Uniform Distribution: 6.1 Definition: The density function of the continuous random variable X on the interval [A; B] is 1 A x B B A ≤ ≤ f(x; A; B) = 8 − < 0 otherwise: : Application: Some continuous random variables in the physical, management, and biological sciences have approximately uniform probability distributions. For example, suppose we are counting events that have a Poisson distribution, such as telephone calls coming into a switchboard. If it is known that exactly one such event has occurred in a given interval, say (0; t),then the actual time of occurrence is distributed uniformly over this interval. Example: Arrivals of customers at a certain checkout counter follow a Poisson distribution. It is known that, during a given 30-minute period, one customer arrived at the counter. Find the probability that the customer arrived during the last 5 minutes of the 30-minute period. Solution: As just mentioned, the actual time of arrival follows a uniform distribution over the interval of (0; 30). If X denotes the arrival time, then 30 1 30 25 1 P (25 X 30) = dx = − = ≤ ≤ Z25 30 30 6 Theorem 6.1: The mean and variance of the uniform distribution are 2 B 2 2 B 1 x B A A+B µ = A x B A = 2(B A) = 2(B− A) = 2 : R − h − iA − It is easy to show that (B A)2 σ2 = − 12 Normal Distribution: 6.2 Definition: The density function of the normal random variable X, with mean µ and variance σ2, is 2 1 (1=2)[(x µ)/σ] n(x; µ, σ) = e− − < x < ; p2πσ − 1 1 where π = 3:14159 : : : and e = 2:71828 : : : Example: The SAT aptitude examinations in English and Mathematics were originally designed so that scores would be approximately normal with µ = 500 and σ = 100. -
Statistical Inference
GU4204: Statistical Inference Bodhisattva Sen Columbia University February 27, 2020 Contents 1 Introduction5 1.1 Statistical Inference: Motivation.....................5 1.2 Recap: Some results from probability..................5 1.3 Back to Example 1.1...........................8 1.4 Delta method...............................8 1.5 Back to Example 1.1........................... 10 2 Statistical Inference: Estimation 11 2.1 Statistical model............................. 11 2.2 Method of Moments estimators..................... 13 3 Method of Maximum Likelihood 16 3.1 Properties of MLEs............................ 20 3.1.1 Invariance............................. 20 3.1.2 Consistency............................ 21 3.2 Computational methods for approximating MLEs........... 21 3.2.1 Newton's Method......................... 21 3.2.2 The EM Algorithm........................ 22 1 4 Principles of estimation 23 4.1 Mean squared error............................ 24 4.2 Comparing estimators.......................... 25 4.3 Unbiased estimators........................... 26 4.4 Sufficient Statistics............................ 28 5 Bayesian paradigm 33 5.1 Prior distribution............................. 33 5.2 Posterior distribution........................... 34 5.3 Bayes Estimators............................. 36 5.4 Sampling from a normal distribution.................. 37 6 The sampling distribution of a statistic 39 6.1 The gamma and the χ2 distributions.................. 39 6.1.1 The gamma distribution..................... 39 6.1.2 The Chi-squared distribution.................. 41 6.2 Sampling from a normal population................... 42 6.3 The t-distribution............................. 45 7 Confidence intervals 46 8 The (Cramer-Rao) Information Inequality 51 9 Large Sample Properties of the MLE 57 10 Hypothesis Testing 61 10.1 Principles of Hypothesis Testing..................... 61 10.2 Critical regions and test statistics.................... 62 10.3 Power function and types of error.................... 64 10.4 Significance level............................ -
Likelihood-Based Inference
The score statistic Inference Exponential distribution example Likelihood-based inference Patrick Breheny September 29 Patrick Breheny Survival Data Analysis (BIOS 7210) 1/32 The score statistic Univariate Inference Multivariate Exponential distribution example Introduction In previous lectures, we constructed and plotted likelihoods and used them informally to comment on likely values of parameters Our goal for today is to make this more rigorous, in terms of quantifying coverage and type I error rates for various likelihood-based approaches to inference With the exception of extremely simple cases such as the two-sample exponential model, exact derivation of these quantities is typically unattainable for survival models, and we must rely on asymptotic likelihood arguments Patrick Breheny Survival Data Analysis (BIOS 7210) 2/32 The score statistic Univariate Inference Multivariate Exponential distribution example The score statistic Likelihoods are typically easier to work with on the log scale (where products become sums); furthermore, since it is only relative comparisons that matter with likelihoods, it is more meaningful to work with derivatives than the likelihood itself Thus, we often work with the derivative of the log-likelihood, which is known as the score, and often denoted U: d U (θ) = `(θjX) X dθ Note that U is a random variable, as it depends on X U is a function of θ For independent observations, the score of the entire sample is the sum of the scores for the individual observations: X U = Ui i Patrick Breheny Survival -
(Introduction to Probability at an Advanced Level) - All Lecture Notes
Fall 2018 Statistics 201A (Introduction to Probability at an advanced level) - All Lecture Notes Aditya Guntuboyina August 15, 2020 Contents 0.1 Sample spaces, Events, Probability.................................5 0.2 Conditional Probability and Independence.............................6 0.3 Random Variables..........................................7 1 Random Variables, Expectation and Variance8 1.1 Expectations of Random Variables.................................9 1.2 Variance................................................ 10 2 Independence of Random Variables 11 3 Common Distributions 11 3.1 Ber(p) Distribution......................................... 11 3.2 Bin(n; p) Distribution........................................ 11 3.3 Poisson Distribution......................................... 12 4 Covariance, Correlation and Regression 14 5 Correlation and Regression 16 6 Back to Common Distributions 16 6.1 Geometric Distribution........................................ 16 6.2 Negative Binomial Distribution................................... 17 7 Continuous Distributions 17 7.1 Normal or Gaussian Distribution.................................. 17 1 7.2 Uniform Distribution......................................... 18 7.3 The Exponential Density...................................... 18 7.4 The Gamma Density......................................... 18 8 Variable Transformations 19 9 Distribution Functions and the Quantile Transform 20 10 Joint Densities 22 11 Joint Densities under Transformations 23 11.1 Detour to Convolutions...................................... -
Characterization of the Bivariate Negative Binomial Distribution James E
Journal of the Arkansas Academy of Science Volume 21 Article 17 1967 Characterization of the Bivariate Negative Binomial Distribution James E. Dunn University of Arkansas, Fayetteville Follow this and additional works at: http://scholarworks.uark.edu/jaas Part of the Other Applied Mathematics Commons Recommended Citation Dunn, James E. (1967) "Characterization of the Bivariate Negative Binomial Distribution," Journal of the Arkansas Academy of Science: Vol. 21 , Article 17. Available at: http://scholarworks.uark.edu/jaas/vol21/iss1/17 This article is available for use under the Creative Commons license: Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0). Users are able to read, download, copy, print, distribute, search, link to the full texts of these articles, or use them for any other lawful purpose, without asking prior permission from the publisher or the author. This Article is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for inclusion in Journal of the Arkansas Academy of Science by an authorized editor of ScholarWorks@UARK. For more information, please contact [email protected], [email protected]. Journal of the Arkansas Academy of Science, Vol. 21 [1967], Art. 17 77 Arkansas Academy of Science Proceedings, Vol.21, 1967 CHARACTERIZATION OF THE BIVARIATE NEGATIVE BINOMIAL DISTRIBUTION James E. Dunn INTRODUCTION The univariate negative binomial distribution (also known as Pascal's distribution and the Polya-Eggenberger distribution under vari- ous reparameterizations) has recently been characterized by Bartko (1962). Its broad acceptance and applicability in such diverse areas as medicine, ecology, and engineering is evident from the references listed there.