Implication Des Microorganismes Dans Les Biotransformations Et Processus De Transfert Des Métaux Et Métalloïdes Dans Les Environnements Contaminés Par Les Mines

Total Page:16

File Type:pdf, Size:1020Kb

Implication Des Microorganismes Dans Les Biotransformations Et Processus De Transfert Des Métaux Et Métalloïdes Dans Les Environnements Contaminés Par Les Mines UNIVERSITE MONTPELLIER Habilitation à Diriger des Recherches Spécialité : Sciences de la Terre et de l’Environnement Implication des microorganismes dans les biotransformations et processus de transfert des métaux et métalloïdes dans les environnements contaminés par les mines par Odile BRUNEEL Chargée de Recherches à l’IRD HydroSciences Montpellier UMR 5569 Soutenue le 29 mars 2016 devant le jury composé de Bernard OLLIVIER Directeur de Recherche IRD, UMR 7294, Marseille Rapporteur Philippe NORMAND Directeur de Recherche CNRS UMR 5557, Lyon Rapporteur Pascale BAUDA Professeur Université de Lorraine, UMR 7360, Metz Rapporteure Pascal SIMONET Directeur de Recherche CNRS, UMR 5005, Lyon Examinateur Michel LEBRUN Professeur Université de Montpellier, UMR LSTM Examinateur Ecole Doctorale : Systèmes Intégrés en Biologie, Agronomie, Géosciences, HydroSciences, Environnement SOMMAIRE I CURRICULUM VITAE....................................................................................................... 3 Diplômes et formation......................................................................................................... 3 Parcours professionnel........................................................................................................ 3 Responsabilités récentes, animations scientifiques, comités............................................ 4 Collaborations récentes....................................................................................................... 4 Evaluation de la recherche.................................................................................................. 5 II CONTRATS DE RECHERCHE ET FINANCEMENTS ............................................... 6 III ENCADREMENT D’ETUDIANTS ET ENSEIGNEMENT…...................................... 8 Encadrement d’étudiants.................................................................................................... 8 Activité d’enseignement....................................................................................................... 9 IV PUBLICATIONS ET COMMUNICATIONS............................................................... 10 Synthèse de la production scientifique............................................................................. 10 Publications........................................................................................................................ 11 Communications, conférences et poster........................................................................... 14 V ACTIVITE DE RECHERCHE…......................................................................................15 Préambule ........................................................................................................................... 15 Travaux antérieurs ............................................................................................................ 19 Travaux actuels................................................................................................................... 47 VI PROJET DE RECHERCHE .......................................................................................... 55 VII REFERENCES BIBLIOGRAPHIQUES……….…..................................................... 60 VIII ANNEXES : SELECTION DE 5 PUBLICATIONS……….……............................. 67 2 I CURRICULUM VITAE Odile BRUNEEL IRD-CR1 Née le 1er avril 1973 [email protected] Mariée, un enfant Affectation actuelle : En expatriation depuis février 2012 au Laboratoire de Microbiologie et Biologie Moléculaire Université Mohammed V, Faculté des Sciences, Av Ibn Batouta BP1014 Rabat, Maroc Laboratoire HydroSciences Montpellier, UMR5569 (CNRS/IRD/UM) Université de Montpellier, CC0057 (MSE), 163 rue Auguste Broussonet 34090 Montpellier, France Domaine de recherche : Implication des microorganismes dans les biotransformations et processus de transfert des métaux et métalloïdes dans les environnements contaminés par les mines DIPLOMES ET FORMATIONS • 2004 : Doctorat en Sciences de l’eau dans l’Environnement Continental, Ecole Doctorale Sciences de la Terre et de l’Eau. Laboratoire HydroSciences Montpellier. Université Montpellier II • 2001 : DESS Diagnostic, Prévention et Traitements en Environnement, Faculté Libre des Sciences de Lille, Mention Bien • 1997 : DEA de Biologie, option Biologie des Protistes de Clermont-Ferrand I et II PARCOURS PROFESSIONNEL Recherche • Février 2012 - aujourd’hui : en affectation au sein du Laboratoire de Microbiologie et Biologie Moléculaire, Faculté des Sciences, Université Mohammed V, Rabat, Maroc • Depuis Octobre 2008: Chargée de Recherches 1ère classe à l’IRD • Octobre 2004 - aujourd’hui : Chargée de Recherches à l’IRD au sein du Laboratoire HydroSciences Montpellier (UMR 5569, CNRS-Université Montpellier-IRD) • 2001-2004 : Recherche en géomicrobiologie à l’Université Montpellier II dans le cadre de ma thèse. Laboratoire HydroSciences Montpellier, UMR 5569 3 Activités salariées • 1999-2000 : Professeur des écoles en CE2 à Djibouti (Afrique de l’Est) dans le cadre d’une coopération civile d’aide au développement RESPONSABILITES RECENTES, ANIMATIONS SCIENTIFIQUES, COMITES • Représentante par Intérim de l’IRD au Maroc (août 2014-aujourd’hui) • Membre du comité de pilotage du réseau SICMED Mistrals « Activités minières dans le bassin méditerranéen – Interactions contaminants métalliques / écosystèmes − Interfaces avec la santé, l’environnement » • Membre élue depuis 2012 de la commission scientifique sectorielle n°1 (CSS1, Sciences physiques et chimiques de l’environnement planétaire) de l’IRD COLLABORATIONS RECENTES Instituto de Biologıa Molecular y Biotecnologıa (Volga Iñiguez), Facultad de Ciencias Puras, Universidad Mayor de San Andres, C. 27 Campus Universitario Cota Cota, La Paz, Bolivie (laboratoire soutenus par le DSF de l'IRD dans le cadre du programme "jeunes équipes") Laboratoire de Microbiologie et Biologie Moléculaire (LMBM, L. Sbabou, J. Aurag et A. Filali-Maltouf), Faculté des Sciences, Université Mohamed V, Rabat, Maroc Laboratoire de Physiologie et Biotechnologie Végétale (LPBV, A. Smouni, M. Fahr), Faculté des Sciences, Université Mohamed V, Rabat, Maroc Equipe de recherche E2G, (R. Hakkou) Département des Sciences de la terre, Faculté des Sciences et Techniques de Guéliz, Université de Cadi Ayyad, Avenue Abdelkarim Elkhattabi, Gueliz, P.O. Box 549, Marrakech, Maroc Laboratoire Géoexplorations et Géotechniques (A. Ddekayir), Département de Géologie, Faculté des Sciences, BP. 11201, Zitoune, Meknès, Maroc Institut de Minéralogie et de Physique des milieux Condensés (IMPMC, G. Morin), UMR CNRS 7590, UPMC, 4 Place Jussieu, 75252 Paris, France Laboratoire AMPERE (E. Navarro), UMR CNRS 5005, Ecole Centrale de Lyon, Université de Lyon, 36 avenue Guy de Collongue, 69134 Ecully, France et Laboratoire des Symbioses Tropicales et Méditerranéennes, LSTM, UMR 113, TA A-82/J Campus de Baillarguet, 34398 Montpellier, France Laboratoire Biochimie et Physiologie Moléculaire des Plantes (BPMP, Patrick Doumas), 2, place Pierre Viala, 34060 Montpellier, France Equipe Environnement et Microbiologie (EEM, R. Duran, B. Lauga), UMR 5254 IPREM- EEM, Pau, France Laboratoire de Génétique Moléculaire, Génomique et Microbiologie (GMGM, P. Bertin, F. Ploetze), UMR 7156, Univ Louis Pasteur–CNRS, Strasbourg, France 4 EVALUATION DE LA RECHERCHE Participaption à un jury de thèse L. Giloteaux en décembre 2009 Participation à différents jurys de Licence, M1 et M2 tous les ans depuis 2005 Evaluations pour les journaux: FEMS Microbiology Ecology, Microbial Ecology, Extremophiles, Environmental Science and Pollution Research, Geomicrobioloy Journal, Journal of Applied Microbiology, PLOS ONE Evaluations de projets : ANR (Blanc, JC), Ec2co (Microbiologie environnementale), FRB (Fondation pour la recherche sur la biodiversité 5 II CONTRATS DE RECHERCHE ET FINANCEMENT Contrats de recherches nationaux et internationaux • 2003-2005. Projet labélisé RITEAU (Ministère de l’Industrie, 677 k€). As5 : Mise au point d’un procédé biologique de potabilisation des eaux arséniées. Partenaires : IRH Environnement, BEFS-PEC, LMCP UMR 7590 (G. Morin). • 2004-2006. Projet ECODYN (AC, FNS, ECCO, 30 k€). « Processus de transfert et écotoxicité de l’arsenic et des métaux associés dans un hydrosystème en aval d’un drainage minier. Contrôles physico-chimiques et microbiologiques ». Partenaires : UMR 7590-CNRS- Universités Paris 6 et 7-IPG (G. Morin), LCABIE, UMR 5034, CNRS Université de Pau (O. Donard), LEM, Université de Pau (R. Durand), CB UPR 9043, Marseille (V. Bonnefoy), INERIS (J-M. Porcher), BRGM (M. Motelica), ECOLAG, UMR 5119 CNRS (C. Aliaume) • 2004-2006. Projet PICS CNRS (21 k€), Université de Huelva, Espagne). « Signature de l’activité bactérienne dans les précipités riches en fer des drainages miniers acides ». Partenaires: Departamento de Geologia, Universidad de Huelva, Espagne (JM. Nieto) • 2006-2007. PAI Protea (Ministères des Affaires Etrangères et de l’Education Nationale, de l’Enseignement Supérieur et de la Recherche, 10 k€) avec l’Afrique du Sud. « Metal and metalloid biotransformations in South African acid mine drainage systems”. Partenaires : Department of Biotechnology (D. Cowan), Department of Chemistry (L. Petrik) University of Western Cape, Capetown, Afrique du Sud • 2006-2008. Projet EC2CO-3BIO (INSU, CNRS, 40 k€) « Biologie, biominéraux et biotransformations dans les eaux acides minières ». Partenaires : IMPMC, UMR CNRS7590, Paris (G. Morin), IPREM, UMR 5254, CNRS- Université de Pau (R. Duran)
Recommended publications
  • Thermodynamics of DNA Binding by DNA Polymerase I and Reca
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2014 Thermodynamics of DNA Binding by DNA Polymerase I and RecA Recombinase from Deinococcus radiodurans Jaycob Dalton Warfel Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Warfel, Jaycob Dalton, "Thermodynamics of DNA Binding by DNA Polymerase I and RecA Recombinase from Deinococcus radiodurans" (2014). LSU Doctoral Dissertations. 2382. https://digitalcommons.lsu.edu/gradschool_dissertations/2382 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. THERMODYNAMICS OF DNA BINDING BY DNA POLYMERASE I AND RECA RECOMBINASE FROM DEINOCOCCUS RADIODURANS A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Jaycob Dalton Warfel B.S. Louisiana State University, 2006 May 2015 ACKNOWLEDGEMENTS I would like to express my utmost gratitude to the myriad of individuals who have lent their support during the time it has taken to complete this dissertation. First and foremost is due glory to God, The Father, The Son and The Holy Spirit, through whom all is accomplished. It is with extreme thankfulness for the blessings bestowed upon me, and with vast appreciation for the beauty of God’s creation that I have pursued a scientific education.
    [Show full text]
  • Archaeal Viruses and Bacteriophages: Comparisons and Contrasts
    Review Archaeal viruses and bacteriophages: comparisons and contrasts Maija K. Pietila¨ , Tatiana A. Demina, Nina S. Atanasova, Hanna M. Oksanen, and Dennis H. Bamford Institute of Biotechnology and Department of Biosciences, P.O. Box 56, Viikinkaari 5, 00014 University of Helsinki, Helsinki, Finland Isolated archaeal viruses comprise only a few percent of Euryarchaeaota [9,10]. Archaea have also been cultivated all known prokaryotic viruses. Thus, the study of viruses from moderate environments such as seawater and soil. infecting archaea is still in its early stages. Here we Consequently, an additional phylum, Thaumarchaeota, summarize the most recent discoveries of archaeal vi- has been formed to contain mesophilic and thermophilic ruses utilizing a virion-centered view. We describe the ammonia-oxidizing archaea [11]. However, all known ar- known archaeal virion morphotypes and compare them chaeal viruses infect extremophiles – mainly hyperther- to the bacterial counterparts, if such exist. Viruses infect- mophiles belonging to the crenarchaeal genera Sulfolobus ing archaea are morphologically diverse and present and Acidianus or halophiles of the euryarchaeal genera some unique morphotypes. Although limited in isolate Haloarcula, Halorubrum, and Halobacterium [6,7]. Even number, archaeal viruses reveal new insights into the though bacteria are also found in diverse extreme habitats viral world, such as deep evolutionary relationships such as hypersaline lakes, archaea typically dominate at between viruses that infect hosts from all three domains extreme salinities, based on both cultivation-dependent of life. and -independent studies [6,12–15]. Consequently, archae- al viruses do the same in hypersaline environments. About Discovery of archaeal viruses 50 prokaryotic haloviruses were recently isolated from All cellular organisms are susceptible to viral infections, nine globally distant locations, and only four of them which makes viruses a major evolutionary force shaping infected bacteria [6,16].
    [Show full text]
  • Microbial Diversity Under Extreme Euxinia: Mahoney Lake, Canada V
    Geobiology (2012), 10, 223–235 DOI: 10.1111/j.1472-4669.2012.00317.x Microbial diversity under extreme euxinia: Mahoney Lake, Canada V. KLEPAC-CERAJ,1,2 C. A. HAYES,3 W. P. GILHOOLY,4 T. W. LYONS,5 R. KOLTER2 AND A. PEARSON3 1Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA 2Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA, USA 3Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 4Department of Earth and Planetary Sciences, Washington University, Saint Louis, MO, USA 5Department of Earth Sciences, University of California, Riverside, CA, USA ABSTRACT Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and ⁄ or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distribu- tions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteo- bacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomi- crobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion.
    [Show full text]
  • (Antarctica) Glacial, Basal, and Accretion Ice
    CHARACTERIZATION OF ORGANISMS IN VOSTOK (ANTARCTICA) GLACIAL, BASAL, AND ACCRETION ICE Colby J. Gura A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2019 Committee: Scott O. Rogers, Advisor Helen Michaels Paul Morris © 2019 Colby Gura All Rights Reserved iii ABSTRACT Scott O. Rogers, Advisor Chapter 1: Lake Vostok is named for the nearby Vostok Station located at 78°28’S, 106°48’E and at an elevation of 3,488 m. The lake is covered by a glacier that is approximately 4 km thick and comprised of 4 different types of ice: meteoric, basal, type 1 accretion ice, and type 2 accretion ice. Six samples were derived from the glacial, basal, and accretion ice of the 5G ice core (depths of 2,149 m; 3,501 m; 3,520 m; 3,540 m; 3,569 m; and 3,585 m) and prepared through several processes. The RNA and DNA were extracted from ultracentrifugally concentrated meltwater samples. From the extracted RNA, cDNA was synthesized so the samples could be further manipulated. Both the cDNA and the DNA were amplified through polymerase chain reaction. Ion Torrent primers were attached to the DNA and cDNA and then prepared to be sequenced. Following sequencing the sequences were analyzed using BLAST. Python and Biopython were then used to collect more data and organize the data for manual curation and analysis. Chapter 2: As a result of the glacier and its geographic location, Lake Vostok is an extreme and unique environment that is often compared to Jupiter’s ice-covered moon, Europa.
    [Show full text]
  • The Genome of Hyperthermus Butylicus: a Sulfur-Reducing, Peptide Fermenting, Neutrophilic Crenarchaeote Growing up to 108 °C
    Archaea 2, 127–135 © 2007 Heron Publishing—Victoria, Canada The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 °C KIM BRÜGGER,1,2 LANMING CHEN,1,2 MARKUS STARK,3,4 ARNE ZIBAT,4 PETER REDDER,1 ANDREAS RUEPP,4,5 MARIANA AWAYEZ,1 QUNXIN SHE,1 ROGER A. GARRETT1,6 and HANS-PETER KLENK3,4,7 1 Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark 2 These authors contributed equally to the project 3 e.gene Biotechnologie GmbH, Poeckinger Fussweg 7a, 82340 Feldafing, Germany 4 Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team 5 Present address: Institut für Bioinformatik, GSF-Forschungszentrum für Umwelt und Gesundheit, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany 6 Editing author 7 Corresponding author ([email protected]) Received October 26, 2006; accepted January 2, 2007; published online January 19, 2007 Summary Hyperthermus butylicus, a hyperthermophilic 1990). It grows between 80 and 108 oC with a broad tempera- neutrophile and anaerobe, is a member of the archaeal kingdom ture optimum. The organism utilizes peptide mixtures as car- Crenarchaeota. Its genome consists of a single circular chro- bon and energy sources but not amino acid mixtures, various mosome of 1,667,163 bp with a 53.7% G+C content. A total of synthetic peptides or undigested protein. It can also generate 1672 genes were annotated, of which 1602 are protein-coding, energy by reduction of elemental sulfur to yield H2S. Fermen- and up to a third are specific to H.
    [Show full text]
  • Extremophiles in My Backyard? Enhancing Analytical and Math Skills with a Simple Enquiry Based Lab
    Tested Studies for Laboratory Teaching Proceedings of the Association for Biology Laboratory Education Vol. 35, 56-88, 2014 Extremophiles in My Backyard? Enhancing Analytical and Math Skills with a Simple Enquiry Based Lab Lakshmi Chilukuri and Lorlina Almazan University of California San Diego, Division of Biological Sciences, 9500 Gilman Dr., La Jolla CA 92093 USA ([email protected]; [email protected]) What lives in compost? What survives extreme conditions such as hydrothermal vents? We harness that curiosity in a guided inquiry-based laboratory exercise that promotes critical analysis and reinforces math skills. In this au- thentic research, students explore the relationship between physico-chemical characteristics and diverse microbial community of a natural environment. Using selective and differential media, dilution, viable counts, and the scien- tific method, they enrich thermophiles from compost. In collaborative exercises, they collect, evaluate, and analyze numerical data, and present their findings in scientific format. This flexible, easily adaptable model has proven to be invaluable in contextualizing science in our classrooms Firstpage Keywords: Extremophiles, thermophiles, authentic research, critical thinking, math skills, compost, Enrichment of thermophiles from compost, authentic research Introduction Enrichment of Thermophilic Microorganisms from a to execute. Students with a basic knowledge of sterile tech- Compost Sample nique, plating methods, serial dilutions, and simple math, can complete the actions involved. The concepts of enrich- Most microbiology labs teach the concepts of selective ment and the mathematical calculations involved are more and differential media, enumeration of microorganisms, mi- complex and require higher level thinking on the part of the crobial diversity, and complexity of metabolic pathways. students and greater clarity in teaching by the instructors.
    [Show full text]
  • Evolution of Predicted Acid Resistance Mechanisms in the Extremely Acidophilic Leptospirillum Genus
    G C A T T A C G G C A T genes Article Evolution of Predicted Acid Resistance Mechanisms in the Extremely Acidophilic Leptospirillum Genus Eva Vergara 1, Gonzalo Neira 1 , Carolina González 1,2, Diego Cortez 1, Mark Dopson 3 and David S. Holmes 1,2,4,* 1 Center for Bioinformatics and Genome Biology, Fundación Ciencia & Vida, Santiago 7780272, Chile; [email protected] (E.V.); [email protected] (G.N.); [email protected] (C.G.); [email protected] (D.C.) 2 Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago 8580745, Chile 3 Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, SE-391 82 Kalmar, Sweden; [email protected] 4 Universidad San Sebastian, Santiago 7510156, Chile * Correspondence: [email protected] Received: 31 December 2019; Accepted: 4 March 2020; Published: 3 April 2020 Abstract: Organisms that thrive in extremely acidic environments ( pH 3.5) are of widespread ≤ importance in industrial applications, environmental issues, and evolutionary studies. Leptospirillum spp. constitute the only extremely acidophilic microbes in the phylogenetically deep-rooted bacterial phylum Nitrospirae. Leptospirilli are Gram-negative, obligatory chemolithoautotrophic, aerobic, ferrous iron oxidizers. This paper predicts genes that Leptospirilli use to survive at low pH and infers their evolutionary trajectory. Phylogenetic and other bioinformatic approaches suggest that these genes can be classified into (i) “first line of defense”, involved in the prevention of the entry of protons into the cell, and (ii) neutralization or expulsion of protons that enter the cell. The first line of defense includes potassium transporters, predicted to form an inside positive membrane potential, spermidines, hopanoids, and Slps (starvation-inducible outer membrane proteins).
    [Show full text]
  • The Genome of Hyperthermus Butylicus: a Sulfur-Reducing, Peptide Fermenting, Neutrophilic Crenarchaeote Growing up to 108 °C
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Crossref Archaea 2, 127–135 © 2007 Heron Publishing—Victoria, Canada The genome of Hyperthermus butylicus: a sulfur-reducing, peptide fermenting, neutrophilic Crenarchaeote growing up to 108 °C KIM BRÜGGER,1,2 LANMING CHEN,1,2 MARKUS STARK,3,4 ARNE ZIBAT,4 PETER REDDER,1 ANDREAS RUEPP,4,5 MARIANA AWAYEZ,1 QUNXIN SHE,1 ROGER A. GARRETT1,6 and HANS-PETER KLENK3,4,7 1 Danish Archaea Centre, Institute of Molecular Biology, Copenhagen University, Sølvgade 83H, 1307 Copenhagen K, Denmark 2 These authors contributed equally to the project 3 e.gene Biotechnologie GmbH, Poeckinger Fussweg 7a, 82340 Feldafing, Germany 4 Formerly EPIDAUROS Biotechnologie AG, Genes and Genome Analysis Team 5 Present address: Institut für Bioinformatik, GSF-Forschungszentrum für Umwelt und Gesundheit, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany 6 Editing author 7 Corresponding author ([email protected]) Received October 26, 2006; accepted January 2, 2007; published online January 19, 2007 Summary Hyperthermus butylicus, a hyperthermophilic 1990). It grows between 80 and 108 oC with a broad tempera- neutrophile and anaerobe, is a member of the archaeal kingdom ture optimum. The organism utilizes peptide mixtures as car- Crenarchaeota. Its genome consists of a single circular chro- bon and energy sources but not amino acid mixtures, various mosome of 1,667,163 bp with a 53.7% G+C content. A total of synthetic peptides or undigested protein. It can also generate 1672 genes were annotated, of which 1602 are protein-coding, energy by reduction of elemental sulfur to yield H2S.
    [Show full text]
  • Investigation of Alkaline Phosphatase Enzyme of a Novel Bacillus Species Isolated from Rhizospheric Soil of Potato Field M
    Bhattacharjee et al RJLBPCS 2018 www.rjlbpcs.com Life Science Informatics Publications Original Research Article DOI - 10.26479/2018.0402.10 INVESTIGATION OF ALKALINE PHOSPHATASE ENZYME OF A NOVEL BACILLUS SPECIES ISOLATED FROM RHIZOSPHERIC SOIL OF POTATO FIELD M. Bhattacharjee1*, M. Banerjee2, P. Mitra3, A. Ganguly4 1.Deptt.of Biotechnology, Heritage Institute of Technology, Chowbaga Road, Ananadapur, P.O-East Kolkata Township, Kolkata-700107, West Bengal. 2. Deptt.of Biochemistry, Triveni Devi Bhalotia (TDB) College, Raniganj, Dist-West Bardhhaman, West Bengal-713347. 3. Deptt.of Biochemistry, Duragapur College of Commerce and Science (DCCS), G.T.Road, Rajbandh, Durgapur-713212, West Bardhhaman Dist., West Bengal. 4. Deptt.of Microbiology, Bankura Sammilani College, Kenduadihi, Bankura, West Bengal-722102 ABSTRACT: The present study reports isolation and biochemical/physiological characterization of a novel Bacillus strain (designated as PB-1) from the rhizospheric soil of potato field that exhibited phosphate solubilization activity. The organism grows optimally at pH 6.0-9.0; at temperature 28-370C and in presence of 1% NaCl. These data indicate that the bacterium is mostly a neutrophile, mesophile and non-halotolerant in nature that matches with the features of a typical soil-borne bacterium. It was also seen that the organism was able to ferment various types of carbohydrates including both mono-and disaccharides. In the second phase of the study, partial purification and characterization of the extracellular alkaline phosphatase enzyme from the Bacillus PB-1 strain was carried out. It was found that the said enzyme was optimally active at 400C temperature and at pH range 8.0-9.0.
    [Show full text]
  • An Ecological Basis for Dual Genetic Code Expansion in Marine Deltaproteobacteria
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.15.435355; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. An ecological basis for dual genetic code expansion in marine deltaproteobacteria 1 Veronika Kivenson1, Blair G. Paul2, David L. Valentine2* 2 1Interdepartmental Graduate Program in Marine Science, University of California, Santa Barbara, CA 3 93106, USA 4 2Department of Earth Science and Marine Science Institute, University of California, Santa Barbara, 5 CA 93106, USA 6 * Correspondence: 7 David L. Valentine 8 [email protected] 9 Present Address 10 VK: Oregon State University, Corvallis, OR 97331 11 BGP: Marine Biological Laboratory, Woods Hole, MA 02543 12 13 Keywords: microbiome, pyrrolysine, selenocysteine, metabolism, metagenomics 14 15 Abstract 16 Marine benthic environments may be shaped by anthropogenic and other localized events, leading to 17 changes in microbial community composition evident decades after a disturbance. Marine sediments 18 in particular harbor exceptional taxonomic diversity and can shed light on distinctive evolutionary 19 strategies. Genetic code expansion may increase the structural and functional diversity of proteins in 20 cells, by repurposing stop codons to encode noncanonical amino acids: pyrrolysine (Pyl) and 21 selenocysteine (Sec). Here, we show that the genomes of abundant Deltaproteobacteria from the 22 sediments of a deep-ocean chemical waste dump site, have undergone genetic code expansion. Pyl 23 and Sec in these organisms appear to augment trimethylamine (TMA) and one-carbon metabolism, 24 representing key drivers of their ecology.
    [Show full text]
  • Case Study: the Effects of Ph on Microbial Growth
    Case Study: The Effects of pH on Microbial Growth The optimum growth pH is the most favorable pH for the growth of an organism. The lowest pH value that an organism can tolerate is called the minimum growth pH and the highest pH is the maximum growth pH. These values can cover a wide range, which is important for the preservation of food and to microorganisms’ survival in the stomach. For example, the optimum growth pH of Salmonella spp. is 7.0–7.5, but the minimum growth pH is closer to 4.2. Figure 2. The curves show the approximate pH ranges for the growth of the different classes of pH-specific prokaryotes. Each curve has an optimal pH and extreme pH values at which growth is much reduced. Most bacteria are neutrophiles and grow best at near-neutral pH (center curve). Acidophiles have optimal growth at pH values near 3 and alkaliphiles have optimal growth at pH values above 9. Most bacteria are neutrophiles, meaning they grow optimally at a pH within one or two pH units of the neutral pH of 7 (see Figure 2). Most familiar bacteria, like Escherichia coli, staphylococci, and Salmonella spp. are neutrophiles and do not fare well in the acidic pH of the stomach. However, there are pathogenic strains of E. coli, S. typhi, and other species of intestinal pathogens that are much more resistant to stomach acid. In comparison, fungi thrive at slightly acidic pH values of 5.0–6.0. Microorganisms that grow optimally at pH less than 5.55 are called acidophiles.
    [Show full text]
  • Thermosinus Carboxydivorans Gen. Nov., Sp. Nov., a New Anaerobic
    International Journal of Systematic and Evolutionary Microbiology (2004), 54, 2353–2359 DOI 10.1099/ijs.0.63186-0 Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic, thermophilic, carbon-monoxide- oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park Tatyana G. Sokolova,1 Juan M. Gonza´lez,23 Nadezhda A. Kostrikina,1 Nikolai A. Chernyh,1 Tatiana V. Slepova,1 Elizaveta A. Bonch-Osmolovskaya1 and Frank T. Robb2 Correspondence 1Institute of Microbiology, Russian Academy of Sciences, Prospect 60 Let Oktyabrya, 7/2, Tatyana G. Sokolova 117811 Moscow, Russia [email protected] 2COMB, Columbus Center, 701 E. Pratt St, Baltimore, MD 21202, USA A new anaerobic, thermophilic, facultatively carboxydotrophic bacterium, strain Nor1T, was isolated from a hot spring at Norris Basin, Yellowstone National Park. Cells of strain Nor1T were curved motile rods with a length of 2?6–3 mm, a width of about 0?5 mm and lateral flagellation. The cell wall structure was of the Gram-negative type. Strain Nor1T was thermophilic (temperature range for growth was 40–68 6C, with an optimum at 60 6C) and neutrophilic (pH range for growth was 6?5–7?6, with an optimum at 6?8–7?0). It grew chemolithotrophically on CO (generation time, 1?15 h), producing equimolar quantities of H2 and CO2 according to the equation CO+H2ORCO2+H2. During growth on CO in the presence of ferric citrate or T amorphous ferric iron oxide, strain Nor1 reduced ferric iron but produced H2 and CO2 at a ratio close to 1 : 1, and growth stimulation was slight.
    [Show full text]