Carbonate Mounds: from Paradox to World Heritage
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Inside:The Pleistocene Cooling Built
THE PLEISTOCENE COOLING BUILT CHALLENGER MOUND, A DEEP-WATER CORAL MOUND IN THE NE ATLANTIC: INSIDE: SYNTHESIS FROM IODP EXPEDITION 307 PLUS: COUNCIL’S COMMENTS 2011 SPRING SEPM SECTION MEETINGS Special Publication #95 Cenozoic Carbonate Systems of Australasia Edited by: William A. Morgan, Annette D. George, Paul M. (Mitch) Harris, Julie A. Kupecz, and J.F. (Rick) Sarg The Cenozoic carbonate systems of Australasia are the product of a diverse assortment of depositional and post- depositional processes, reflecting the interplay of eustasy, tectonics (both plate and local scale), climate, and evolutionary trends that influenced their initiation and development. These systems, which comprise both land- attached and isolated platforms, were initiated in a wide variety of tectonic settings (including rift, passive margin, and arc-related) and under warm and cool-water conditions where, locally, siliciclastic input affected their development. The lithofacies, biofacies, growth morphology, diagenesis, and hydrocarbon reservoir potential of these systems are products of these varying influences. The studies reported in this volume range from syntheses of tectonic and depositional factors influencing carbonate deposition and controls on reservoir formation and petroleum system development, to local studies from the South China Sea, Indonesia, Kalimantan, Malaysia, the Marion Plateau, the Philippines, Western Australia, and New Caledonia that incorporate outcrop and subsurface data, including 3-D seismic imaging of carbonate platforms and facies, to understand the interplay of factors affecting the development of these systems under widely differing circumstances. This volume will be of importance to geoscientists interested in the variability of Cenozoic carbonate systems and the factors that controlled their formation, and to those wanting to understand the range of potential hydrocarbon reservoirs discovered in these carbonates and the events that led to favorable reservoir and trap development. -
Background Document for Deep-Sea Sponge Aggregations 2010
Background Document for Deep-sea sponge aggregations Biodiversity Series 2010 OSPAR Convention Convention OSPAR The Convention for the Protection of the La Convention pour la protection du milieu Marine Environment of the North-East Atlantic marin de l'Atlantique du Nord-Est, dite (the “OSPAR Convention”) was opened for Convention OSPAR, a été ouverte à la signature at the Ministerial Meeting of the signature à la réunion ministérielle des former Oslo and Paris Commissions in Paris anciennes Commissions d'Oslo et de Paris, on 22 September 1992. The Convention à Paris le 22 septembre 1992. La Convention entered into force on 25 March 1998. It has est entrée en vigueur le 25 mars 1998. been ratified by Belgium, Denmark, Finland, La Convention a été ratifiée par l'Allemagne, France, Germany, Iceland, Ireland, la Belgique, le Danemark, la Finlande, Luxembourg, Netherlands, Norway, Portugal, la France, l’Irlande, l’Islande, le Luxembourg, Sweden, Switzerland and the United Kingdom la Norvège, les Pays-Bas, le Portugal, and approved by the European Community le Royaume-Uni de Grande Bretagne and Spain. et d’Irlande du Nord, la Suède et la Suisse et approuvée par la Communauté européenne et l’Espagne. Acknowledgement This document has been prepared by Dr Sabine Christiansen for WWF as lead party. Rob van Soest provided contact with the surprisingly large sponge specialist group, of which Joana Xavier (Univ. Amsterdam) has engaged most in commenting on the draft text and providing literature. Rob van Soest, Ole Tendal, Marc Lavaleye, Dörte Janussen, Konstantin Tabachnik, Julian Gutt contributed with comments and updates of their research. -
Patterns of Bathymetric Zonation of Bivalves in the Porcupine Seabight and Adjacent Abyssal Plain, NE Atlantic
ARTICLE IN PRESS Deep-Sea Research I 52 (2005) 15–31 www.elsevier.com/locate/dsr Patterns of bathymetric zonation of bivalves in the Porcupine Seabight and adjacent Abyssal plain, NE Atlantic Celia Olabarriaà Southampton Oceanography Centre, DEEPSEAS Benthic Biology Group, Empress Dock, Southampton SO14 3ZH, UK Received 23 April2004; received in revised form 21 September 2004; accepted 21 September 2004 Abstract Although the organization patterns of fauna in the deep sea have been broadly documented, most studies have focused on the megafauna. Bivalves represent about 10% of the deep-sea macrobenthic fauna, being the third taxon in abundance after polychaetes and peracarid crustaceans. This study, based on a large data set, examined the bathymetric distribution, patterns of zonation and diversity–depth trends of bivalves from the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). A total of 131,334 individuals belonging to 76 species were collected between 500 and 4866 m. Most of the species showed broad depth ranges with some ranges extending over more than 3000 m. Furthermore, many species overlapped in their depth distributions. Patterns of zonation were not very strong and faunal change was gradual. Nevertheless, four bathymetric discontinuities, more or less clearly delimited, occurred at about 750, 1900, 2900 and 4100 m. These boundaries indicated five faunistic zones: (1) a zone above 750 m marking the change from shelf species to bathyal species; (2) a zone from 750 to 1900 m that corresponds to the upper and mid- bathyalzones taken together; (3) a lowerbathyalzone from 1900 to 2900 m; (4) a transition zone from 2900 to 4100 m where the bathyal fauna meets and overlaps with the abyssal fauna and (5) a truly abyssal zone from approximately 4100–4900 m (the lower depth limit of this study), characterized by the presence of abyssal species with restricted depth ranges and a few specimens of some bathyalspecies with very broad distributions. -
Deglacial Upslope Shift of NE Atlantic Intermediate Waters Controlled Slope Erosion and Cold-Water Coral Mound Formation
Deglacial upslope shift of NE Atlantic intermediate waters controlled slope erosion and cold-water coral mound formation (Porcupine Seabight, Irish margin) Claudia Wienberg, Jürgen Titschack, Norbert Frank, Ricardo de Pol-Holz, Jan Fietzke, Markus Eisele, Anne Kremer, Dierk Hebbeln To cite this version: Claudia Wienberg, Jürgen Titschack, Norbert Frank, Ricardo de Pol-Holz, Jan Fietzke, et al.. Deglacial upslope shift of NE Atlantic intermediate waters controlled slope erosion and cold-water coral mound formation (Porcupine Seabight, Irish margin). Quaternary Science Reviews, Elsevier, 2020, 237, pp.106310. 10.1016/j.quascirev.2020.106310. hal-02971186 HAL Id: hal-02971186 https://hal.archives-ouvertes.fr/hal-02971186 Submitted on 16 Apr 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NoDerivatives| 4.0 International License Quaternary Science Reviews 237 (2020) 106310 Contents lists available at ScienceDirect Quaternary Science Reviews journal homepage: www.elsevier.com/locate/quascirev Deglacial -
The Deep-Sea Meiofauna of the Porcupine Seabight and Abyssal Plain
OCEANOLOGICA ACTA 1985 -VOL. 8- W 3 ~ -----·~- Deep-sea meiobenthos Continental margins The deep-sea meiofauna Standing stocks Factors for distribution Chloroplastic pigments of the Porcupine Seabight in sediments Méiobenthos des régions and abyssal plain (NE Atlantic): profondes Pentes continentales Densité animale population structure, Facteurs de distribution Pigments chloroplastiques distribution, standing stocks des sédiments O. PFANNKUCHE Institute of Oceanographie Sciences, Worrnley, UK. Present address: Institut für Hydrobiologie und Fischereiwissenschaft, Universitat Hamburg, Zeiseweg 9, 2000 Hamburg 50, FRG. Received 13/11/84, in revised form 8/3/85, accepted 14/3/85. ABSTRACT The metazoan meiofauna has been studied in multiple corer samples collected in the Porcupine Seabight and on the Porcupine Abyssal Plain (NE Atlantic, 49.3°-52.3°N). Cores were taken at 500 rn intervals between depths of 500 rn and 4 850 m. With increasing depth the total meiofaunal abundance declined from 2 604 to 315 individuals per 10 cm- 2 and the biomass from 1.16 to 0.35 mg per 10 cm- 2 (ash-free dry weight). This depth-related decrease in standing stock was significantly correlated with the amounts of sediment-bound chloroplastic pigments (chlorophyll a, pheopigments) in a parallel set of samples. These pigments provide a measure to estimate the flux of primary organic matter to the seafloor. The depth transect in the Porcupine Seabight is compared with similar transects off Portugal and north Morocco. AU three transects revealed major decreases in meiofaunal density and biomass between 500 rn and 1 500 rn, roughly equivalent to the archibenthic zone, and also between the continental rise and the abyssal plain. -
A Geological and Geophysical Description of the Arc Mounds, Southwest Porcupine Bank
A geological and geophysical description of the Arc Mounds, southwest Porcupine Bank F i n a l R e p o r t July 2013 Fiona Stapleton* John Murray Anthony Grehan Garret Duffy Mike Williams *[email protected] In collaboration with: NOTE: No elements of this report are to be published without prior consent of the authors. ii Contents Abstract ...................................................................................................................................... v Acknowledgements ................................................................................................................... vi Chapter 1: Introduction .......................................................................................................... 1 1.1: Project Motivation ........................................................................................................... 1 1.2: Project Objectives ............................................................................................................ 3 1.3: Materials and Methods .................................................................................................... 3 Chapter 2: Location and Environmental Context ....................................................................... 5 2.1: Area of Interest ................................................................................................................ 5 2.2: Hydrography .................................................................................................................... 6 2.3: Geology -
Eocene Deformation on the Continental Margin SW of the British Isles
J. geol. Soc. London, Vol. 140, 1983, pp. 913-920, 5 figs. Printed in Northern Ireland. Eocene deformation on the continental margin SW of the British Isles D. G. Masson & L. M.Parson SUMMARY: Two narrow E-W trending zones of late Eocene compressional deformation, one on the northern margin of the Bay of Biscay, the other in the southern Porcupine Seabight, are described. Both appear to follow pre-existing geological lineaments. The deformation is related to the NW movement of Iberia between latest Cretaceous and Late Eocene time. Theearly Tertiary convergence between Iberia and (Fig. 2) and that it appears to die outlaterally both to Europe, whichgave rise tothe Pyrenean orogenic the E and W (Montadert ef al. 1979). belt, is marked offshore by the overthrusting of Iberia Inthe area where the deformation is strongest, onto the oceanic crust of the Bay of Biscay (Sibuet & along the Trevelyan Escarpment, compressional buck- Le Pichon1971; Montadert et al. 1971;Boillot & ling of thepre-late Eocene sequence has created a Capdevila1977; Boillot et al. 1979; Grimaud et al. complex faultedmonocline, with crustal shortening 1982). The major zone of overthrusting and reverse accommodated by two zones of reverse faulting (Fig. faulting follows the base of the northern continental 2). To theW, the trend of thisdeformation zone slope of Iberia, and trends E-W in the E but swings to graduallychanges from E-W to NW-SE. This is a NE-SW strike N of Galicia Bank in the W. Within accompanied by an apparent decrease in the intensity theBay of Biscay, there is abundantevidence for of deformationtowards the NW (Fig. -
Cold Water Carbonate Mounds and Sediment Transport on the Northeast Atlantic Margin
Intergovernmental Oceanographic Commission technical series 52 Cold water carbonate mounds and sediment transport on the Northeast Atlantic margin Preliminary results of geological and geophysical investigations during the TTR-7 cruise of R/V Professor Logachev in co-operation with the CORSAIRES and ENAM 2 programmes July-August, 1997 Editors: N.H. Kenyon M. K. lvanov A.M. Akhmetzhanov UNESCO 1998 The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariats of UNESCO and IOC concerning the legal status of any country or territory, or its authorities, or concerning the delimitations of the frontiers of any country or territory. For bibliographic purposes, this document should be cited as follows: Cold water carbonate mounds and sediment transport on the Northeast Atlantic margin IOC Technical Series No. 52, UNESCO 1998 (English) Published in 1998 by the United Nations Educational, ‘Scientific and Cultural Organization 7, place de-Fontenoy, 75352 Paris 07 SP Printed in UNESCO’s Workshops 0 UNESCO 1998 Printed in France IOC Technical Series No. 52 Page 1 TABLE OF CONTENTS Page ABSTRACT .................................................................................................. 3 ACKNOWLEDGEMENTS ............................................................................ 4 INTRODUCTION ......................................................................................... 5 TECHNICAL REPORT ................................................................................ -
Porcupine Seabight Basin 5 for the Proposed 1996 AIRS (Atlantic Irish Regional Survey) Project
Reference Only 11111111111111111 AIRS 1996 Atlantic Irish Regional Survey Hydrography, Surface Geology and Geomorphology of the Deep Water Sedimentary Basins to the West of Ireland . FISHERIES RESEA8Qlj CEtHRE 2'3 AUG 1999 " ,",,-_l!~~~!_~$~-~~~ N. J. Vermeulen Dublin Institute for Advanced Studies 5 Merrion Square, Dublin 2 Tel: 01-662 1333 Fax: 01-6621477 This work was completed in part fulfillment of contract IR.95.MR.021 of the Marine Research Measure (Operational Programme for Fisheries 1994-1999) administered by the Marine Institute, and part funded by their European Union's Regional Development Fund. Abstract Table of Contents This desk study involved the assembly, review and analysis of public domain and Chapter Page available data from an extensive deep water area offshore to the west of Ireland. All major bathymetric and sedimentary basins, in addition to associated shallow plateau Introduction 4 and bank areas, were considered. Particular emphasis was placed on the Porcupine Seabight and Rockall Trough as these were considered to be the main areas of interest Porcupine Seabight Basin 5 for the proposed 1996 AIRS (Atlantic Irish Regional Survey) project. Only relatively brief summaries are given for the Hatton Basin, Hatton Bank and the area further west. Porcupine Ridge and Porcupine Bank 12 Also, as the GLORIA side-scan sonar system used in the project is effective only in deeper waters (continental slope and abyssal depths), a considerable portion of the Porcupine Abyssal Plain 16 shallow shelf has been ignored. The primary goal of this study was to assemble a large existing data base on the Goban Spur 19 above areas and to present this in a concise format. -
12. Environmental Trends Among Neogene Benthic Foraminifers at Deep Sea Drilling Project Site 548, Irish Continental Margin1
12. ENVIRONMENTAL TRENDS AMONG NEOGENE BENTHIC FORAMINIFERS AT DEEP SEA DRILLING PROJECT SITE 548, IRISH CONTINENTAL MARGIN1 C. Wylie Poag and Doris Low, U.S. Geological Survey, Woods Hole2 ABSTRACT An analysis of diversity and abundance trends among all benthic foraminiferal genera and species, and particularly among species of Bolivina, was carried out for 59 samples of Neogene sediment from DSDP-IPOD Site 548, Goban Spur. By correlating these census data with lithological, geophysical, geochemical, and other faunal and floral measure- ments in the same stratigraphic interval, a record of irregularly fluctuating cycles was compiled. We interpret them as indicators of relative sea level. High sea levels are characterized by pelagic sedimentation and by high generic and total species diversities. During low sea level, diversity values were lower, and the accumulation of terrigenous detritus was more prevalent at the site. A sequence recording five highstands and five lowstands is interrupted by four unconformi- ties in a scenario remarkably similar to that postulated in the work of P. R. Vail and his colleagues. Bolivina species diversity also varied cyclically. We interpret diversity of Bolivina species as a measure of relative ox- ygen and nutrient content at the water/sediment interface; high diversity indicates the presence of an oxygen-minimum layer, accompanied by nutrient enrichment. Our data show that this property generally varied directly with sea level, but sometimes varied independently. INTRODUCTION 400) is 270 km southeast of Site 548, on the Armorican Margin in 4399 m of water (Schnitker, 1979). Site 548 is on the upper continental slope of Goban Spur, a physiographic nose that extends from the Irish METHODS continental margin southwestward toward Porcupine The sampling plan was to take at least one 2- to 3-cm3 sample from Abyssal Plain (Figs. -
Juan De Nova, Southern Indian Ocean
A Late Quaternary record of highstand shedding from an isolated carbonate platform (Juan de Nova, southern Indian Ocean) John Counts, Stéphan Jorry, Natalia Vázquez Riveiros, Gwénaël Jouet, Jacques Giraudeau, Sandrine Chéron, Audrey Boissier, Elda Miramontes To cite this version: John Counts, Stéphan Jorry, Natalia Vázquez Riveiros, Gwénaël Jouet, Jacques Giraudeau, et al.. A Late Quaternary record of highstand shedding from an isolated carbonate platform (Juan de Nova, southern Indian Ocean). Depositional Record, Wiley, 2019, Celebration of the Career of Robert Nathan Ginsburg, 5 (3), pp.540-557. 10.1002/dep2.57. hal-02128739v2 HAL Id: hal-02128739 https://hal.archives-ouvertes.fr/hal-02128739v2 Submitted on 6 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/330116598 A Late Quaternary record of highstand shedding from an isolated carbonate platform (Juan de Nova, southern Indian Ocean) Article in The Depositional Record · January -
Biological Skeletal Carbonate Records Changes in Major-Ion Chemistry of Paleo-Oceans
Commentary Biological skeletal carbonate records changes in major-ion chemistry of paleo-oceans Isabel P. Montan˜ez* Department of Geology, University of California, Davis, CA 95616 he history of the chemical evolution of clusion evidence for secular change in the A secular trend in marine potash Tseawater is of first-order importance major-ion chemistry of seawater over the evaporites (salt deposits characterized by given its fundamental role in a broad last 550 million years (13), argue strongly potassium chloride and͞or potassium sul- spectrum of geologic, geochemical, and for the concurrent trends in nonskeletal fate minerals) that is in-phase with that of paleontologic phenomena. A growing and skeletal chemical precipitates as a Phanerozoic nonskeletal carbonates (Fig. body of evidence for a more dynamic testament of the magnitude to which the 1) may provide further support for the role evolution of seawater chemistry than pre- basic seawater signal can be changed. of seawater Mg͞Ca ratio as the primary viously considered has been building over These results also have far-reaching influence on the mineralogy and compo- the past two decades. Central to this body implications for the role of seawater sition of these marine chemical precipi- of evidence are oscillating global trends, chemistry in influencing the biologi- tates (2). This reflects that changes in on a 100- to 200- cal composition of other environmental parameters that can million-year time reefs and the evolu- control the carbonate mineralogy, which scale, in the miner- tionary changes in precipitates from seawater, such as pCO2, alogy of marine The degree to which the basic biomineralization 2Ϫ [CO3 ], and temperature (8, 20, 21), carbonate cements seawater signal has varied over through time.