A Comparative Study: Reverse Engineering Flowcharting Tools

Total Page:16

File Type:pdf, Size:1020Kb

A Comparative Study: Reverse Engineering Flowcharting Tools INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946 VOLUME-07, NUMBER-01, 2015 A Comparative Study: Reverse Engineering Flowcharting Tools Nivedita Tiwari1, Lalji Prasad2 1PG Student, Truba College of Engineering & Technology, 2Professor, Truba College of Engineering & Technology Abstract - The paper describes the Reverse Engineering research effort focuses on a selection of these tools that will methodology used to produce from source code a hierarchy of be useful in maintaining the consistency of design document Flow Charts at different levels of trance and ensure consistency with its code and for understanding large systems. with code. Reverse engineering is the process of analyzing, maintaining and evolving legacy systems to understand the system The remainder of this paper is organized as follows. In the through analysis of its code structure, function and operation by section 2 we describe the works that are previously done as program discernment. The Flowchart is an approach for specifying, constructing and visualizing the system graphically literature survey. In the section 3 brief introduction to and has been in practical use on a very wide basis but still lacks structural analysis is given; focus on the use of flow charts. formal and precise understanding. By Reverse Engineering it is The main part of this paper is section 4 which will present useful in maintenance and restructuring activities during the the feature analysis of supporting tools that generate the flow development of software systems. This paper illustrates several chart through source code. Reverse engineering tools and functionality of such tools varies according to their features and capabilities. We identified benefits 2. LITERATURE SURVEY and shortcomings of these tools and assessed their applicability for software systems, their usability, and their extensibility as a There are various Reverse Engineering tools that generate case study. flow charts through source code. It is not possible to study each and every tool [12]. According to Carlisle M, Wilson T, Keywords - Reverse Engineering, Tool Evaluation, Flow Charts structure. Humphries, J and Hadfield, M [7] Raptor is a tool for flow chart based visual programming Environments. It is an MS 1. INTRODUCTION Windows based application that generates and perform black and white flowcharts by dragging and dropping complete Reverse engineering provides a new approach for structures onto the flowchart instead of individual notations requirement specification of a system [1]. Reverse and arrows. Code visual to flowchart [5] can be used to Engineering tools are very useful, but not widely used introduce its flowcharts to Microsoft Office application because that tool is not integrated and lack of many including Visio. This tool shows how the flowchart and the necessary features and capabilities [2]. In addition, a Reverse code relate to one another and is a useful indicator. Engineering process threatens many of the assets of the rejuvenate and modernize approach. This approach is always Westphal et al [8] define that without the use of diagrams or and viable if the source code for a system exists. The code flow charts, it is difficult for beginners, even with pseudo generation indicates that a generator reads the code or code to communicate the flow of a program. While flow documents related to the graphic model and generates a high- charts are not well suited for large and complex programs. level language program, just like C, C + +, Java, Perl, Ruby, Flowchart plays an important role in system analysis, Python and HTML and so on [3]. A UML tool can convert preparatory design of algorithm and system maintenance UML graphics into a specific language to predict the aspects.. So, automatic generation of a flowchart from performance of system [4]. specific language code will be a very important practical significance, it allows the designer to design the system from In this paper, we compare the various tools on the basis of high-level functions without concerning for complicated their capabilities and features that captures the functionality code [11]. According to the Andrew Scott [6], the use of the of the system and the design at an abstraction level that tool focuses on using flowcharts to develop visual solutions removes the need of language implementation. Our current to basic programming problems from which syntactically 34 INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946 VOLUME-07, NUMBER-01, 2015 correct program code is generated. The animation features Arrow/ the direction and interaction between the visual and code representations Connector that the reinforce student understanding of both the visual solution process and program statement flow. flows. Represents 3. STRUCTURED ANALYSIS the start Terminator points, end Structured Analysis defines the structural elements points. specifically designed to describe and understand the system. Represents a It offers following building blocks to represent flow charts: question or branch in A. Symbols Used Decision the process flow. A flowchart is a formalized graphic representation of a logic Connects sequence, work or manufacturing process, organization chart, separate or similar formalized structure. The purpose of a flow chart elements is to provide people with a common language or reference Connector across one point when dealing with a project or process. A flow chart is page. the visualization of a system or process consisting of five Connects basic objects: separate Branching elements • Process / Operation Symbols Off-page and across • Branching and Control of Flow Symbols Connector Control of multiple • File and Information Storage Symbols Flow pages. • Input and Output Symbols Symbols Combines • Data Processing Symbols Merge multiple paths. Table-1: Flow Chart Symbols Represents when Category Symbol Name Function multiple Represents a Summing branches process, Junction converge Process action, or into a single function. process. Represents Represents Series of data that are Predefined process flow Data(I/O) available for /Subroutine steps that input or Process are formally output. defined Process/ Represents elsewhere. Operation the input or Represents a Symbols Input and Document output of a process flow Preparation Output document. step. Symbols Represents Represents a multiple step that Multi- documents Manual must be Document or reports. Operation done manually. Represents Manual the manual FlowLine/ Represents 35 INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946 VOLUME-07, NUMBER-01, 2015 Input input of data 3. Identify the Sub processes that are included in the defined into a Processes. computer, through a 4. List the Steps and Connect in order in which they relate to keyboard. each other. Represents data housed 5. Examine and Assign a flowchart symbol for each step. File and Stored Data in a storage Informatio device. 6. Review and title the flowchart. n Storage Represents 7. Improve the flow chart (work back to the first step). Symbols Internal data stored Storage in RAM. Represents a process step that requires organizing data, information, or materials Collate according into a Data standard Processin format or g Symbols arrangement . Represents the sorting of data, information, Sort materials Fig.1. Basic Flow Chart Structure into some pre-defined C. Types and Uses of Flow Charts order. B. Construction of a Flow Chart Flow Charts are used in analyzing, designing, documenting and managing a process or program in various fields. Some Flowcharting is a tool developed in the various fields, for of the common uses of flowcharts include: showing the refined form of any process. A flowchart is a diagram made up of boxes, diamonds and other shapes, Table-2: Types and Uses connected by arrows. Flowcharting combines symbols and flow lines, to show figuratively the operation of an Category Types Uses algorithm. • Showing Basic Flow Chart controls over a Following are the steps for developing a Basic Flowchart: document-flow Document Flow through a system. 1. Define the Process and Purpose of the Flowcharting. Charts Swim lane flow • Planning a new chart project. 2. Establish the Process Boundaries (Starting and End • Documenting a points). process Data Flow Data Flow •Showing controls 36 INTERNATIONAL JOURNAL OF INNOVATIVE TRENDS IN ENGINEERING (IJITE) ISSN: 2395-2946 VOLUME-07, NUMBER-01, 2015 Charts Diagram over a data-flow -B# is a classic reverse engineering tool provides the feature in a system. for flow chart construction in an efficient way. •Data management We investigated the capabilities of the above reverse engineering tools. Our main focus on the tool features that EPC diagram • Showing controls at a generate flow charts. physical or System Flow resource level. A. Code Visual to Flowchart Charts Workflow •Modeling a Diagram business process. Code to Flow chart generator is an automatic flow chart •Managing generator software. It can reverse engineering a program, workflow. create programming flowchart from code. With the aim of aiding programmers understand and document source code, • Showing the CVF converts program codes into flowcharts. The flowchart Basic Flow Chart controls in a view auto up-dates representing the program visually as each program within a line of code is entered into CVF text editor [3]. CVF presents system.. SDL Diagram its flowcharts and code side by side which are synchronized •Planning a new via highlighting.
Recommended publications
  • PL/SQL Multi-Diagrammatic Source Code Visualization
    SQLFlow: PL/SQL Multi-Diagrammatic Source Code Visualization Samir Tartir Ayman Issa Department of Computer Science University of the West of England (UWE), University of Georgia Coldharbour Lane, Frenchay, Bristol BS16 1QY Athens, Georgia 30602 United Kingdom USA Email: [email protected] Email: [email protected] ABSTRACT: A major problem in software introducing new problems to other code that was perfectly maintenance is the lack of a well-documented source code working before. Therefore, educating programmers about in software applications. This has led to serious the behaviors of the target code before start modifying it difficulties in software maintenance and evolution. In is not an easy task. Source code visualization is one of the particular, for those developers who are faced with the heavily used techniques in the literature to overcome this task of fixing or modifying a piece of code they never lack of documentation problem, and its consequent even knew existed before. Database triggers and knowledge-sharing problem [7, 9]. procedures are parts of almost every application, are typical examples of badly documented software Therefore, this research aims at investigating the current components being the hidden back end of software database source code visualization tools and identifying applications. Source code visualization is one of the the main open issues for research. Consequently, the heavily used techniques in the literature so as to mostly used PL/SQL database programming language has familiarize software developers with new source code, been selected for a flowcharting reverse engineering and compensate for the knowledge-sharing problem. prototype tool called "SQLFlow". SQLFlow has been Therefore, a new PL/SQL flowcharting reverse designed, implemented, and tested to parse the target engineering tool, SQLFlow, has been designed and PL/SQL code stored in database procedures, analyze its developed.
    [Show full text]
  • A Prolog-Based Proof Tool for Type Theory Taλ and Implicational Intuitionistic-Logic
    A Prolog-based Proof Tool for Type Theory TAλ and Implicational Intuitionistic-Logic L. Yohanes Stefanus University of Indonesia Depok 16424, Indonesia [email protected] and Ario Santoso∗ Technische Universit¨atDresden Dresden 01187, Germany [email protected] Abstract Studies on type theory have brought numerous important contributions to computer science. In this paper we present a GUI-based proof tool that provides assistance in constructing deductions in type theory and validating implicational intuitionistic-logic for- mulas. As such, this proof tool is a testbed for learning type theory and implicational intuitionistic-logic. This proof tool focuses on an important variant of type theory named TAλ, especially on its two core algorithms: the principal-type algorithm and the type inhabitant search algorithm. The former algorithm finds a most general type assignable to a given λ-term, while the latter finds inhabitants (closed λ-terms in β-normal form) to which a given type can be assigned. By the Curry{Howard correspondence, the latter algorithm provides provability for implicational formulas in intuitionistic logic. We elab- orate on how to implement those two algorithms declaratively in Prolog and the overall GUI-based program architecture. In our implementation, we make some modification to improve the performance of the principal-type algorithm. We have also built a web-based version of the proof tool called λ-Guru. 1 Introduction In 1902, Russell revealed the inconsistency in naive set theory. This inconsistency challenged the foundation of mathematics at that time. To solve that problem, type theory was introduced [1, 5]. As time goes on, type theory becomes widely used, it becomes a logician's standard tool, especially in proof theory.
    [Show full text]
  • LIGO Data Analysis Software Specification Issues
    LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T970100-A - E LIGO Data Analysis Software Specification Issues James Kent Blackburn Distribution of this draft: LIGO Project This is an internal working document of the LIGO Project. California Institute of Technology Massachusetts Institute of Technology LIGO Project - MS 51-33 LIGO Project - MS 20B-145 Pasadena CA 91125 Cambridge, MA 01239 Phone (818) 395-2129 Phone (617) 253-4824 Fax (818) 304-9834 Fax (617) 253-7014 E-mail: [email protected] E-mail: [email protected] WWW: http://www.ligo.caltech.edu/ Table of Contents Index file /home/kent/Documents/framemaker/DASS.fm - printed July 22, 1997 LIGO-T970100-A-E 1.0 Introduction The subject material discussed in this document is intended to support the design and eventual implementation of the LIGO data analysis system. The document focuses on raising awareness of the issues that go into the design of a software specification. As LIGO construction approaches completion and the interferometers become operational, the data analysis system must also approach completion and become operational. Through the integration of the detector and the data analysis system, LIGO evolves from being an operational instrument to being an operational grav- itational wave detector. All aspects of software design which are critical to the specifications for the LIGO data analysis are introduced with the preface that they will be utilized in requirements for the LIGO data analysis system which drive the milestones necessary to achieve this goal. Much of the LIGO data analysis system will intersect with the LIGO diagnostics system, espe- cially in the areas of software specifications.
    [Show full text]
  • IDE-JASMIN an Interactive Graphical Approach for Parallel Programming in Scientific Computing
    IDE-JASMIN An Interactive Graphical Approach for Parallel Programming in Scientific Computing Liao Li, Zhang Aiqing, Yang Zhang, Wang Wei and Jing Cuiping Institute of Applied Physics and Computational Mathematics, No. 2, East Fenghao Road, Beijing, China Keywords: Parallel Programming, Integrator Component, Integrated Development Environment, Structured Flow Chart. Abstract: A major challenge in scientific computing lays in the rapid design and implementation of parallel applications for complex simulations. In this paper, we develop an interactive graphical system to address this challenge. Our system is based on JASMIN infrastructure and outstands three key features. First, to facilitate the organization of parallel data communication and computation, we encapsulate JASMIN integrator component models as user-configurable components. Second, to support the top-down design of the application, we develop a structured-flow-chart based visual programming approach. Third, to finally generate application code, we develop a powerful code generation engine, which can generate major part of the application code using information in flow charts and component configurations. We also utilize the FORTRAN 90 standard to assist users write numerical kernels. These approaches are integrated and implemented in IDE-JASMIN to ease parallel programming for domain experts. Real applications demonstrate that our approaches for developing complex numerical applications are both practical and efficient. 1 INTRODUCTION data access and manipulation, respectively. Using JASMIN, users need implement several subclasses “J Adaptive Structured Meshes applications of strategy classes in C++ language though they Infrastructure” (JASMIN) is an infrastructure for mainly focus on writing numerical subroutine in structured mesh and SAMR applications for FORTRAN. numerical simulations of complex systems on The limited popularization of JASMIN is parallel computers (Mo et al., 2010).
    [Show full text]
  • Design and Implementation of Single Node Noc Router Using Small Side
    ISSN 2278-3091 Volume 9, No.4, July – August 2020 Priti ShahaneInternational, International Journal Journal of Advanced of TrendsAdvanced in Computer Trends Science and in Engineering,Computer 9(4), Science July – August and 2020, Engineering 5700 – 5709 Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse222942020.pdf https://doi.org/10.30534/ijatcse/2020/2 22942020 Design and Implementation of Single Node NoC Router using Small Side Buffer in Input Block and iSLIP Scheduler Priti Shahane1 1Symbiosis Institute of Technology, Symbiosis International (Deemed University) Pune, India, [email protected] as slave devices. The standard bus based device has a ABSTRACT limitation of scalability and turns into a bottleneck in a complex system. Shared bus for example AMBA bus as well as Network on chip (NoC) has been recommended as an IBM’s core connects becomes overloaded fast when more emerging alternative for scalability and performance needs of number of master modules is connected to it. To overcome next generation System on chips (SoCs). NoCs are actually this problem, Network on chip (NoC) is suggested as a forecast to solve the bus based interconnection problem of SoC communication subsystem among various IP cores of a SoC. NoC has emerged as an effective and scalable communication where large numbers of Intellectual property modules (IPs) are centric approach to solving the interconnection problem for incorporated on a single chip for much better results. NoC such architecture [1]-[3]. The NoC structure consists of 4 provides a solution for communication infrastructure for SoC. major components specifically routers, link and network The router is a foremost element of NoC which significantly interface and IP modules.
    [Show full text]
  • Computer Graphics
    ANSI X3.124.2 1988 3 American National Standard ADOPTED FOR USE BY THE for information systems - FEDERAL GOVERNMENT WLrt? computer graphics - PUB 120-1 graphical kernel system (GKS) SEE NOTICE ON INSIDE pascal binding X3.124.2-1988 ANSI american nationalana standards institute, me 1430 broadway, new york, new york 10018 . A8A3 NO.120-1 1988 This standard has been adopted for Federal Government use. Details concerning its use within the Federal Government are contained in Federal Information Processing Standards Publication 120-1, Graphical Kernel System (GKS). For a complete list of the publications available in the Federal Information Processing Standards Series, write to the Standards Processing Coordinator (ADP), National Institute of Standards and Technology, Gaithersburg, MD 20899. ANSI® X3.124.2-1988 American National Standard for information Systems - Computer Graphics - Graphical Kernel System (GKS) Pascal Binding Secretariat Computer and Business Equipment Manufacturers Association Approved February 18, 1988 American National Standards Institute, Inc Approval of an American National Standard requires verification by ANSI that the re¬ American quirements for due process, consensus, and other criteria for approval have been met by National the standards developer. Consensus is established when, in the judgment of the ANSI Board of Standards Review, Standard substantial agreement has been reached by directly and materially affected interests. Sub¬ stantial agreement means much more than a simple majority, but not necessarily unanim¬ ity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution. The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from man¬ ufacturing, marketing, purchasing, or using products, processes, or procedures not con¬ forming to the standards.
    [Show full text]
  • Lab Manual for Is Lab
    WCTM /IT/LAB MANUAL/6TH SEM/IF LAB LAB MANUAL FOR IS LAB 1 INTELLIGENT SYSTEM LAB MANUAL WCTM /IT/LAB MANUAL/6TH SEM/IF LAB STUDY OF PROLOG Prolog – Programming in Logic PROLOG stands for Programming In Logic – an idea that emerged in the early 1970s to use logic as programming language. The early developers of this idea included Robert Kowalski at Edinburgh ( on the theoretical side ), Marrten van Emden at Edinburgh (experimental demonstration ) and Alain Colmerauer at Marseilles ( implementation). David D.H.Warren’s efficient implementation at Edinburgh in the mid – 1970’s greatly contributed to the popularity of PROLOG. PROLOG is a programming language centered around a small set of basic mechanisms, including pattern matching , tree-based data structuring and automatic backtracking. This small set constitutes a surprisingly powerful and flexible programming framework. PROLOG is especially well suited for problems that involve objects – in particular, structured objects – and relations between them . SYMBOLIC LANGUAGE PROLOG is a programming language for symbolic , non – numeric computation. It is especially well suited for solving problems that involve objects and relations between objects . For example , it is an easy exercise in prolog to express spatial relationship between objects , such as the blue sphere is behind the green one . It is also easy to state a more general rule : if object X is closer to the observer than object Y , and Y is closer than Z, then X must be closer than Z. PROLOG can reason about the spatial relationships and their consistency with respect to the general rule . Features like this make PROLOG a powerful language for Artificial Language (A1) and non – numerical programming.
    [Show full text]
  • Visual Programming Language for Tacit Subset of J Programming Language
    Visual Programming Language for Tacit Subset of J Programming Language Nouman Tariq Dissertation 2013 Erasmus Mundus MSc in Dependable Software Systems Department of Computer Science National University of Ireland, Maynooth Co. Kildare, Ireland A dissertation submitted in partial fulfilment of the requirements for the Erasmus Mundus MSc Dependable Software Systems Head of Department : Dr Adam Winstanley Supervisor : Professor Ronan Reilly June 30, 2013 Declaration I hereby certify that this material, which I now submit for assessment on the program of study leading to the award of Master of Science in Dependable Software Systems, is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed:___________________________ Date:___________________________ Abstract Visual programming is the idea of using graphical icons to create programs. I take a look at available solutions and challenges facing visual languages. Keeping these challenges in mind, I measure the suitability of Blockly and highlight the advantages of using Blockly for creating a visual programming environment for the J programming language. Blockly is an open source general purpose visual programming language designed by Google which provides a wide range of features and is meant to be customized to the user’s needs. I also discuss features of the J programming language that make it suitable for use in visual programming language. The result is a visual programming environment for the tacit subset of the J programming language. Table of Contents Introduction ............................................................................................................................................ 7 Problem Statement ............................................................................................................................. 7 Motivation..........................................................................................................................................
    [Show full text]
  • VCME: a Visual Interactive Environment for Computational Modeling Systems
    VCME: A Visual Interactive Environment for Computational Modeling Systems z Yongmao Cheny Terence R. Smith Yuan-Fang Wang Amitabh Saran Department of Computer Science University of California Santa Barbara, CA 93106, USA g e-mail: fyongmao, smithtr, yfwang, saran @cs.ucsb.edu Work supported in part by NASA grant NAGW-3888. y Work supported in part by NASA grant NGT-30159. z Currently working at Hewlett Packard-ISO, India. Email : [email protected] 1 Abstract In previous work, we have described the concept of a computational modeling system (CMS) that is based on a comprehensive conceptualization of scientific modeling activities. A CMS involves an integrated computational modeling environment (CME), that embodies this conceptualization and in which a scientist may carry out, at an appropriate level of abstraction, any operation involved in the process of symbolic model construction. The key contribution of the current paper is the translation of the CME into graphic terms and, in particular, the design and implementation of a visual language for supporting the top-down construction of scientific models. We describe the design and implementation of a visual CME (VCME) for our CMS. The VCME supports the construction and use of representations of any modeling concept that a scientist may require in the iterative process of building symbolic models of phenomena. In particular, the VCME supports a new computational approach to the top-down construction of computational models. The flowchart editor, which is the main component of the user interface in supporting such constructions, also supports the bottom-up process of model construction. A unique feature in our system is its ability to provide generic support for resources under a standard, coherent framework that makes easy integration of arbitrary sets of data and tools, distributed over the network, and provide support for their interoperability at the CME level.
    [Show full text]
  • Vista Kernel Systems Management Guide
    KERNEL SYSTEMS MANAGEMENT GUIDE Version 8.0 July 1995 Revised March 2010 Department of Veterans Affairs (VA) Office of Information & Technology (OI&T) Office of Enterprise Development (OED) Revision History Documentation Revisions The following table displays the revision history for this document. Revisions to the documentation are based on patches and new versions released to the field. Table i. Documentation revision history Date Version Description Authors 03/22/10 5.3 Updates: Oakland, CA Office of Information Field Office • Added Section 24.3, "Edit Install (OIFO): Status Option released with Kernel Patch XU*8.0*539. • Maintenance Development • Added Figure 24-4 Edit Install Manager—Jack Status option—Sample user Schram dialogue. • Developers—Gary Beuschel, Alan Chan, Ron DiMiceli, Wally Fort, Jose Garcia, Joel Ivey, Raul Mendoza, Roger Metcalf, and Ba Tran • Technical Writers— Thom Blom and Susan Strack 11/16/09 5.2 Updates: Oakland, CA OIFO: • Updated references to the • Maintenance CHCKSUM^XTSUMBLD direct Development mode utility throughout. Manager—Jack Schram • Updated the "Orientation" section. • Developers—Gary Beuschel, Alan Chan, • Updated organizational Ron DiMiceli, Wally references. Fort, Jose Garcia, Joel • Minor format updates Ivey, Raul Mendoza, (e.g., reordered document Roger Metcalf, and Ba revision history table to display Tran latest to earliest, added outline • Technical Writers— numbering). Thom Blom and Susan • Other minor format updates to Strack correspond with the latest standards and style guides. • Updated the "Automatically Deactivating Users" topic in July 1995 Kernel iii Revised March 2010 Systems Management Guide Version 8.0 Revision History Date Version Description Authors Chapter 3, "Signon/Security: System Management" for Kernel Patch XU*8.0*514.
    [Show full text]
  • A Structured Flow Chart Editor
    SFC AStructuredFlowChartEditor Version2.3 User’sGuide TiaWatts,Ph.D. SonomaStateUniversity 1of35 SFC–AStructuredFlowChartEditor Version2.3 User’sGuide TableofContents 1. Introduction ..................................................................................................................... 3 2. GettingStartedwithSFC ................................................................................................ 4 3. TheSFCEnvironment..................................................................................................... 5 4. CreatingaNewStructuredFlowChart........................................................................... 7 5. OpeninganExistingStructuredFlowChart ................................................................... 8 6. InsertingaNewProcedure .............................................................................................. 8 7. InsertingControlStructures ............................................................................................ 11 a. SequentialProcessorActivity .................................................................................. 12 b. InputorOutput.......................................................................................................... 13 c. SubroutineCall.......................................................................................................... 14 d. SingleDecision ......................................................................................................... 15 e. DoubleDecision.......................................................................................................
    [Show full text]
  • Problem Solving Programming Techniques I SCJ1013
    Programming Techniques I SCJ1013 Problem Solving Dr Masitah Ghazali Software Engineering vs Problem Solving • Software Engineering - A branch of Computer Science & provides techniques to facilitate the development of computer programs • Problem Solving - refers to the entire process of taking the statement of a problem and developing a computer program that solves that problem. Slide 3- 2 The Programming Process The Programming Process • SE concepts require a rigorous and systematic approach to software development called software development life cycle • Programming process is part of the activities in the software development life cycle The Programming Process This week Software Development Life Cycle &Code Building programs •Edit •Compile •Link •Run Figure 1-11: Process of system development Software Development Life Cycle & Algorithm Understand the problem: •Input •Output •Process Develop the solution (Algorithm): •Structure chart •Pseudocode •Flowchart Converting design to computer codes. e.g: Flowchart -> C++ program Algorithm is the steps to solve problems Figure 1-11: Process of system development Software Development Life Cycle • Problem Analysis Identify data objects Determine Input / Output data Constraints on the problem • Design Decompose into smaller problems Top-down design Structured Chart Develop Algorithm Pseudocode Flowchart Software Development Life Cycle • Implementation/coding/programming Converting the algorithm into programming language • Testing Verify the program meets requirements System and Unit test • Maintenance All programs undergo change over time Software Development Life Cycle • Case Study: Converting Miles to Kilometres Input, Processing, and Output Input, Processing, and Output Three steps that a program typically performs: 1) Gather input data: • from keyboard • from files on disk drives 2) Process the input data 3) Display the results as output: • send it to the screen • write to a file Exercise Week2_1 • Do Lab 2, Exercise 3, No.
    [Show full text]