Download the Nearctic Scarabaeoidea Checklist PDF File

Total Page:16

File Type:pdf, Size:1020Kb

Download the Nearctic Scarabaeoidea Checklist PDF File Checklist and Nomenclatural Authority File of the Scarabaeoidea of the Nearctic Realm including Canada, the continental United States, and the northern Mexican states of Baja California, Baja California Sur, Chihuahua, Coahuila de Zaragoza, Durango, Nuevo Leon, Sinaloa, Sonora, Tamaulipas, and Zacatecas. Version 4 - released 22 April 2009 Andrew B. T. Smith Canadian Museum of Nature P.O. Box 3443, Station D Ottawa, ON, K1P 6P4 CANADA asmith@mus-nature.
Recommended publications
  • Cravens Peak Scientific Study Report
    Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10.
    [Show full text]
  • An Annotated Checklist of Wisconsin Scarabaeoidea (Coleoptera)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida March 2002 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine A. Kriska University of Wisconsin-Madison, Madison, WI Daniel K. Young University of Wisconsin-Madison, Madison, WI Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Kriska, Nadine A. and Young, Daniel K., "An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera)" (2002). Insecta Mundi. 537. https://digitalcommons.unl.edu/insectamundi/537 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI, Vol. 16, No. 1-3, March-September, 2002 3 1 An annotated checklist of Wisconsin Scarabaeoidea (Coleoptera) Nadine L. Kriska and Daniel K. Young Department of Entomology 445 Russell Labs University of Wisconsin-Madison Madison, WI 53706 Abstract. A survey of Wisconsin Scarabaeoidea (Coleoptera) conducted from literature searches, collection inventories, and three years of field work (1997-1999), yielded 177 species representing nine families, two of which, Ochodaeidae and Ceratocanthidae, represent new state family records. Fifty-six species (32% of the Wisconsin fauna) represent new state species records, having not previously been recorded from the state. Literature and collection distributional records suggest the potential for at least 33 additional species to occur in Wisconsin. Introduction however, most of Wisconsin's scarabaeoid species diversity, life histories, and distributions were vir- The superfamily Scarabaeoidea is a large, di- tually unknown.
    [Show full text]
  • Conceptual Design Documentation
    Appendix A: Conceptual Design Documentation APPENDIX A Conceptual Design Documentation June 2019 A-1 APPENDIX A: CONCEPTUAL DESIGN DOCUMENTATION The environmental analyses in the NEPA and CEQA documents for the proposed improvements at Oceano County Airport (the Airport) are based on conceptual designs prepared to provide a realistic basis for assessing their environmental consequences. 1. Widen runway from 50 to 60 feet 2. Widen Taxiways A, A-1, A-2, A-3, and A-4 from 20 to 25 feet 3. Relocate segmented circle and wind cone 4. Installation of taxiway edge lighting 5. Installation of hold position signage 6. Installation of a new electrical vault and connections 7. Installation of a pollution control facility (wash rack) CIVIL ENGINEERING CALCULATIONS The purpose of this conceptual design effort is to identify the amount of impervious surface, grading (cut and fill) and drainage implications of the projects identified above. The conceptual design calculations detailed in the following figures indicate that Projects 1 and 2, widening the runways and taxiways would increase the total amount of impervious surface on the Airport by 32,016 square feet, or 0.73 acres; a 6.6 percent increase in the Airport’s impervious surface area. Drainage patterns would remain the same as both the runway and taxiways would continue to sheet flow from their centerlines to the edge of pavement and then into open, grassed areas. The existing drainage system is able to accommodate the modest increase in stormwater runoff that would occur, particularly as soil conditions on the Airport are conducive to infiltration. Figure A-1 shows the locations of the seven projects incorporated in the Proposed Action.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • A Passion for Rhinoceros and Stag Beetles in Japan
    SCARABS CZ CN MNCHEM, NBYS QCFF WIGY. Occasional Issue Number 67 Print ISSN 1937-8343 Online ISSN 1937-8351 September, 2011 A Passion for Rhinoceros and Stag Beetles WITHIN THIS ISSUE in Japan Dynastid and Lucanid Enthusiasm in Japan ........ 1 by Kentaro Miwa University of Nebraska-Lincoln Bug People XXIV ........... 10 Department of Entomology In Past Years XLVI ......... 11 [email protected] Guatemala Scarabs IV ... 20 BACK ISSUES Available At These Sites: Coleopterists Society www.coleopsoc.org/de- fault.asp?Action=Show_ Resources&ID=Scarabs University of Nebraska A large population of the general public in Japan enjoys collecting and www-museum.unl.edu/ rearing insects. Children are exposed to insects at early ages because their research/entomology/ parents are interested in insects. My son went on his first collecting trip Scarabs-Newsletter.htm on a cool day in March in Nebraska when he was four months old. EDITORS I am from Shizuoka, Japan. I am currently pursuing my Ph.D in En- Rich Cunningham tomology at the University of Nebraska-Lincoln and studying biology [email protected] and applied ecology of insets in cropping systems. Among many insect Olivier Décobert taxa I am interested in, dynastines and lucanids are my favorite groups. [email protected] I have enjoyed collecting and rearing these beetles throughout my life. Barney Streit I began collecting beetles with my parents and grandparents when barneystreit@hotmail. com I was two years old. When I was about six, I learned to successfully rear some Japanese species. Since I came to the United States, I have been enjoying working with American species.
    [Show full text]
  • South Carolina Department of Natural Resources
    FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas.
    [Show full text]
  • Quick Guide for the Identification Of
    Quick Guide for the Identification of Maryland Scarabaeoidea Mallory Hagadorn Dr. Dana L. Price Department of Biological Sciences Salisbury University This document is a pictorial reference of Maryland Scarabaeoidea genera (and sometimes species) that was created to expedite the identification of Maryland Scarabs. Our current understanding of Maryland Scarabs comes from “An Annotated Checklist of the Scarabaeoidea (Coleoptera) of Maryland” (Staines 1984). Staines reported 266 species and subspecies using literature and review of several Maryland Museums. Dr. Price and her research students are currently conducting a bioinventory of Maryland Scarabs that will be used to create a “Taxonomic Guide to the Scarabaeoidea of Maryland”. This will include dichotomous keys to family and species based on historical reports and collections from all 23 counties in Maryland. This document should be cited as: Hagadorn, M.A. and D.L. Price. 2012. Quick Guide for the Identification of Maryland Scarabaeoidea. Salisbury University. Pp. 54. Questions regarding this document should be sent to: Dr. Dana L. Price - [email protected] **All pictures within are linked to their copyright holder. Table of Contents Families of Scarabaeoidea of Maryland……………………………………... 6 Geotrupidae……………………………………………………………………. 7 Subfamily Bolboceratinae……………………………………………… 7 Genus Bolbocerosoma………………………………………… 7 Genus Eucanthus………………………………………………. 7 Subfamily Geotrupinae………………………………………………… 8 Genus Geotrupes………………………………………………. 8 Genus Odonteus...……………………………………………… 9 Glaphyridae..............................................................................................
    [Show full text]
  • Romanian Species of Lucanids (Coleoptera: Scarabaeoidea: Lucanidae) in the Collections of “Grigore Antipa” National Museum of Natural History MELANIA STAN
    Travaux du Muséum National d’Histoire Naturelle © 30 décembre «Grigore Antipa» Vol. LVI (2) pp. 173–184 2013 DOI: 10.2478/travmu-2013-0013 ROMANIAN SPECIES OF LUCANIDS (COLEOPTERA: SCARABAEOIDEA: LUCANIDAE) IN THE COLLECTIONS OF “GRIGORE ANTIPA” NATIONAL MUSEUM OF NATURAL HISTORY MELANIA STAN Abstract. The seven species of stag beetles of the Romanian fauna are present in the coleopteran collection of the Museum: Aesalus scarabaeoides scarabaeoides (Panzer), Ceruchus chrysomelinus (Hochenwarth), Sinodendron cylindricum (Linnaeus), Lucanus cervus cervus (Linnaeus), Platycerus caraboides caraboides (Linnaeus), Platycerus caprea (De Geer) and Dorcus parallelipipedus (Linnaeus). Information on the collecting data and distribution maps are given for each species. We present the male and female habitus for the two species of Platycerus. Résumé. Les sept espèces de lucanes de la faune de Roumanie sont présentes dans la collection des coléoptères du muséum: Aesalus scarabaeoides scarabaeoides (Panzer), Ceruchus chrysomelinus (Hochenwarth), Sinodendron cylindricum (Linnaeus), Lucanus cervus cervus (Linnaeus), Platycerus caraboides caraboides (Linnaeus), Platycerus caprea (De Geer) et Dorcus parallelipipedus (Linnaeus). On donne des informations sur les données de la capture et les cartes de distribution pour chaque espèce. Nous présentons les photos de l’habitus mâle et femelle pour les deux espèces de Platycerus. Key words: Coleoptera, Lucanidae, Romania, collections, “Grigore Antipa” National Museum of Natural History. INTRODUCTION From the 17 stag beetle species and subspecies of Europe, in the Romanian fauna there are only seven species: Aesalus scarabaeoides scarabaeoides (Panzer), Ceruchus chrysomelinus (Hochenwarth), Sinodendron cylindricum (Linnaeus), Lucanus cervus cervus (Linnaeus), Platycerus caraboides caraboides (Linnaeus), Platycerus caprea (De Geer) and Dorcus parallelipipedus (Linnaeus), included in four subfamilies, according to the Catalogue of the Palaearctic Coleoptera (Bartolozzi & Sprecher-Uebersax, 2006).
    [Show full text]
  • Phylogenetic Analysis of Geotrupidae (Coleoptera, Scarabaeoidea) Based on Larvae
    Systematic Entomology (2004) 29, 509–523 Phylogenetic analysis of Geotrupidae (Coleoptera, Scarabaeoidea) based on larvae JOSE´ R. VERDU´ 1 , EDUARDO GALANTE1 , JEAN-PIERRE LUMARET2 andFRANCISCO J. CABRERO-SAN˜ UDO3 1Centro Iberoamericano de la Biodiversidad (CIBIO), Universidad de Alicante, Spain; 2CEFE, UMR 5175, De´ partement Ecologie des Arthropodes, Universite´ Paul Vale´ ry, Montpellier, France; and 3Departamento Biodiversidad y Biologı´ a Evolutiva, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain Abstract. Thirty-eight characters derived from the larvae of Geotrupidae (Scarabaeoidea, Coleoptera) were analysed using parsimony and Bayesian infer- ence. Trees were rooted with two Trogidae species and one species of Pleocomidae as outgroups. The monophyly of Geotrupidae (including Bolboceratinae) is supported by four autapomorphies: abdominal segments 3–7 with two dorsal annulets, chaetoparia and acanthoparia of the epipharynx not prominent, glossa and hypopharynx fused and without sclerome, trochanter and femur without fossorial setae. Bolboceratinae showed notable differences with Pleocomidae, being more related to Geotrupinae than to other groups. Odonteus species (Bolboceratinae s.str.) appear to constitute the closest sister group to Geotrupi- nae. Polyphyly of Bolboceratinae is implied by the following apomorphic char- acters observed in the ‘Odonteus lineage’: anterior and posterior epitormae of epipharynx developed, tormae of epipharynx fused, oncyli of hypopharynx devel- oped, tarsal claws reduced or absent, plectrum and pars stridens of legs well developed and apex of antennal segment 2 with a unique sensorium. A ‘Bolbelas- mus lineage’ is supported by the autapomorphic presence of various sensoria on the apex of the antennal segment, and the subtriangular labrum (except Eucanthus). This group constituted by Bolbelasmus, Bolbocerosoma and Eucanthus is the first evidence for a close relationship among genera, but more characters should be analysed to test the support for the clade.
    [Show full text]
  • Bolboceras Kirby, 1819 (July) (Insecta, Coleoptera): Proposed Precedence Over Odonteus Samouelle, 1819 (June)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Papers in Entomology Museum, University of Nebraska State December 2002 Bolboceras Kirby, 1819 (July) (Insecta, Coleoptera): proposed precedence over Odonteus Samouelle, 1819 (June) Mary Liz Jameson University of Nebraska - Lincoln, [email protected] H. F. Howden Canadian Museum of Nature, Ottawa, Canada Follow this and additional works at: https://digitalcommons.unl.edu/entomologypapers Part of the Entomology Commons Jameson, Mary Liz and Howden, H. F., "Bolboceras Kirby, 1819 (July) (Insecta, Coleoptera): proposed precedence over Odonteus Samouelle, 1819 (June)" (2002). Papers in Entomology. 89. https://digitalcommons.unl.edu/entomologypapers/89 This Article is brought to you for free and open access by the Museum, University of Nebraska State at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in Entomology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 246 Bulletin of Zoological Nomenclature 59(4) December 2002 Case 3097 Bolboceras Kirby, 1819 (July) (Insecta, Coleoptera): proposed precedence over Odonteus Samouelle, 1819 (June) M.L. Jameson University of Nebraska State Museum, W436 Nebraska Hall, Lincoln, Nebraska 685884.514, U.S. A. (e-mail: mjameson1 @unl.edu) H.F. Howden Canadian Museum of Nature, P. 0. Box 3443, Station 'D',Ottawa, Canada Kl P 6P4 (e-mail: [email protected]) Abstract. The purpose of this application, under Articles 23.9.3 and 8 1.2.3 of the Code, is to conserve the generic name Bolboceras Kirby, 1819 for a group of scarab beetles (family GEOTRUPIDAE)by giving it conditional precedence over the older name Odonteus Samouelle, 18 19 whenever they are considered to be synonyms.
    [Show full text]
  • Reproductive Behaviour and Development of the Dung Beetle Typhaeus Typhoeus (Coleoptera, Geotrupidae)
    REPRODUCTIVE BEHAVIOUR AND DEVELOPMENT OF THE DUNG BEETLE TYPHAEUS TYPHOEUS (COLEOPTERA, GEOTRUPIDAE) by LIJBERTBRUSSAARD Dept. of Animal Ecology and Dept. of Soil Science & Geology, Agricultural University, Wageningen, The Netherlands . ABSTRACT This paper is part of a study of the contribution of dung beetles to soil formation in sandy soils. Typhaeus typhoeus (Linnaeus) has been selected because it makes deep burrows and is locally abundant. The beetles are active from autumn until spring, reproduction takes place from February to April. Sex pheromones probably influence pair formation. The sexes co­ operate in excavating a burrow (up to 0.7 m below surface) and in provisioning the burrow with dung as food for the larvae. Co-operation is reset by scraping each other across the thorax or elytra. Dung sausages, appr. 12.5 cm long and 15 mm in diameter, are manufac­ tured above each other. Development is rapid at 13—17°C. The life cycle is accelerated by a cold period in the third larval stage. These requirements are met by soil temperatures up to 15° C in summer and down to 5 °C in winter. The life cycle lasts two years, but longer under certain conditions. Newly hatched beetles make their way to the surface through the soil, but do not follow the old shaft. Adults reproduce only once. Differential rate of com­ pletion of the life cycle and occasional flying probably reduce the risk of local extinction. The study is thought to be relevant for behavioural ecology and soil science. CONTENTS tion of how much dung beetles contribute to Introduction 203 soil formation today.
    [Show full text]
  • Tropical Forest Restoration on Cattle Pastures in the Guanacaste Province of Costa Rica
    Tropical Forest Restoration on Cattle Pastures in the Guanacaste Province of Costa Rica Jonathan Choi Department of Ecology and Evolutionary Biology Princeton University Advised by Professor David Wilcove April 27, 2015 ii Among the scenes which are deeply impressed on my mind, none exceed in sublimity the primeval forests undefaced by the hand of man; whether those of Brazil, where the powers of Life are predominant, or those of Tierra del Fuego, where Death and Decay prevail. Both are temples filled with the varied productions of the God of Nature: no one can stand in these solitudes unmoved, and not feel that there is more in man than the mere breath of his body. – Charles Darwin The Voyage of the Beagle The biodiversity crisis represents the greatest challenge humans have ever faced. To the extent that this generation will continue to fail, it will represent our greatest failure as a species, and the one for which we are least likely to be forgiven by the generations to come. To the extent that we at least partly succeed (in spite of ourselves), it will be our species’ greatest achievement. Conservation biology in the short-term and restoration ecology in the long-term are the complementary activities that will form the basis of our belated (but not hopeless) attempt to salvage the disaster. – Professor Truman Young “Restoration ecology and conservation biology” Biological Conservation, 2000 Permitting Information Field research was conducted under Costa Rican research permit number ACG-PI-042-2014. Invertebrates were exported from Costa Rica under permit DGVS-019-2014, authorized by Roger Blanco Segura, the Director of Research at Área de Conservación Guanacaste, Guanacaste Province, Costa Rica.
    [Show full text]