Blue Dye Thinking

Total Page:16

File Type:pdf, Size:1020Kb

Blue Dye Thinking Blue dye thinking Blue pigments are so rare that people will go to the depths of the planet to create new ones, says Joshua Howgego Fade to grey: Van pressures found 500 kilometres Gogh’s The Starry beneath Earth’s surface, he was very Night would once much up for the challenge. have been bluer The colour blue has proved such a problem to recreate that most ancient cultures don’t seem to have had a word for it – Homer famously describes the “wine-dark” sea. Only the ancient Egyptians are known to have had one, and it’s probably no coincidence that they alone were able to produce a blue pigment. Egyptian blue was used widely until the Middle Ages when the recipe was lost and artists had to resort to either azurite or ultramarine (see “True blue”, page 48). Both were made from naturally occurring minerals, the latter from lapis lazuli. This was exorbitantly expensive, explaining why blue tended to be reserved for high-ticket items such as the Virgin Mary’s robes. Dobson, who is an artist as well THE STARRY NIGHT, JUNE1889, GOGH, VINCENT VAN/MUSEUM OF MODERN NEW ART, YORK, USA/BRIDGEMAN IMAGES as a scientist, has a long-running collaboration with Jo Volley at UCL’s Slade School of Fine Art. However, OU have probably seen The issue for artists; there are very few he was unaware of just how rare blue Great Wave off Kanagawa – the natural blue colours,” says materials pigments are until a few years ago. YJapanese woodblock print of a scientist David Dobson at University His epiphany came when he attended a huge, foaming wave about to engulf College London. These days, we have meeting of artists to describe his work a group of small boats. It’s no surprise plenty of blue dyes, which, being with one of Volley’s students hunting that the picture is mostly blue; it is a soluble, are ideal for colouring for new pigments in coal-mine sludge. wave after all. materials uniformly. But the insoluble The conference was abuzz with the However, it is part of a series of blue pigments needed for paints, discovery of a pigment called YInMn images called Thirty-six Views of Mount printing inks, ceramics and plastics blue. Volley explained that everyone Fuji by the artist Hokusai, and if you are still rare. That is why, when Dobson was excited about it because blues are flick through them, you will notice realised that he might be able to so rare. That got Dobson thinking about that nearly every one is predominantly create a new one based on a mineral another blue he had seen – a mineral blue. That might seem strange, until that can exist only at the immense that had been discovered deep in the you realise that in 1830, when Hokusai bowels of our planet. began printing these works, blue was It’s not easy to know exactly rather a new thing. The Prussian blue “ The ancient Greeks what rocks deep inside Earth are like he used had been introduced into Japan didn’t even have a word because they exist under extreme just a few years earlier, giving artists for blue – hence Homer’s pressures and change when brought their first blue pigment that was bright, to the surface as the minerals become attractive and lasting. famous ‘wine-dark’ sea” distorted. However, sometimes “Historically, blue has been a big diamonds are dug up that bear > 23/30 December 2017 | NewScientist | 47 TRUE BLUE AZURITE The first blue pigment. Originally made by were in a tetrahedral configuration, in grinding up the mineral azurite, a copper which each is surrounded by four other carbonate. Synthesised artificially from the atoms. “If you could put an iron ion 17th century. Can dehydrate into malachite, into a tetrahedral coordination, it another copper carbonate, which is green. should end up going blue,” he says. In January 2017, Dobson got a chance ULTRAMARINE to test this idea when he became the Made as early as 7000 BC in Afghanistan first scientist in residence at the Slade from lapis lazuli. Famously used on School. What he needed was a mineral Tutankhamun’s death mask, illuminated that would interact with iron ions to manuscripts and Italian panel paintings. give a crystal with the characteristic In the Renaissance it was more expensive tetrahedral configuration found in than gold. First synthesised in 1826. ringwoodite. First he looked at a series of minerals called spinels, which have PRUSSIAN BLUE a cubic crystalline structure. One The first modern synthetic pigment. of these, magnesium aluminate Discovered by accident in 1706, and (MgAl2O4), seemed perfect because its produced by the oxidation of ferrous aluminium ions have the same charge ferrocyanide salts. Exemplified by as the iron ions in ringwoodite. But Hokusai’s The Great Wave off Kanagawa when he tried baking it in an oven with and Van Gogh’s The Starry Night. It fades a source of iron, he found the iron kept to grey over time. slipping into the wrong size gaps – surrounding itself with eight oxygen COBALT BLUE atoms rather than four. “It ended up A mixture of cobalt, aluminium and AMSTERDAM/BRIDGEMAN IMAGES MILKMAID, VERMEER,THE JAN (JOHANNES) (1632-75)/RIJKSMUSEUM, just brown,” says Dobson. oxygen. Discovered by French chemist Then he hit on two other Louis Jacques Thénard in 1802. Famously Vivianite, the blue compounds, zinc silicate (ZnSiO4) used in Bristol blue glass. The pigment is used by Vermeer in and zinc germanate (ZnGeO4), very stable but costly, and cobalt is toxic The Milkmaid, and which contain zinc in just the when inhaled or ingested. azurite (left) both right configuration. When he tried turn green in time substituting the zinc for iron, lo and YINMN BLUE behold he got two new blues. The Discovered by Mas Subramanian at Oregon silicate is a soft, greenish blue that State University in 2009. An inorganic Dobson describes as “duck egg”. pigment, prepared by heating oxides of The germanate gives a richer yttrium, indium and manganese to around “deep water blue”. 1200°C. It is chemically stable, non-toxic A manufacturer of fine-art and does not fade. AZURITE/UHA/UIG/BRIDGEMAN IMAGES products has already shown interest in commercialising his blues. But there is still a hurdle to overcome. At “inclusions” – minerals within them possible to capture its blueness by the moment, when the compound that are trapped at the pressures they engineering a crystal that mimicked Dobson has created is ground into a experience during formation. In 2014, it at surface pressure. fine powder to suspend into a liquid Graham Pearson at the University of You can think of a crystal a bit like a paint, its colour dims. That’s because it Alberta, Canada, found such a diamond 3D version of the colourful, tessellated contains too little iron. But if he adds containing the mineral ringwoodite. tiling often seen in Islamic buildings. too much, the blue will disappear. Geologists were fascinated because Each atom in the crystal structure is The balance of iron and zinc in the it addressed a long-running debate like a tile that must fit snugly next to its compound needs to be just right. about where Earth’s water came from; neighbours. Dobson made an educated “That’s what I’m working on now: it is thought that ringwoodite in the guess that the key to ringwoodite’s trying to see how much iron I can mantle contains enough water to fill blueness was the iron atoms. These dissolve into these structures and so the surface oceans three times over. how intense I can get the blue,” says But Pearson’s discovery intrigued “ Unfortunately, a student Dobson. “Unfortunately, a student Dobson for an entirely different recently blew up my furnace, so that’s reason: the mineral was blue. recently blew up my hampering progress.” Now, ringwoodite’s structure would furnace, so that’s But then, no one said making a new collapse and lose its intense colour blue would be easy. ■ at normal surface pressures, but hampering progress” Dobson wondered if it might be Joshua Howgego has got the blues 48 | NewScientist | 23/30 December 2017 .
Recommended publications
  • Boosting the Activity of Prussian-Blue Analogue As Efficient Electrocatalyst
    www.nature.com/scientificreports OPEN Boosting the activity of Prussian- blue analogue as efcient electrocatalyst for water and urea oxidation Yongqiang Feng 1*, Xiao Wang1, Peipei Dong1, Jie Li2, Li Feng1, Jianfeng Huang1*, Liyun Cao1, Liangliang Feng1, Koji Kajiyoshi3 & Chunru Wang 2* The design and fabrication of intricate hollow architectures as cost-efective and dual-function electrocatalyst for water and urea electrolysis is of vital importance to the energy and environment issues. Herein, a facile solvothermal strategy for construction of Prussian-blue analogue (PBA) hollow cages with an open framework was developed. The as-obtained CoFe and NiFe hollow cages (CFHC and NFHC) can be directly utilized as electrocatalysts towards oxygen evolution reaction (OER) and urea oxidation reaction (UOR) with superior catalytic performance (lower electrolysis potential, faster reaction kinetics and long-term durability) compared to their parent solid precursors (CFC and NFC) and even the commercial noble metal-based catalyst. Impressively, to drive a current density of 10 mA cm−2 in alkaline solution, the CFHC catalyst required an overpotential of merely 330 mV, 21.99% lower than that of the solid CFC precursor (423 mV) at the same condition. Meanwhile, the NFHC catalyst could deliver a current density as high as 100 mA cm−2 for the urea oxidation electrolysis at a potential of only 1.40 V, 24.32% lower than that of the solid NFC precursor (1.85 V). This work provides a new platform to construct intricate hollow structures as promising nano-materials for the application in energy conversion and storage. Hydrogen energy has been considered as one of the most promising alternatives to traditional fossil fuels such as coal and oil which have inevitably involved in the tough environmental and unsustainable energetic issues1,2.
    [Show full text]
  • Yinmn Blue Revolutionary Blue for Industrial and Artist Color Materials
    YInMn Blue Revolutionary Blue for Industrial and Artist Color Materials In September 2017, The Shepherd Color Company The high temperature calcination production process makes announced the groundbreaking "YInMn Blue" technology for the Blue 10G513 highly inert. While it is highly IR refl ective, commercial sale for use in industrial coatings and plastics. it is extremely opaque in the visible and UV parts of the As of May 2020, YInMn has U.S. EPA TSCA approval. This solar spectrum. The inertness means that it can be used in means that YInMn blue is now fully approved for use in a wide range of coatings and plastics and have excellent industrial applications, including artist color materials. weathering properties. Commercially known as Blue 10G513, this pigment Blue 10G513 is ideal for: represents one example of Shepherd Color’s dedication • High-performance IR-refl ective building products to providing new and impactful pigment chemistries to the - Pre-painted metal coatings, plastics and other materials markets. YInMn Blue - Roofi ng granules 10G513 follows our one-of-a-kind NTP Yellow and RTZ - Polymeric roofi ng Orange, which together push the edge of the durable color - Roofi ng tiles envelope. • Anti-counterfeiting features • Glass enamels The new Blue is revolutionary because it is a new pigment - Spandrel and decorative chemistry that expands the range of colors available that • Artist color materials stay cooler when exposed to the sun, allowing building material manufacturers to meet regulatory requirements and building owners to potentially save energy. ABOUT THE SHEPHERD COLOR COMPANY Founded in 1981, The Shepherd Color Company produces a wide range of high-performance Complex Inorganic Color Pigments (CICPs) used in a variety of industries.
    [Show full text]
  • Pale Intrusions Into Blue: the Development of a Color Hannah Rose Mendoza
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2004 Pale Intrusions into Blue: The Development of a Color Hannah Rose Mendoza Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] THE FLORIDA STATE UNIVERSITY SCHOOL OF VISUAL ARTS AND DANCE PALE INTRUSIONS INTO BLUE: THE DEVELOPMENT OF A COLOR By HANNAH ROSE MENDOZA A Thesis submitted to the Department of Interior Design in partial fulfillment of the requirements for the degree of Master of Fine Arts Degree Awarded: Fall Semester, 2004 The members of the Committee approve the thesis of Hannah Rose Mendoza defended on October 21, 2004. _________________________ Lisa Waxman Professor Directing Thesis _________________________ Peter Munton Committee Member _________________________ Ricardo Navarro Committee Member Approved: ______________________________________ Eric Wiedegreen, Chair, Department of Interior Design ______________________________________ Sally Mcrorie, Dean, School of Visual Arts & Dance The Office of Graduate Studies has verified and approved the above named committee members. ii To Pepe, te amo y gracias. iii ACKNOWLEDGMENTS I want to express my gratitude to Lisa Waxman for her unflagging enthusiasm and sharp attention to detail. I also wish to thank the other members of my committee, Peter Munton and Rick Navarro for taking the time to read my thesis and offer a very helpful critique. I want to acknowledge the support received from my Mom and Dad, whose faith in me helped me get through this. Finally, I want to thank my son Jack, who despite being born as my thesis was nearing completion, saw fit to spit up on the manuscript only once.
    [Show full text]
  • Origin of the Exotic Blue Color of Copper-Containing Historical
    Article pubs.acs.org/IC Origin of the Exotic Blue Color of Copper-Containing Historical Pigments Pablo García-Fernandez,́ * Miguel Moreno, and JoséAntonio Aramburu Departamento de Ciencias de la Tierra y Física de la Materia Condensada, Universidad de Cantabria, Avenida de los Castros s/n, 39005 Santander, Spain *S Supporting Information ABSTRACT: The study of chemical factors that influence pigment coloring is a field of fundamental interest that is still dominated by many uncertainties. In this Article, we investigate, by means of ab initio calculations, the origin of the unusual bright blue color displayed by historical Egyptian Blue (CaCuSi4O10) and Han Blue (BaCuSi4O10) pigments that is surprisingly not found in other 6− compounds like BaCuSi2O6 or CaCuO2 containing the same CuO4 chromophore. We show that the differences in hue between these systems are controlled by a large red-shift (up to 7100 cm−1) fi 6− produced by an electrostatic eld created by a lattice over the CuO4 chromophore from the energy of the 3z2-r2 → x2-y2 transition, a nonlocal phenomenon widely ignored in the realm of transition metal chemistry and strongly dependent upon the crystal structure. Along 4− this line, we demonstrate that, although SiO4 units are not involved in the chromophore itself, the introduction of sand to create CaCuSi4O10 plays a key role in obtaining the characteristic hue of the Egyptian Blue pigment. The results presented here demonstrate the opportunity for tuning the properties of a given chromophore by modifying the structure of the insulating lattice where it is located. ■ INTRODUCTION even then they remained rare.
    [Show full text]
  • A New Evaluation of the Colors of the Sky for Artists and Designers
    Sky Blue, But What Blue? A New Evaluation of the Colors of the Sky for Artists and Designers Ken Smith* Faculty of Art and Design, Monash University, Melbourne, Victoria, Australia Received 28 April 2006; accepted 21 June 2006 Abstract: This study describes a process of relating the solid that is capable of representing most of the colors of perceptual analysis of the colors of the terrestrial atmos- the sky using four of these pigments is proposed. phere to currently available pigments used in artists’ painting systems. This process sought to discover how the colors of the sky could be defined and simulated by these AN EMPIRICAL METHOD FOR ANALYZING pigments. The author also describes how confusion over SKY COLOR the bewildering choice of suitable pigments on offer in the market place can be clarified. Ó 2006 Wiley Periodicals, Science can explain why the earth’s atmosphere appears Inc. Col Res Appl, 32, 249 – 255, 2007; Published online in Wiley Inter- blue, the preferential scattering by air molecules of short 2 Science (www.interscience.wiley.com). DOI 10.1002/col.20291 wavelength light photons emitted from the sun. For artists the consequential questions are often more likely to Key words: art; design; sky color; perceived color; envi- be not why, but rather what; what are the blue colors that ronment; pigments; painting systems are perceived in the sky? These were the fundamental questions that lead to a reappraisal of how the colors of the sky can be represented by the pigments used in con- INTRODUCTION temporary painting systems. Before attempting to answer this question, a number of parameters had to be created.
    [Show full text]
  • The Color and Electronic Configurations of Prussian Blue
    Created by Erica Gunn at Simmons College ([email protected]) and posted on VIPEr (www.ionicviper.org ) on 1/5/15. Copyright Erica Gunn 2015. This work is licensed under the Creative Commons Attribution Non-commercial Share Alike License. To view a copy of this license visit http://creativecommons.org/about/license/ . The Color and Electronic Configurations of Prussian Blue Read the paper cited below and answer the discussion questions before class on _______ . Robin, M.L. The Color and Electronic Configurations of Prussian Blue. Inorganic Chemistry, 1, 1962, pp 337-342. DOI: 10.1021/ic50002a028 Discussion Questions: II III III 1. The authors mention that Prussian Blue, [K,Fe ,Fe ](CN) 6, can be synthesized from either Fe (ClO 4)3 II II III and K 4Fe (CN) 6 or from Fe (ClO 4)2 and K 3Fe (CN) 6. They also report the results of base hydrolysis of Prussian Blue. What do these two experiments tell us about the structure of the pigment, and why is this significant? 2. Draw the crystal field splitting diagram for high and low spin versions of Fe II and Fe III ions that have an octahedral coordination geometry. The paper states that there are two types of iron ion in the crystal structure of Prussian Blue. What is the difference between them? Which do you expect to have the larger ∆oct , based on what you know about the spectrochemical series? 3. How do the authors use the distinction between allowed and forbidden transitions to confirm the identity of Prussian Blue as ferric ferrocyanide? 4.
    [Show full text]
  • Color Chart Colorchart
    Color Chart AMERICANA ACRYLICS Snow (Titanium) White White Wash Cool White Warm White Light Buttermilk Buttermilk Oyster Beige Antique White Desert Sand Bleached Sand Eggshell Pink Chiffon Baby Blush Cotton Candy Electric Pink Poodleskirt Pink Baby Pink Petal Pink Bubblegum Pink Carousel Pink Royal Fuchsia Wild Berry Peony Pink Boysenberry Pink Dragon Fruit Joyful Pink Razzle Berry Berry Cobbler French Mauve Vintage Pink Terra Coral Blush Pink Coral Scarlet Watermelon Slice Cadmium Red Red Alert Cinnamon Drop True Red Calico Red Cherry Red Tuscan Red Berry Red Santa Red Brilliant Red Primary Red Country Red Tomato Red Naphthol Red Oxblood Burgundy Wine Heritage Brick Alizarin Crimson Deep Burgundy Napa Red Rookwood Red Antique Maroon Mulberry Cranberry Wine Natural Buff Sugared Peach White Peach Warm Beige Coral Cloud Cactus Flower Melon Coral Blush Bright Salmon Peaches 'n Cream Coral Shell Tangerine Bright Orange Jack-O'-Lantern Orange Spiced Pumpkin Tangelo Orange Orange Flame Canyon Orange Warm Sunset Cadmium Orange Dried Clay Persimmon Burnt Orange Georgia Clay Banana Cream Sand Pineapple Sunny Day Lemon Yellow Summer Squash Bright Yellow Cadmium Yellow Yellow Light Golden Yellow Primary Yellow Saffron Yellow Moon Yellow Marigold Golden Straw Yellow Ochre Camel True Ochre Antique Gold Antique Gold Deep Citron Green Margarita Chartreuse Yellow Olive Green Yellow Green Matcha Green Wasabi Green Celery Shoot Antique Green Light Sage Light Lime Pistachio Mint Irish Moss Sweet Mint Sage Mint Mint Julep Green Jadeite Glass Green Tree Jade
    [Show full text]
  • Scientific Dating of Paintingsdr. Nicholas
    Scientific dating Dr. Nicholas of paintings Eastaugh 30 ISSUE 1 MARCH 2006 Scientific dating of paintings is used by a wide range of related fields to provide independent means of verification. This paper outlines the principle approaches that are used, some problems with current methodology, and a potential solution through the application of simple mathematical modelling to the occurrences of materials and techniques in paintings. Offering a means of determining likelihood, this approach also opens up the possibility of studying economic factors involved in use and disuse of historical pigments. t the present time science has no reliable This paper discusses this current methodology, and accurate means for the absolute outlines the basic thinking behind it and the mode Adating of a painting. Calendrical methods of application.We will then examine the validity of such as the familiar radiocarbon dating, or likewise some of its assumptions and show that a major dendrochronology (‘tree-ring dating’)1 are element – that of ‘terminal’ dates for pigments – is unsuitable. Instead, much of the scientific work flawed, and needs replacing by a better concept; determining dates of paintings takes a sideways one describing rates of growth and decline of use. approach, relying on the identification of key We will also see how this naturally leads to new pigments or techniques whose dates of ways of studying the economic history of pigments. introduction or disuse are known. For example, a However first, since we are going to use Prussian painting that looks like a Rembrandt can’t be by blue – iron(III) hexacyanoferrate(II) – as a major him if it contains the pigment Prussian blue, example, we need some background on its because that compound wasn’t available until well discovery.
    [Show full text]
  • George Washington Carver and the Ancient Egyptian Connection
    Professional Agricultural Workers Journal Volume 3 Number 1 Professional Agricultural Workers Article 3 Journal (PAWJ) 9-25-2015 George Washington Carver and the Ancient Egyptian Connection Jon Adkins Elements 4 Nature, [email protected] Follow this and additional works at: https://tuspubs.tuskegee.edu/pawj Part of the African Languages and Societies Commons, Agriculture Commons, Plant Sciences Commons, and the Social and Behavioral Sciences Commons Recommended Citation Adkins, Jon (2015) "George Washington Carver and the Ancient Egyptian Connection," Professional Agricultural Workers Journal: Vol. 3: No. 1, 3. Available at: https://tuspubs.tuskegee.edu/pawj/vol3/iss1/3 This Reflections and Commentaries is brought to you for free and open access by Tuskegee Scholarly Publications. It has been accepted for inclusion in Professional Agricultural Workers Journal by an authorized editor of Tuskegee Scholarly Publications. For more information, please contact [email protected]. GEORGE WASHINGTON CARVER LIVES ON: CHANGING THE WORLD IN UNCOMMON WAYS LECTURE PROFESSIONAL AGRICULTURAL WORKERS CONFERENCE, 2014 GEORGE WASHINGTON CARVER AND THE ANCIENT EGYPTIAN CONNECTION *Jon Adkins1 1Elements 4 Nature, Laurel, MD *Email of author: [email protected] Good morning! My name is Jon Adkins, the founder of Elements 4 Nature. We currently sell some of the original George Washington Carver products that he discovered from the peanut. As you know, Carver produced over 300 products from the peanut while teaching at Tuskegee Institute. Hopefully, before my presentation is over, I will have time to tell you how we are able to sell George Washington Carver original products. In the meantime, I will give you a chance to touch and feel the two most popular original products that Carver created.
    [Show full text]
  • Rare Earth Elements in the Periodic Table ? Why ? 1 18 2 13 14 15 16 17
    LECTURE SCHEDULE Date Topic 1. Wed 28.10. Course Introduction & Short Review of the Elements 2. Fri 30.10. Periodic Properties & Periodic Table & Main Group Elements (starts) 3. Fri 06.11. Short Survey of the Chemistry of Main Group Elements (continues) 4. Wed 11.11. Ag, Au, Pt, Pd & Catalysis (Antti Karttunen) 5. Fri 13.11. Redox Chemistry 6. Mon 16.11. Transition Metals: General Aspects & Crystal Field Theory 7. Wed 18.11. Zn, Ti, Zr, Hf & Atomic Layer Deposition (ALD) 8. Fri 20.11. V, Nb, Ta & Metal Complexes and MOFs 9. Mon 23.11. Cr, Mo, W & 2D materials 10 Wed 25.11. Mn, Fe, Co, Ni, Cu & Magnetism and Superconductivity 11. Fri 27.11. Resources of Elements & Rare/Critical Elements & Element Substitutions 12. Mon 30.11. Lanthanoids + Actinoids & Pigments & Luminescence & Upconversion 13. Wed 02.12. Inorganic Materials Chemistry Research EXAM: Thu Dec 10, 9:00-12:00 (IN ZOOM) PRESENTATION TOPICS/SCHEDULE Wed 18.11. Ti: Ahonen & Ivanoff Mon 23.11. Mo: Kittilä & Kattelus Wed 25.11. Mn: Wang & Tran Ru: Mäki & Juopperi Fri 27.11. In: Suortti & Räsänen Te: Kuusivaara & Nasim Mon 30.11. Eu: Morina U: Musikka & Seppänen QUESTIONS: Lecture 12 List all the possible lanthanoid ions that have 7 f electrons. List all the possible lanthanoid ions that have 14 f electrons. Why Eu has so low melting point? Which way you prefer to place the rare earth elements in the periodic table ? Why ? 1 18 2 13 14 15 16 17 3 4 5 6 7 8 9 10 11 12 f-BLOCK TRANSITION METALS - lanthanides [elements after La: Ce Lu] - actinides [elements after Ac: Th Lr] - lanthanoids (Ln): La + Lanthanides - rare earth elements (RE): Ln + Y + Sc ABUNDANCES RARE EARTH ELEMENTS (= METALS) Discovery history starts from and ends in Finland: - Johan Gadolin (prof.
    [Show full text]
  • Watercolor Substitution Cheat Sheet * = Lindsay Recommended Color
    Watercolor Substitution Cheat Sheet * = Lindsay Recommended color *Phthalo Blue (Strong cool-green leaning-blue) Prussian Blue (also look for that pigment) AKA Pthalo blue GS Cyan Blue or green shade. Cerulean Blue (if it looks dark: Mission Gold) Helio Cerulean **This colors is great for mixing green when Winsor Blue (Winsor & Newton) paired with a cool yellow. Intense Blue (Winsor & Newton/Cotman) Azure (Yarka/White Nights) Turquoise Indigo (deep cool blue grey) Indanthrone Blue Payne's Grey+Prussian Blue *Ultramarine Blue (warm, purple bias red) Colbalt Blue Pthalo blue Red Shade (not my fave substitute) **This color is good for mixing violet with a cool Poland Blue red or gray with burnt sienna. ***This color granulates for textured washes. Cerulean Blue (Less intense cool blue) Manganese Blue Phthalo blue + white Cinerous Blue (Sennelier) *Quinacridone Rose (Cool red with violet Alizarian Crimson undertones) Carmine **This color makes lovely purples and mauve Crimson lake with blues. Rose Madder (weaker than AZ) *Cadmium Red or Cadmium red light Vermilion (Warm red with orange undertones) Scarlet Napthol Red **This color makes beautiful oranges when mixed Bright Red/ Brilliant Red with warm yellows. Pyrrole Red Permanent Rose Magenta *Cadmium Yellow (warm yellow) Gamboge Cadmium yellow medium/Cadmium yellow deep Indian Yellow Permanent yellow deep **This color makes beautiful oranges when mixed with warm reds or peach with cool reds *Hansa Yellow Light (cool yellow) Lemon Yellow (cool yellow) Cadmium yellow light, pale or Cadmium
    [Show full text]
  • Ancient Egyptian Colours As a Contemporary Fashion
    Journal of the International Colour Association (2012): 9, 32-47 El-Mageed & Ibrahim Ancient Egyptian colours as a contemporary fashion Esmat Abd El-Mageed and Sahar Ahmed Ibrahim Faculty of Applied Arts, University of Helwan, Cairo, Egypt Email: [email protected] There have been numerous terms used by historians to indicate how much Western arts and crafts have been influenced by Ancient Egypt over the years. ‘Egyptomania’ is a term that was first used in France in the 1990s, following on from Western fascination with Pharonic ornamental arts. This study initially analyses the colours of a number of jewellery artworks that were discovered in Tutankhamun’s tomb. From this, a contemporary colour palette based on the Ancient Egyptian has been devised and applied in the design of a summer season’s fashion collection. In all, eight designs have been proposed that mix colour symbolism of Ancient Egyptian arts with its significance at the present time. Received 09 February 2010; revised 28 July 2010; accepted 26 August 2010 Published online: 01 November 2012 Introduction In 1922, a wealth of history was also uncovered with the discovery of the tomb of Tutankhamun, an Egyptian pharaoh of the 18th dynasty (ruled ca. 1333 BC–1323 BC in conventional chronology). This discovery sparked a renewed public interest in Ancient Egypt and exhibits of artifacts from his tomb have toured the world. ‘Egyptomania’ is a term that was first used in the 1990s by Christine Ziegler, the manager of the Egyptian Antiquities Department of the Louvre Museum in France, following on from the Western fascination with Pharonic ornamental arts.
    [Show full text]