COBOL Analyzer 5.0

Total Page:16

File Type:pdf, Size:1020Kb

COBOL Analyzer 5.0 COBOL Analyzer 5.0 COBOL Analyzer 5.0 Micro Focus The Lawn 22-30 Old Bath Road Newbury, Berkshire RG14 1QN UK http://www.microfocus.com © Copyright 2009-2019 Micro Focus or one of its affiliates. MICRO FOCUS, the Micro Focus logo and COBOL Analyzer are trademarks or registered trademarks of Micro Focus or one of its affiliates. All other marks are the property of their respective owners. 2019-11-22 ii Contents Installation Guide ............................................................................................. 11 Overview ........................................................................................................................... 11 Installation Tasks .................................................................................................... 11 Deployment ............................................................................................................ 12 Database Setup ......................................................................................................13 Hardware and Software Requirements ............................................................................. 14 Repository Server Hardware Requirements ...........................................................14 Repository Server Software Requirements ............................................................14 CA Server Hardware Requirements .......................................................................15 CA Server Software Requirements ........................................................................ 15 CA Client Hardware Requirements ........................................................................ 16 CA Client Software Requirements ..........................................................................16 CA Performance Optimization Guidelines .........................................................................17 Choosing Hardware Configuration ......................................................................... 17 Software Configuration ...........................................................................................21 Installing and Uninstalling COBOL Analyzer .....................................................................22 Installing CA on the Server or Client ...................................................................... 22 Uninstalling COBOL Analyzer ................................................................................ 22 Post-Installation Administrative Tasks ............................................................................... 22 Configuring COBOL Analyzer ................................................................................ 22 Licensing ................................................................................................................ 23 Creating a Shared Folder for Workspaces ............................................................. 24 Upgrading Workspaces .......................................................................................... 24 Troubleshooting the Installation .........................................................................................25 Troubleshooting Workspace Access .......................................................................25 Getting Started ................................................................................................. 26 Introducing COBOL Analyzer ............................................................................................26 COBOL Analyzer Products .....................................................................................26 How COBOL Analyzer Models Applications ...........................................................27 Workspaces and Projects .......................................................................................28 Single-User versus Multiuser Environments ...........................................................29 Multiuser Environment Basics ................................................................................ 29 COBOL Analyzer Basics ................................................................................................... 32 Creating a Workspace in SQL Server .................................................................... 32 Creating a Workspace Using the Workspace Build Wizard ....................................33 Designating Users for Security Policies ..................................................................33 Refreshing the Workspace Path .............................................................................34 Connecting to a Workspace in SQL Server ............................................................35 Opening a Workspace ............................................................................................36 Registering Source Files ........................................................................................ 36 Queue Processor ................................................................................................... 40 Check Workspace Queue .......................................................................................40 Manage Queue .......................................................................................................41 Verifying Source Files .............................................................................................41 Using the COBOL Analyzer Main Window ............................................................. 42 Using Tool Windows ............................................................................................... 52 Setting Options .......................................................................................................53 Working with Reports and Diagrams ......................................................................57 Using the Guide for a Tool ......................................................................................57 Purge Activity Log .................................................................................................. 57 Preparing Projects ........................................................................................... 58 Contents | 3 Registering Source Files ...................................................................................................58 Host Environment Source Compatibility .................................................................59 Setting Registration Options: Extensions Tab ........................................................ 61 Setting Registration Options: Source Files Tab ......................................................62 Creating New Source Files .....................................................................................62 Updating Source Files with Source Synchronization ..............................................63 Exporting Source Files from a Workspace .............................................................64 Deleting Objects from a Workspace .......................................................................64 Deleting a Workspace ............................................................................................ 64 Japanese Language Support ................................................................................. 64 Setting Up Projects ........................................................................................................... 64 Creating Projects ....................................................................................................65 Sharing Projects .....................................................................................................65 Protecting Projects ................................................................................................. 65 Moving or Copying Files into Projects .................................................................... 65 Including Referenced and Referencing Objects in a Project .................................. 66 Removing Unused Support Objects from a Project ................................................66 Emptying a Project ................................................................................................. 66 Deleting a Project ................................................................................................... 66 Verifying Source Files ....................................................................................................... 66 Enabling Parallel Verification .................................................................................. 67 Invalidating Files Before Reverification ...................................................................68 Setting Workspace Verification Options: Legacy Dialects Tab ............................... 68 Setting Workspace Verification Options: Settings Tab ............................................70 Setting Workspace Verification Options: Parallel Verification Tab .......................... 74 Setting Project Verification Options ........................................................................ 75 Identifying System Programs ................................................................................. 78 Specifying Boundary Decisions ..............................................................................78 Performing Post-Verification Program Analysis ...................................................... 79 Using Post-Verification Reports ........................................................................................ 80 Viewing Verification Reports ...................................................................................80
Recommended publications
  • PL/SQL Multi-Diagrammatic Source Code Visualization
    SQLFlow: PL/SQL Multi-Diagrammatic Source Code Visualization Samir Tartir Ayman Issa Department of Computer Science University of the West of England (UWE), University of Georgia Coldharbour Lane, Frenchay, Bristol BS16 1QY Athens, Georgia 30602 United Kingdom USA Email: [email protected] Email: [email protected] ABSTRACT: A major problem in software introducing new problems to other code that was perfectly maintenance is the lack of a well-documented source code working before. Therefore, educating programmers about in software applications. This has led to serious the behaviors of the target code before start modifying it difficulties in software maintenance and evolution. In is not an easy task. Source code visualization is one of the particular, for those developers who are faced with the heavily used techniques in the literature to overcome this task of fixing or modifying a piece of code they never lack of documentation problem, and its consequent even knew existed before. Database triggers and knowledge-sharing problem [7, 9]. procedures are parts of almost every application, are typical examples of badly documented software Therefore, this research aims at investigating the current components being the hidden back end of software database source code visualization tools and identifying applications. Source code visualization is one of the the main open issues for research. Consequently, the heavily used techniques in the literature so as to mostly used PL/SQL database programming language has familiarize software developers with new source code, been selected for a flowcharting reverse engineering and compensate for the knowledge-sharing problem. prototype tool called "SQLFlow". SQLFlow has been Therefore, a new PL/SQL flowcharting reverse designed, implemented, and tested to parse the target engineering tool, SQLFlow, has been designed and PL/SQL code stored in database procedures, analyze its developed.
    [Show full text]
  • A Prolog-Based Proof Tool for Type Theory Taλ and Implicational Intuitionistic-Logic
    A Prolog-based Proof Tool for Type Theory TAλ and Implicational Intuitionistic-Logic L. Yohanes Stefanus University of Indonesia Depok 16424, Indonesia [email protected] and Ario Santoso∗ Technische Universit¨atDresden Dresden 01187, Germany [email protected] Abstract Studies on type theory have brought numerous important contributions to computer science. In this paper we present a GUI-based proof tool that provides assistance in constructing deductions in type theory and validating implicational intuitionistic-logic for- mulas. As such, this proof tool is a testbed for learning type theory and implicational intuitionistic-logic. This proof tool focuses on an important variant of type theory named TAλ, especially on its two core algorithms: the principal-type algorithm and the type inhabitant search algorithm. The former algorithm finds a most general type assignable to a given λ-term, while the latter finds inhabitants (closed λ-terms in β-normal form) to which a given type can be assigned. By the Curry{Howard correspondence, the latter algorithm provides provability for implicational formulas in intuitionistic logic. We elab- orate on how to implement those two algorithms declaratively in Prolog and the overall GUI-based program architecture. In our implementation, we make some modification to improve the performance of the principal-type algorithm. We have also built a web-based version of the proof tool called λ-Guru. 1 Introduction In 1902, Russell revealed the inconsistency in naive set theory. This inconsistency challenged the foundation of mathematics at that time. To solve that problem, type theory was introduced [1, 5]. As time goes on, type theory becomes widely used, it becomes a logician's standard tool, especially in proof theory.
    [Show full text]
  • 7. Control Flow First?
    Copyright (C) R.A. van Engelen, FSU Department of Computer Science, 2000-2004 Ordering Program Execution: What is Done 7. Control Flow First? Overview Categories for specifying ordering in programming languages: Expressions 1. Sequencing: the execution of statements and evaluation of Evaluation order expressions is usually in the order in which they appear in a Assignments program text Structured and unstructured flow constructs 2. Selection (or alternation): a run-time condition determines the Goto's choice among two or more statements or expressions Sequencing 3. Iteration: a statement is repeated a number of times or until a Selection run-time condition is met Iteration and iterators 4. Procedural abstraction: subroutines encapsulate collections of Recursion statements and subroutine calls can be treated as single Nondeterminacy statements 5. Recursion: subroutines which call themselves directly or indirectly to solve a problem, where the problem is typically defined in terms of simpler versions of itself 6. Concurrency: two or more program fragments executed in parallel, either on separate processors or interleaved on a single processor Note: Study Chapter 6 of the textbook except Section 7. Nondeterminacy: the execution order among alternative 6.6.2. constructs is deliberately left unspecified, indicating that any alternative will lead to a correct result Expression Syntax Expression Evaluation Ordering: Precedence An expression consists of and Associativity An atomic object, e.g. number or variable The use of infix, prefix, and postfix notation leads to ambiguity An operator applied to a collection of operands (or as to what is an operand of what arguments) which are expressions Fortran example: a+b*c**d**e/f Common syntactic forms for operators: The choice among alternative evaluation orders depends on Function call notation, e.g.
    [Show full text]
  • A Survey of Hardware-Based Control Flow Integrity (CFI)
    A survey of Hardware-based Control Flow Integrity (CFI) RUAN DE CLERCQ∗ and INGRID VERBAUWHEDE, KU Leuven Control Flow Integrity (CFI) is a computer security technique that detects runtime attacks by monitoring a program’s branching behavior. This work presents a detailed analysis of the security policies enforced by 21 recent hardware-based CFI architectures. The goal is to evaluate the security, limitations, hardware cost, performance, and practicality of using these policies. We show that many architectures are not suitable for widespread adoption, since they have practical issues, such as relying on accurate control flow model (which is difficult to obtain) or they implement policies which provide only limited security. CCS Concepts: • Security and privacy → Hardware-based security protocols; Information flow control; • General and reference → Surveys and overviews; Additional Key Words and Phrases: control-flow integrity, control-flow hijacking, return oriented programming, shadow stack ACM Reference format: Ruan de Clercq and Ingrid Verbauwhede. YYYY. A survey of Hardware-based Control Flow Integrity (CFI). ACM Comput. Surv. V, N, Article A (January YYYY), 27 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn 1 INTRODUCTION Today, a lot of software is written in memory unsafe languages, such as C and C++, which introduces memory corruption bugs. This makes software vulnerable to attack, since attackers exploit these bugs to make the software misbehave. Modern Operating Systems (OSs) and microprocessors are equipped with security mechanisms to protect against some classes of attacks. However, these mechanisms cannot defend against all attack classes. In particular, Code Reuse Attacks (CRAs), which re-uses pre-existing software for malicious purposes, is an important threat that is difficult to protect against.
    [Show full text]
  • Control-Flow Analysis of Functional Programs
    Control-flow analysis of functional programs JAN MIDTGAARD Department of Computer Science, Aarhus University We present a survey of control-flow analysis of functional programs, which has been the subject of extensive investigation throughout the past 30 years. Analyses of the control flow of functional programs have been formulated in multiple settings and have led to many different approximations, starting with the seminal works of Jones, Shivers, and Sestoft. In this paper, we survey control-flow analysis of functional programs by structuring the multitude of formulations and approximations and comparing them. Categories and Subject Descriptors: D.3.2 [Programming Languages]: Language Classifica- tions—Applicative languages; F.3.1 [Logics and Meanings of Programs]: Specifying and Ver- ifying and Reasoning about Programs General Terms: Languages, Theory, Verification Additional Key Words and Phrases: Control-flow analysis, higher-order functions 1. INTRODUCTION Since the introduction of high-level languages and compilers, much work has been devoted to approximating, at compile time, which values the variables of a given program may denote at run time. The problem has been named data-flow analysis or just flow analysis. In a language without higher-order functions, the operator of a function call is apparent from the text of the program: it is a lexically visible identifier and therefore the called function is available at compile time. One can thus base an analysis for such a language on the textual structure of the program, since it determines the exact control flow of the program, e.g., as a flow chart. On the other hand, in a language with higher-order functions, the operator of a function call may not be apparent from the text of the program: it can be the result of a computation and therefore the called function may not be available until run time.
    [Show full text]
  • LIGO Data Analysis Software Specification Issues
    LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY - LIGO - CALIFORNIA INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Document Type LIGO-T970100-A - E LIGO Data Analysis Software Specification Issues James Kent Blackburn Distribution of this draft: LIGO Project This is an internal working document of the LIGO Project. California Institute of Technology Massachusetts Institute of Technology LIGO Project - MS 51-33 LIGO Project - MS 20B-145 Pasadena CA 91125 Cambridge, MA 01239 Phone (818) 395-2129 Phone (617) 253-4824 Fax (818) 304-9834 Fax (617) 253-7014 E-mail: [email protected] E-mail: [email protected] WWW: http://www.ligo.caltech.edu/ Table of Contents Index file /home/kent/Documents/framemaker/DASS.fm - printed July 22, 1997 LIGO-T970100-A-E 1.0 Introduction The subject material discussed in this document is intended to support the design and eventual implementation of the LIGO data analysis system. The document focuses on raising awareness of the issues that go into the design of a software specification. As LIGO construction approaches completion and the interferometers become operational, the data analysis system must also approach completion and become operational. Through the integration of the detector and the data analysis system, LIGO evolves from being an operational instrument to being an operational grav- itational wave detector. All aspects of software design which are critical to the specifications for the LIGO data analysis are introduced with the preface that they will be utilized in requirements for the LIGO data analysis system which drive the milestones necessary to achieve this goal. Much of the LIGO data analysis system will intersect with the LIGO diagnostics system, espe- cially in the areas of software specifications.
    [Show full text]
  • Obfuscating C++ Programs Via Control Flow Flattening
    Annales Univ. Sci. Budapest., Sect. Comp. 30 (2009) 3-19 OBFUSCATING C++ PROGRAMS VIA CONTROL FLOW FLATTENING T. L¶aszl¶oand A.¶ Kiss (Szeged, Hungary) Abstract. Protecting a software from unauthorized access is an ever de- manding task. Thus, in this paper, we focus on the protection of source code by means of obfuscation and discuss the adaptation of a control flow transformation technique called control flow flattening to the C++ lan- guage. In addition to the problems of adaptation and the solutions pro- posed for them, a formal algorithm of the technique is given as well. A prototype implementation of the algorithm presents that the complexity of a program can show an increase as high as 5-fold due to the obfuscation. 1. Introduction Protecting a software from unauthorized access is an ever demanding task. Unfortunately, it is impossible to guarantee complete safety, since with enough time given, there is no unbreakable code. Thus, the goal is usually to make the job of the attacker as di±cult as possible. Systems can be protected at several levels, e.g., hardware, operating system or source code. In this paper, we focus on the protection of source code by means of obfuscation. Several code obfuscation techniques exist. Their common feature is that they change programs to make their comprehension di±cult, while keep- ing their original behaviour. The simplest technique is layout transformation [1], which scrambles identi¯ers in the code, removes comments and debug informa- tion. Another technique is data obfuscation [2], which changes data structures, 4 T. L¶aszl¶oand A.¶ Kiss e.g., by changing variable visibilities or by reordering and restructuring arrays.
    [Show full text]
  • IDE-JASMIN an Interactive Graphical Approach for Parallel Programming in Scientific Computing
    IDE-JASMIN An Interactive Graphical Approach for Parallel Programming in Scientific Computing Liao Li, Zhang Aiqing, Yang Zhang, Wang Wei and Jing Cuiping Institute of Applied Physics and Computational Mathematics, No. 2, East Fenghao Road, Beijing, China Keywords: Parallel Programming, Integrator Component, Integrated Development Environment, Structured Flow Chart. Abstract: A major challenge in scientific computing lays in the rapid design and implementation of parallel applications for complex simulations. In this paper, we develop an interactive graphical system to address this challenge. Our system is based on JASMIN infrastructure and outstands three key features. First, to facilitate the organization of parallel data communication and computation, we encapsulate JASMIN integrator component models as user-configurable components. Second, to support the top-down design of the application, we develop a structured-flow-chart based visual programming approach. Third, to finally generate application code, we develop a powerful code generation engine, which can generate major part of the application code using information in flow charts and component configurations. We also utilize the FORTRAN 90 standard to assist users write numerical kernels. These approaches are integrated and implemented in IDE-JASMIN to ease parallel programming for domain experts. Real applications demonstrate that our approaches for developing complex numerical applications are both practical and efficient. 1 INTRODUCTION data access and manipulation, respectively. Using JASMIN, users need implement several subclasses “J Adaptive Structured Meshes applications of strategy classes in C++ language though they Infrastructure” (JASMIN) is an infrastructure for mainly focus on writing numerical subroutine in structured mesh and SAMR applications for FORTRAN. numerical simulations of complex systems on The limited popularization of JASMIN is parallel computers (Mo et al., 2010).
    [Show full text]
  • Control Flow Statements
    Control Flow Statements Christopher M. Harden Contents 1 Some more types 2 1.1 Undefined and null . .2 1.2 Booleans . .2 1.2.1 Creating boolean values . .3 1.2.2 Combining boolean values . .4 2 Conditional statements 5 2.1 if statement . .5 2.1.1 Using blocks . .5 2.2 else statement . .6 2.3 Tertiary operator . .7 2.4 switch statement . .8 3 Looping constructs 10 3.1 while loop . 10 3.2 do while loop . 11 3.3 for loop . 11 3.4 Further loop control . 12 4 Try it yourself 13 1 1 Some more types 1.1 Undefined and null The undefined type has only one value, undefined. Similarly, the null type has only one value, null. Since both types have only one value, there are no operators on these types. These types exist to represent the absence of data, and their difference is only in intent. • undefined represents data that is accidentally missing. • null represents data that is intentionally missing. In general, null is to be used over undefined in your scripts. undefined is given to you by the JavaScript interpreter in certain situations, and it is useful to be able to notice these situations when they appear. Listing 1 shows the difference between the two. Listing 1: Undefined and Null 1 var name; 2 // Will say"Hello undefined" 3 a l e r t( "Hello" + name); 4 5 name= prompt( "Do not answer this question" ); 6 // Will say"Hello null" 7 a l e r t( "Hello" + name); 1.2 Booleans The Boolean type has two values, true and false.
    [Show full text]
  • Control Flow Statements in Java Tutorials Point
    Control Flow Statements In Java Tutorials Point Cnidarian and Waldenses Bubba pillar inclemently and excorticated his mong troublesomely and hereabout. andRounding convective and conversational when energises Jodi some cudgelled Anderson some very prokaryote intertwiningly so wearily! and pardi? Is Gordon always scaphocephalous Go a certain section, commercial use will likely somewhere in java, but is like expression representation of flow control for loop conditionals are independent prognostic factors In this disease let's delve deep into Java Servlets and understand when this. Java Control Flow Statements CoreJavaGuru. Loops in Java Tutorialspointdev. Advantages of Java programming Language. Matlab object On what Kitchen Floor. The flow of controls cursor positioning of files correctly for the python and we represent the location of our java entry points and times as when exploits are handled by minimizing the. The basic control flow standpoint the typecase construct one be seen to realize similar to. Example- Circumference of Circle 227 x Diameter Here This technique. GPGPU GPU Java JCuda For example charity is not discount to control utiliza- com A. There are 3 types of two flow statements supported by the Java programming language Decision-making statements if-then they-then-else switch Looping. Java IfElse Tutorial W3Schools. Spring batch passing data between steps. The tutorial in? Remove that will need to point handling the tutorial will be used or run unit of discipline when using this statement, easing the blinking effect. Either expressed or database systems support for tcl as a controlling source listing applies to a sending field identifier names being part and production.
    [Show full text]
  • Design and Implementation of Single Node Noc Router Using Small Side
    ISSN 2278-3091 Volume 9, No.4, July – August 2020 Priti ShahaneInternational, International Journal Journal of Advanced of TrendsAdvanced in Computer Trends Science and in Engineering,Computer 9(4), Science July – August and 2020, Engineering 5700 – 5709 Available Online at http://www.warse.org/IJATCSE/static/pdf/file/ijatcse222942020.pdf https://doi.org/10.30534/ijatcse/2020/2 22942020 Design and Implementation of Single Node NoC Router using Small Side Buffer in Input Block and iSLIP Scheduler Priti Shahane1 1Symbiosis Institute of Technology, Symbiosis International (Deemed University) Pune, India, [email protected] as slave devices. The standard bus based device has a ABSTRACT limitation of scalability and turns into a bottleneck in a complex system. Shared bus for example AMBA bus as well as Network on chip (NoC) has been recommended as an IBM’s core connects becomes overloaded fast when more emerging alternative for scalability and performance needs of number of master modules is connected to it. To overcome next generation System on chips (SoCs). NoCs are actually this problem, Network on chip (NoC) is suggested as a forecast to solve the bus based interconnection problem of SoC communication subsystem among various IP cores of a SoC. NoC has emerged as an effective and scalable communication where large numbers of Intellectual property modules (IPs) are centric approach to solving the interconnection problem for incorporated on a single chip for much better results. NoC such architecture [1]-[3]. The NoC structure consists of 4 provides a solution for communication infrastructure for SoC. major components specifically routers, link and network The router is a foremost element of NoC which significantly interface and IP modules.
    [Show full text]
  • Computer Graphics
    ANSI X3.124.2 1988 3 American National Standard ADOPTED FOR USE BY THE for information systems - FEDERAL GOVERNMENT WLrt? computer graphics - PUB 120-1 graphical kernel system (GKS) SEE NOTICE ON INSIDE pascal binding X3.124.2-1988 ANSI american nationalana standards institute, me 1430 broadway, new york, new york 10018 . A8A3 NO.120-1 1988 This standard has been adopted for Federal Government use. Details concerning its use within the Federal Government are contained in Federal Information Processing Standards Publication 120-1, Graphical Kernel System (GKS). For a complete list of the publications available in the Federal Information Processing Standards Series, write to the Standards Processing Coordinator (ADP), National Institute of Standards and Technology, Gaithersburg, MD 20899. ANSI® X3.124.2-1988 American National Standard for information Systems - Computer Graphics - Graphical Kernel System (GKS) Pascal Binding Secretariat Computer and Business Equipment Manufacturers Association Approved February 18, 1988 American National Standards Institute, Inc Approval of an American National Standard requires verification by ANSI that the re¬ American quirements for due process, consensus, and other criteria for approval have been met by National the standards developer. Consensus is established when, in the judgment of the ANSI Board of Standards Review, Standard substantial agreement has been reached by directly and materially affected interests. Sub¬ stantial agreement means much more than a simple majority, but not necessarily unanim¬ ity. Consensus requires that all views and objections be considered, and that a concerted effort be made toward their resolution. The use of American National Standards is completely voluntary; their existence does not in any respect preclude anyone, whether he has approved the standards or not, from man¬ ufacturing, marketing, purchasing, or using products, processes, or procedures not con¬ forming to the standards.
    [Show full text]