Syringomyelia and Arachnoiditis

Total Page:16

File Type:pdf, Size:1020Kb

Syringomyelia and Arachnoiditis 106 Journal of Neurology, Neurosurgery, and Psychiatry 1990;53:106-113 Syringomyelia and arachnoiditis L R Caplan, A B Norohna, L L Amico Abstract and weakness in his right hand. Months later, Five patients with chronic arachnoiditis he developed sensory loss and weakness of the and syringomyelia were studied. Three hands, more noticeable in the left than the patients had early life meningitis and right. Atrophy, frequent burns, and hand developed symptoms of syringomyelia tremor were reported by the patient. Four eight, 21, and 23 years after the acute years later, the lower extremities became weak, infection. One patient had a spinal dural initially on the right side. He then experienced thoracic AVM and developed a thoracic weakness in the left leg which soon became syrinx 11 years after spinal subarachnoid more severe than in the right. He complained of haemorrhage and five years after surgery a drawing, burning pain in both arms from the on the AVM. A fifth patient had tuber- hands to the radial forearms and from the hips culous meningitis with transient spinal to the toes. cord dysfunction followed by develop- In 1943 (aged 46), he was first evaluated at ment ofa lumbar syrinx seven years later. the Harvard Neurological Unit at Boston City Arachnoiditis can cause syrinx formation Hospital. There was diminished body hair and by obliterating the spinal vasculature burn scars on his fingers. Mental function and causing ischaemia. Small cystic regions cranial nerves were normal except for a slight of myelomalacia coalesce to form left lower facial droop and slighlt leftward cavities. In other patients, central cord protrusion of the tongue. Upper extremity ischaemia mimics syringomyelia but no muscles, especially the deltoids and intrinsic cavitation is present. Scar formation with hand muscles, were atrophied and occasional spinal block leads to altered dynamics of fasciculations were noted. There was bilateral cerebrospinal fluid (CSF) flow and con- lower extremity weakness with a left foot drop tributes to the formation of spinal cord and atrophy of the left tibialis anticus. An cystic cavities inconstant intermittent "piano playing" tremor was seen in the hands. Upper extremity reflexes were absent except for a weak right Symptomatic or secondary syringomyelia triceps jerk but lower extremity reflexes were refers to spinal cord cysts, often long and exaggerated with right ankle clonus and exten- tubular, that are caused by other recognised sor plantar responses. Pin and thermal sensa- disease processes. Intramedullary spinal cord tion were lost in the hands, radial forearms and tumours are sometimes associated with a syrinx entire left leg. Touch was also decreased in usually because ofsecretion offluids by tumour these parts but to a lesser degree. Vibration cells or necrotic cavitation of the neoplasm. sense was lost at both wrists, the right elbow, Scarring of the spinal meninges (usually term- and the left leg below the knee. Position sense ed "arachnoiditis" though both the pia mater was diminished below T3. Gait was unsteady and arachnoid are involved), has also been and wide-based and was characterised by over- reported as a cause of secondary syringomyelia. steppage due to a left foot drop. Lumbar The arachnoiditis may be caused by trauma,''12 puncture revealed normal fluid and dynamics. pyogenic infection,'3 14 tuberculous menin- He was placed in a chronic care unit, at the gitis,'"20 luetic meningitis,2"52' bleeding into Long Island Hospital, where he was examined the meninges'822 and post operative scarring.'3 by successive generations of Harvard Medical Department of Neurology, Michael Though arachnoiditis is known to be associated School students, residents and attending Reese Hospital with syrinx formation, the mechanism ofsyrin- physicians and considered to be an example of L R Caplan gomyelia is not well understood. We report five "classic syringomyelia". He became progres- L L Amico patients with non-traumatic arachnoiditis who sively quadriplegic and bedridden and was Department of later developed syringomyelia. Neurology, the readmitted to the Neurological Unit in 1966. University of Chicago At that time his mentation and cranial nerve Hospitals and Clinics functions were normal. There was diffuse mus- A B Norohna Case reports cle weakness; he could not lift his head from the Correspondence to: Case 1. This man was observed extensively extend his outstretched hands, sit up Dr Louis R Caplan, pillow, Department ofNeurology, during many years and studied at necropsy. In from a supine position, maintain wrist flexion New England Medical 1914 (aged 17), whilst in the army, he suffered or or move his hands. The right Center, 750 Washington extension, Street, Boston, MA, 02111, an acute infectious illness that was diagnosed lower extremity was completely immobile, but United States. by lumbar puncture as meningitis. He made a he could lift his left leg from the bed. The lower Received 28 February 1989 good recovery except for temporary strabismus and in revised form extremities were very spastic and sensory 23 August 1989. and continued to serve in the army until 1919. stimuli evoked flexor spasms in the left foot. Accepted 6 September 1989 In 1935 (aged 38), he noted loss of sensation. There were no upper extremity reflexes; knee Syringomyelia and arachnoiditis 107 and ankle reflexes were exaggerated and both was removed but there were no changes in the ankles showed sustained clonus. Both plantar neurological symptoms and signs in the post responses were extensor. Position and vibra- operative period. tion sense were impaired below C5. There was In 1981 (aged 47), she noticed increased complete sensory loss to all modalities below weakness of the left leg. Urinary retention TI on the left and a relative loss to pin prick developed and was treated with an indwelling below T6 on the right. All sensory modalities catheter. Her left hand became weak and the were lost in the C5, C6 and C7 dermatomes on inside of the hand was numb. The left half of the right. CSF protein was 260 mg per cent, the face also became numb and she experienced later 185 mg per cent. CSF dynamics were occasional vertigo. Examination revealed abnormal and myelography confirmed an ir- rotatory nystagmus greater on left gaze. The regular high cervical block. He died of pupils were small but reacted to light. Pin and pneumonia after a brief stay in another ex- thermal sensations were diminished on the left tended care unit. face while touch perception was normal. The At necropsy, all layers of the meninges were left corneal reflex was diminished. There was severely scarred and adherent to each other. wasting and weakness of the left intrinsic hand The thickened dura mater was densely ad- muscles and some weakness of the right wrist herent to the underlying bony skeleton, making extensors and intrinsic hand muscles. The it difficult to extract the spinal cord intact. The lower extremities were quite weak and spastic. meninges of the posterior fossa were also Deep tendon reflexes were exaggerated except scarred. There was no cavitation or slit within for the left biceps and brachioradial jerks which the medulla. The spinal cord was thin, atro- were absent. There was bilateral ankle clonus phic, and flattened, especially in the cervical and plantar responses were extensor. Vibra- and thoracic regions, but extending through tion, position, pain and temperature sensation lubar segments. Microscopic sections con- were diminished below T7 bilaterally. There firmed severe fibrosis and thickening of the was decreased pin and thermal sensation in the meninges. Both arteries and veins showed left arm, face and neck. Cranial CT was nor- fibrous degeneration of vessel walls. At times, mal. Myelography using metrizamide that we in the areas of necrosis, there was extensive introduced through a lateral Cl-C2 puncture connective tissue proliferation with accumula- revealed a nearly total block at T5 with some tion of dense eosinophilic staining collagen dye descending to T6-7. The cord was widened surrounding thickened vessels. There were few at T6 and in the cervical region. CT of the remaining inflammatory cells and no granu- dorsal spine during metrizamide myelography lomas. showed a cystic swelling within the cord. The cervical cord was reduced to a thin Somatosensory evoked responses could not be ribbon with extensive central necrosis and obtained with stimulation of the left peroneal, cavity formation. The cavity was collapsed, saphenous, or median nerves. Denervation was smooth and often bilobed, but there were no present in the left C8 and TI root innervated lining cells nor a well formed wall. There were muscles. Blink response recording was abnor- few remaining anterior horn cells in the cervical mal in the left supraorbital region. The electro- or upper thoracic cord. The cervical roots were physiological abnormalities were consistent thin. The dorsal and ventral roots also showed with a lesion affecting the left cervical spinal moderate to marked loss of myelin. There was cord and lower medulla. Spinal angiography some Schwann cell proliferation. was normal. The thoracic cord was also flattened. The At surgical exploration, there were dense central zones stained poorly for myelin and had dural and arachnoid adhesions at T6, but no occasional small cavities. Caps of peripheral residual AVM. The spinal cord was dilated myelin remained. The corticospinal tracts were above the cicatrix. Incision of the dilated cord decimated throughout the thoracic and lumbar led to fluid drainage from a syrinx and a cord. The spinocerebellar tracts and posterior catheter was placed within the cavity. Micros- columns were scarred especially at the C7 and copic examination of material removed at the TI region as part of the general destruction. T6 level revealed only dense fibrocollagenous The lumbar roots were also thin and enmeshed tissue. Postoperatively, her legs were slightly within adhesive arachnoidal scarring which weaker. extended to the filum terminale and cauda Two years later, she noticed increasing equina.
Recommended publications
  • Intractable Vomiting and Hiccups As the Presenting Symptom of Neuromyelitis Optica
    Case Report Intractable vomiting and hiccups as the presenting symptom of neuromyelitis optica Girish Baburao Kulkarni, Pradeep Kallollimath, R. Subasree, M. Veerendrakumar Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India Abstract Vomiting and hiccups can be due to peripheral or central causes. Neurological diseases causing vomiting and hiccups are due to lesions of medulla involving area postrema and nucleus tractus solitarius. Neuromyelitis optica (NMO) is one such disease which involves these structures. However refractory vomiting and hiccups as the presenting symptom of NMO is unusual. Here we report a patient with NMO in whom refractory vomiting and hiccups were the sole manifestation of the first attack. Diagnosis can be missed at this stage leading to delay in treatment and further complications. This case demonstrates the importance of considering NMO in any patient presenting with refractory vomiting and hiccups and with local and metabolic causes ruled out and linear medullary lesion on magnetic resonance imaging may indicate the diagnosis even when the classical clinical criteria are not met. Anti NMO antibody testing should be done and if positive appropriate treatment should be initiated to prevent further neurological damage. Key Words Aquaporin antibody, hiccups, intractable vomiting, neuromyelitis optica For correspondence: Dr. Girish Baburao Kulkarni, Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore ‑ 560 029, Karnataka,
    [Show full text]
  • Central Pain in the Face and Head
    P1: KWW/KKL P2: KWW/HCN QC: KWW/FLX T1: KWW GRBT050-128 Olesen- 2057G GRBT050-Olesen-v6.cls August 17, 2005 2:10 ••Chapter 128 ◗ Central Pain in the Face and Head J¨orgen Boivie and Kenneth L. Casey CENTRAL PAIN IN THE FACE AND HEAD Anesthesia dolorosa denotes pain in a region with de- creased sensibility after lesions in the CNS or peripheral International Headache Society (IHS) code and diag- nervous system (PNS). The term deafferentation pain is nosis: used for similar conditions, but it is more commonly used in patients with lesions of spinal nerves. 13.18.1 Central causes of facial pain 13.18.1 Anesthesia dolorosa (+ code to specify cause) 13.18.2 Central poststroke pain EPIDEMIOLOGY 13.18.3 Facial pain attributed to multiple sclerosis 13.18.4 Persistent idiopathic facial pain The prevalence of central pain varies depending on the un- 13.18.5 Burning mouth syndrome derlying disorder (Tables 128-1 and 128-2) (7,29). In the ab- 13.19 Other centrally mediated facial pain (+ code to sence of large scale epidemiologic studies, only estimates specify etiology) of central pain prevalence can be quoted. In the only prospective epidemiologic study of central Note that diagnosis with IHS codes 13.18.1, 13.18.4, and pain, 191 patients with central poststroke pain (CPSP) 13.18.5 may have peripheral causes. were followed for 12 months after stroke onset (1). Sixteen World Health Organization (WHO) code and diagnosis: (8.4%) developed central pain, an unexpectedly high inci- G 44.810 or G44.847.
    [Show full text]
  • Le Journal Canadien Des Sciences Neurologiques
    LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES tations of ambulatory cassette recordings, computer application edge may lead to the rapid productive careers of young clinical for data reduction and seizure and spike recognition, and the investigators and scientists being replaced sooner by the next power and pitfalls of monitoring techniques in differentiating group of young Turks. "fits from faints". Broad applications including the pre-surgical The clinical reviews of cases by Jonesco-Sisesti are painstaking, evaluation are well-covered. Although some chapters give good and it's salutary to again see the careful clinical observation descriptions of subcategories of primary generalized and com­ that formed the basis of modern neurology. How long has it plex partial seizures, this material is available in other more been since we saw someone recording Oppenheim's, Gordon's, general texts on epilepsy. Schaeffer's reflexes as part of the clinical examination. One Unfortunately, I feel the weaknesses outweigh the qualities must pause when reading that the "mediopublic reflex pro­ of the book. There should be a more clear definition of research duced a definite inferior response and a weak superior response", versus routine clinical application of the technology. Through­ but the pause is enjoyable as it recalls the impeccable respect out the book the value of such monitoring is repeatedly stressed, for the neurological examination prior to the age of technology. yet there are no controlled studies to support its superiority Dr. Ross was given the idea for this project may years ago by over conventional clinical and EEG evaluations. The case for the late Dr.
    [Show full text]
  • Thoracic Syringomyelia in a Patient with Amyotrophic Lateral Sclerosis
    International Neuropsychiatric Disease Journal 3(4): 136-140, 2015; Article no.INDJ.2015.019 ISSN: 2321-7235 SCIENCEDOMAIN international www.sciencedomain.org Thoracic Syringomyelia in a Patient with Amyotrophic Lateral Sclerosis Daniele Lo Coco1,2, Rossella Spataro2, Alfonsa Claudia Taiello2 and Vincenzo La Bella2* 1Neurology Unit, Civico General Hospital ARNAS, 90127, Palermo, Italy. 2Department of Experimental Biomedicine and Clinical Neurosciences, ALS Clinical Research Center, University of Palermo, Via G. La Loggia 1, 90129 Palermo, Italy. Authors’ contributions This work was carried out in collaboration between both authors. Authors DLC and VLB made the diagnosis and outlined the case report. Authors DLC, RS, and ACT managed the literature search and wrote the first draft of the manuscript with assistance from author VLB. All authors read and approved the final manuscript. Article Information DOI: 10.9734/INDJ/2015/17176 Editor(s): (1) Zhefeng Guo, Department of Neurology, University of California, Los Angeles, USA. Reviewers: (1) Mario Ciampolini, Università di Firenze, Department of Peiatrics, Università di Firenze, Italy. (2) Raghvendra Vijay Ramdasi, Jaslok Hospital & Research Centre, Mumbai India. Complete Peer review History: http://www.sciencedomain.org/review-history.php?iid=840&id=29&aid=8665 Received 1st March 2015 th Short Communication Accepted 20 March 2015 Published 2nd April 2015 ABSTRACT We report a patient with bulbar-onset, clinically defined, sporadic amyotrophic lateral sclerosis bearing an isolated syringomyelia of the lower thoracic portion of the spinal cord. This is a very unusual association between two rare and progressive disorders, both affecting the spinal motoneurons. Syringomyelia might have acted as a phenotypic modifier in this ALS patient.
    [Show full text]
  • Outcomes in Children Undergoing Posterior Fossa Decompression And
    CLINICAL ARTICLE J Neurosurg Pediatr 25:21–29, 2020 Outcomes in children undergoing posterior fossa decompression and duraplasty with and without tonsillar reduction for Chiari malformation type I and syringomyelia: a pilot prospective multicenter cohort study *Joyce Koueik, MD, MS,1 Carolina Sandoval-Garcia, MD,1 John R. W. Kestle, MD,2 Brandon G. Rocque, MD, MS,3 David M. Frim, MD, PhD,4 Gerald A. Grant, MD,5 Robert F. Keating, MD,6 Carrie R. Muh, MD,7 W. Jerry Oakes, MD,3 Ian F. Pollack, MD,8 Nathan R. Selden, MD, PhD,9 R. Shane Tubbs, PhD, PA-C,3 Gerald F. Tuite, MD,10 Benjamin Warf, MD,11 Victoria Rajamanickam, MS,12 Aimee Teo Broman, MA,12 Victor Haughton, MD,13 Susan Rebsamen, MD,13 Timothy M. George, MD,14 and Bermans J. Iskandar, MD1 1Department of Neurological Surgery, University of Wisconsin, Madison, Wisconsin; 2Department of Neurosurgery, University of Utah, Salt Lake City, Utah; 3Department of Neurosurgery, Children’s of Alabama, Birmingham, Alabama; 4Section of Neurosurgery, Department of Surgery, University of Chicago, Chicago, Illinois; 5Department of Pediatric Neurosurgery, Stanford Health Care, Palo Alto, California; 6Department of Neurosurgery, Children’s National Health System, Washington, DC; 7Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina; 8Department of Neurosurgery, UPMC Children’s Hospital of Pittsburgh, Pennsylvania; 9Department of Neurological Surgery, Oregon Health and Science University, Portland, Oregon; 10Department of Neurosurgery, Johns Hopkins All Children’s Hospital, Tampa, Florida; 11Department of Neurosurgery, Boston Children’s Hospital, Boston, Massachusetts; Departments of 12Biostatistics and Medical Informatics and 13Radiology, University of Wisconsin–Madison, Wisconsin; and 14Department of Neurosurgery, Dell Medical School, Austin, Texas OBJECTIVE Despite significant advances in diagnostic and surgical techniques, the surgical management of Chiari malformation type I (CM-I) with associated syringomyelia remains controversial, and the type of surgery performed is surgeon dependent.
    [Show full text]
  • Caspr2 Antibodies in Patients with Thymomas
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector MALIGNANCIES OF THE THYMUS Caspr2 Antibodies in Patients with Thymomas Angela Vincent, FRCPath,* and Sarosh R. Irani, MA* neuromuscular junction. Neuromyotonia (NMT) is due to Abstract: Myasthenia gravis is the best known autoimmune disease motor nerve hyperexcitability that leads to muscle fascicula- associated with thymomas, but other conditions can be found in tions and cramps. A proportion of patients have antibodies patients with thymic tumors, including some that affect the central that appear to be directed against brain tissue-derived volt- nervous system (CNS). We have become particularly interested in age-gated potassium channels (VGKCs) that control the ax- patients who have acquired neuromyotonia, the rare Morvan disease, onal membrane potential.4,5 VGKC antibody titers are rela- or limbic encephalitis. Neuromyotonia mainly involves the periph- tively low in NMT. eral nerves, Morvan disease affects both the peripheral nervous Morvan disease is a rare condition first described in system and CNS, and limbic encephalitis is specific to the CNS. 1876 but until recently hardly mentioned outside the French Many of these patients have voltage-gated potassium channel auto- literature.6 The patients exhibit NMT plus autonomic distur- antibodies. All three conditions can be associated with thymomas bance (such as excessive sweating, constipation, and cardiac and may respond to surgical removal of the underlying tumor
    [Show full text]
  • Syringomyelia in Cervical Spondylosis: a Rare Sequel H
    THIEME Editorial 1 Editorial Syringomyelia in Cervical Spondylosis: A Rare Sequel H. S. Bhatoe1 1 Department of Neurosciences, Max Super Specialty Hospital, Patparganj, New Delhi, India Indian J Neurosurg 2016;5:1–2. Neurological involvement in cervical spondylosis usually the buckled hypertrophic ligament flavum compresses the implies radiculopathy or myelopathy. Cervical spondylotic cord. Ischemia due to compromise of microcirculation and myelopathy is the commonest cause of myelopathy in the venous congestion, leading to focal demyelination.3 geriatric age group,1 and often an accompaniment in adult Syringomyelia is an extremely rare sequel of chronic cervical patients manifesting central cord syndrome and spinal cord cord compression due to spondylotic process, and manifests as injury without radiographic abnormality. Myelopathy is the accelerated myelopathy (►Fig. 1). Pathogenesis of result of three factors that often overlap: mechanical factors, syringomyelia is uncertain. Al-Mefty et al4 postulated dynamic-repeated microtrauma, and ischemia of spinal cord occurrence of myelomalacia due to chronic compression of microcirculation.2 Age-related mechanical changes include the cord, followed by phagocytosis, leading to a formation of hypertrophy of the ligamentum flavum, formation of the cavity that extends further. However, Kimura et al5 osteophytic bars, degenerative disc prolapse, all of them disagreed with this hypothesis, and postulated that following contributing to a narrowing of the spinal canal. Degenerative compression of the cord, there is slosh effect cranially and kyphosis and subluxation often aggravates the existing caudally, leading to an extension of the syrinx. It is thus likely compressiononthespinalcord.Flexion–extension that focal cord cavitation due to compression and ischemia movements of the spinal cord places additional, dynamic occurs due to periventricular fluid egress into the cord, the stretch on the cord that is compressed.
    [Show full text]
  • Neurosyphilis Presenting with Myelitis-Case Series and Literature Review
    Neurosyphilis presenting with myelitis-Case series and literature review Yali Wu Capital Medical University Aliated Beijing Ditan Hospital https://orcid.org/0000-0002-9737-6439 Wenqing Wu ( [email protected] ) https://orcid.org/0000-0001-7428-5529 Case report Keywords: Syphilis, Neurosyphilis, Spinal cord, Magnetic resonance imaging Posted Date: April 5th, 2019 DOI: https://doi.org/10.21203/rs.2.1849/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Journal of Infection and Chemotherapy on February 1st, 2020. See the published version at https://doi.org/10.1016/j.jiac.2019.09.007. Page 1/9 Abstract Background Neurosyphilis is a great imitator because of its various clinical symptoms. Syphilitic myelitis is extremely rare manifestation of neurosyphilis and often misdiagnosed. However, a small amount of literature in the past described its clinical manifestations and imaging features, and there was no relevant data on the prognosis, especially the long-term prognosis. In this paper, 4 syphilis myelitis patients admitted to our hospital between July 2012 and July 2017 were retrospectively reviewed. In the 4 patients, 2 were females, and 2 were males. We present our experiences with syphilitic myelitis, discuss the characteristics, treatment and prognosis. Case presentation The diagnosis criteria were applied: (1) diagnosis of myelitis established by two experienced neurologist based on symptoms and longitudinally extensive transverse myelitis (LETM) at the cervical and thoracic levels mimicked neuromyelitis optic (NMO) on magnetic resonance imaging (MRI) ; (2) Neurosyphilis (NS) was diagnosed by positive treponema pallidum particle assay (TPPA) and toluidine red untreated serum test (TRUST) in the serum and CSF; (3) negative human immunodeciency virus (HIV).
    [Show full text]
  • A Histopathological and Immunohistochemical Study of Acute and Chronic Human Compressive Myelopathy
    Cellular Pathology and Apoptosis in Experimental and Human Acute and Chronic Compressive Myelopathy ROWENA ELIZABETH ANNE NEWCOMBE M.B.B.S. B.Med Sci. (Hons.) Discipline of Pathology, School of Medical Sciences University of Adelaide June 2010 A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy CHAPTER 1 INTRODUCTION 1 The term “compressive myelopathy” describes a spectrum of spinal cord injury secondary to compressive forces of varying magnitude and duration. The compressive forces may act over a short period of time, continuously, intermittently or in varied combination and depending on their magnitude may produce a spectrum varying from mild to severe injury. In humans, spinal cord compression may be due to various causes including sudden fracture/dislocation and subluxation of the vertebral column, chronic spondylosis, disc herniation and various neoplasms involving the vertebral column and spinal canal. Neoplasms may impinge on the spinal cord and arise from extramedullary or intramedullary sites. Intramedullary expansion producing a type of internal compression can be due to masses created by neoplasms or fluid such as the cystic cavitation seen in syringomyelia. Acute compression involves an immediate compression of the spinal cord from lesions such as direct trauma. Chronic compression may develop over weeks to months or years from conditions such as cervical spondylosis which may involve osteophytosis or hypertrophy of the adjacent ligamentum flavum. Compressive myelopathies include the pathological changes from direct mechanical compression at one or multiple levels and changes in the cord extending multiple segments above and below the site of compression. Evidence over the past decade suggests that apoptotic cell death in neurons and glia, in particular of oligodendrocytes, may play an important role in the pathophysiology and functional outcome of human chronic compressive myelopathy.
    [Show full text]
  • ICD9 & ICD10 Neuromuscular Codes
    ICD-9-CM and ICD-10-CM NEUROMUSCULAR DIAGNOSIS CODES ICD-9-CM ICD-10-CM Focal Neuropathy Mononeuropathy G56.00 Carpal tunnel syndrome, unspecified Carpal tunnel syndrome 354.00 G56.00 upper limb Other lesions of median nerve, Other median nerve lesion 354.10 G56.10 unspecified upper limb Lesion of ulnar nerve, unspecified Lesion of ulnar nerve 354.20 G56.20 upper limb Lesion of radial nerve, unspecified Lesion of radial nerve 354.30 G56.30 upper limb Lesion of sciatic nerve, unspecified Sciatic nerve lesion (Piriformis syndrome) 355.00 G57.00 lower limb Meralgia paresthetica, unspecified Meralgia paresthetica 355.10 G57.10 lower limb Lesion of lateral popiteal nerve, Peroneal nerve (lesion of lateral popiteal nerve) 355.30 G57.30 unspecified lower limb Tarsal tunnel syndrome, unspecified Tarsal tunnel syndrome 355.50 G57.50 lower limb Plexus Brachial plexus lesion 353.00 Brachial plexus disorders G54.0 Brachial neuralgia (or radiculitis NOS) 723.40 Radiculopathy, cervical region M54.12 Radiculopathy, cervicothoracic region M54.13 Thoracic outlet syndrome (Thoracic root Thoracic root disorders, not elsewhere 353.00 G54.3 lesions, not elsewhere classified) classified Lumbosacral plexus lesion 353.10 Lumbosacral plexus disorders G54.1 Neuralgic amyotrophy 353.50 Neuralgic amyotrophy G54.5 Root Cervical radiculopathy (Intervertebral disc Cervical disc disorder with myelopathy, 722.71 M50.00 disorder with myelopathy, cervical region) unspecified cervical region Lumbosacral root lesions (Degeneration of Other intervertebral disc degeneration,
    [Show full text]
  • Transverse Myelitis Interagency Collaboration
    SHNIC Specialized Health Needs Factsheet: Transverse Myelitis Interagency Collaboration What is it? Transverse Myelitis is a neurological disorder caused by inflammation of the spinal cord. A child will experience weakness, pain, sensory and autonomic dysfunction. Auto- nomic, involuntary activities such as breathing, digestion, heartbeat and reflexes can be affected. Symptoms can ap- pear suddenly within hours or progress over a span of sev- eral weeks. Approximately 25% of cases are children. A peak in incidence occurs between ages of 10 and 19 and females are at higher risk than men. During an inflammato- ry response the myelin, or protective fatty coating on nerve cells, is damaged or destroyed. TM can also be the first symptom to diagnose Multiple Sclerosis. What causes it? Researchers believe it is the body’s immune response, not the infection itself, that causes the inflammatory response. This indicates an auto-immune reaction, where the body attacks it’s own tissue rather than the infection, is responsible. Research has made connections to the damage of spinal nerves following a viral or bacterial infection, especially those associated with a rash. According to the National Institute of Neurologic Disorders and Stroke, infectious agents sus- pected of causing TM include Varicella zoster (the virus that causes chickenpox and shingles), Herpes simplex, Cytomegalovirus, Epstein-Barr, Influenza, Echovirus, Human immunodefi- ciency virus (HIV), Hepatitis A, and Rubella. In some cases, bacterial infections like a middle ear infection and bacterial pneumonia have also been linked. What are the symptoms? Symptoms can start slowly and progressively worsen over hours or days. Damage depends on the affected area of the spinal cord.
    [Show full text]
  • Non-Commercial Use Only
    Neurology International 2015; volume 7:5885 Amyotrophic lateral sclerosis: Introduction Correspondence: Marco Orsini, Programa de Pós- new perpectives and update Graduação em Ciências da Reabilitação, Praça The technological breakthrough in the field das Nações, 34, Bonsucesso, Rio de Janeiro, CEP: Marco Orsini,1,2 Acary Bulle Oliveira 3 of neurolog /neuroscience, with modern imag- 21041021, Brasil. Osvaldo J.M. Nascimento,1 , ing and genetic studies, may, sometimes, E-mail: [email protected] Carlos Henrique Melo Reis 1 make the neurologist stay away from indispen- Key words: Amyotrophic lateral sclerosis; neu- Marco Antonio Araujo Leite, 1 sable propaedeutic techniques for the correct rodegenerative diseases; diagnosis; treatment; 1 1 Jano Alves de Souza Camila, Pupe diagnosis of amyotrophic lateral sclerosis rehabilitation. Olivia Gameiro de Souza, 1 , (ALS). ALS is without doubt a disease of the Victor Hugo Bastos 4 , central nervous system (CNS), which its natu- Contributions: the authors contributed equally. Marcos R.G. de Freitas, 1 Silmar Teixeira 4 ral history is one of the darkest in neurology. A progressive, devastating and inexorable dis- Carlos Bruno 1 Eduardo, Davidovich 1 , Conflict of interest: the authors declare no poten- ease, commonly leads to death by respiratory tial conflict of interest. Benny Smidt3, , failure a few years after onset of first symp- 1Neurology Department, Universidade toms. Rowland,1 centuries ago, defines its nat- Received for publication: 25 February 2015. Federal Fluminense, Rio de Janeiro; ural history well by stating that any notifica- Accepted for publication: 15 June 2015. 2Programa de Mestrado em Ciências da tion of improvement in patients with this dis- This work is licensed under a Creative Commons ease deserves careful review, because probably Reabiitação – UNISUAM, Rio de Janeiro; Attribution NonCommercial 3.0 License (CC BY- 3Neurology Department, Universidade it is not a case of ALS.
    [Show full text]