Albumen Protein and Functional Properties of Gelation and Foaming

Total Page:16

File Type:pdf, Size:1020Kb

Albumen Protein and Functional Properties of Gelation and Foaming Proteins of albumen functional properties 291 Review ALBUMEN PROTEIN AND FUNCTIONAL PROPERTIES OF GELATION AND FOAMING Ana Cláudia Carraro Alleoni R. Athaualpa Vaz de Melo, 179 - 13405-216 - Piracicaba, SP - Brasil. e-mail <[email protected]> ABSTRACT: Hen eggwhite proteins have been extensively utilized as ingredients in food processing because of their unique functional properties, such as gelling and foaming. This work reviews the molecular basis of the eggwhite proteins targeting the development of these functional properties during processing. Key words: ovalbumin, coagulation, gel, denaturation PROTEÍNAS DO ALBUME E PROPRIEDADES FUCIONAIS DE GELATINIZAÇÃO E FORMAÇÃO DE ESPUMA RESUMO: As proteínas da clara do ovo de galinha têm sido extensivamente usadas como ingredientes em alimentos processados, devido às suas propriedades funcionais, tais como gelatinização e formação de espuma. Essa revisão aborda as bases moleculares das proteínas da clara do ovo para o desenvolvimento dessas propriedades funcionais durante o processamento. Palavras-chave: ovalbumina, coagulação, gel, desnaturação INTRODUTION ALBUMEN PROTEINS The eggwhite has 9.7 to 12% protein (Vadehra Hen eggwhite have been extensively used as & Nath, 1973; Mine, 1995) and can be considered a sys- processed food ingredients, because of their functional tem built out of numerous globular proteins in an aque- properties of gelation and foam formation, ovalbumin ous solution. The seven largest fractions are ovalbumins proteins of chicken eggs have been used as processed A1 and A2, ovoglobulins G1, G2 and G3, ovomucoid and food ingredients (Mine, 1995). Gelation has evident conalbumin. Table 1 presents amounts of several pro- importance given the amount of available products to teins of eggwhite and some of their properties. consumers, such as desserts, puddings, reformulated 1. Ovalbumin meat products, tofu, and surimi. The success of many Ovalbumin constitutes 54% of eggwhite’s to- cooked food is related to protein coagulation, espe- tal protein (Zabik, 1992) and is its main protein cially the coagulation of egg proteins. Eggwhite and (Stevens, 1996). Vadehra & Nath (1973), Osuga & yolk can coagulate and act as linkage with other in- Feeney (1977), and Zabik (1992) report the existence gredients (Mine, 1995). of three ovalbumin fractions (A1, A2 and A3), detected Proteins make gels through ordinate polymer- by electrophoretic techniques. These fractions differ re- ization of molecules, providing a three-dimensional garding the phosphorus content of their molecules. network, and this process occurs by the transformation Ovalbumin A has two phosphate groups per molecule, of the viscous liquid in a viscous-elastic matrix 1 A2 has one group, and A3 has no phosphate group (Hermanssom, 1979). Foam is found in bread, cakes, (Vadehra & Nath, 1973; Zabik, 1992). Ovalbumin is a cookies, meringues, ice creams, and several bakery monomer, globular phospoglycoprotein with molecu- products. These products depend on air incorporation lar weight of 44.5 kDa, isoelectric point of 4.5, and to maintain their texture and structures during and af- has 385 residues from aminoacids (Nisbet et al., 1981), ter processing. The proteins encapsulate and retain air, half of them hydrophobic (Powrie & Nakai, 1985; improving the desirable textural attributes. The abil- Zabik, 1992; Mine, 1995). ity of protein to form and stabilize foam is related to Ovalbumin contains 3.5% carbohydrates and its amphiphilic behavior (polar/nonpolar) (Du et al., has four free sulphydrilic groups and a disulphide group. 2002). This study aims to review the molecular bases It can be denatured by heat exposure, by surface absorp- of ovalbumin proteins and their functional properties tion, in films, through agitation, or by the action of sev- of gel and foam formation and stabilization. eral denaturant agents (Vadehra & Nath, 1973). Sci. Agric. (Piracicaba, Braz.), v.63, n.3, p.291-298, May/June 2006 292 Alleoni Table 1 - Physical-chemical characteristics of albumen proteins (Source: Powrie & Nakai, 1985). Pnrotein APlbume ItMTolecular Weigh d Characteristic %adry weight DC° Ovalbumin 54.0 4.5 44,500 84.0 Fosfoglicoprotein Conalbumin 112.0 60. 707,70 6s1. Linkage with metal ion Ovomucoid 11.0 4.1 28,000 77.0 Inhibitory to trypsin Ovomucin 30.5 46.5-5. 5-n.5-8.3 x 10 Sialoprotei Lisozime 3.4 10.7 14,300 75.0 - Globulin G2 45.0 50. 459,00 9-2. Globulin G3 4.0 5.8 49,000 - - A5vidin 00.0 100. 6-8,30 Linkage with biotin e IP - isoelectric point; Td – denaturation temperature. During storage, ovalbumin is altered to s-oval- 2. Conalbumin or Ovotransferin bumin, an extra heat-stable form (denaturation at Conalbumin or ovotransferin is glycoprotein 92.5°C) in comparison to ovalbumin (denaturation at that represents 13% of eggwhite; its molecular weight 84.0°C), as determined by thermogram of the differ- varies from 60 to 95 kDa, with isoelectric point between ential scanning calorimeter (DSC) (Donovan & Mapes, 6.0 and 6.6 (Vadhera & Nath, 1973). Conalbumin can 1976). S-ovalbumin has a slightly lighter molecular bind to metal ions and form a protein-metal complex re- weight than ovalbumin and its relative quantity in the sistant to denaturation by heat, pressure, proteolitic en- eggwhite can increase during the storage period, from zymes, and denaturant agents (Azary & Feeney, 1958). 5% in fresh eggs to 81% after six months of refriger- This protein is complexed with two mols of metallic ion ated storage. Both pH and temperature also affect the per molecule with relative stability, and its ability to s-albumin formation (Vadehra & Nath, 1973). The s- bound to Fe is related to its antimicrobial activity. Con- ovalbumin dependency on pH indicates a step of ini- albumin has about 15 disulphide bindings and about tial ionization involving a sulphydrilic group and an 55% reactive residues (Zabik, 1992). amino group, or even the dependency on the concen- tration of hydroxyl ion, similar to an alkaline hydroly- 3. Ovomucoid sis (Smith & Back, 1965). The conversion of ovalbu- Ovomucoid is a glycoprotein bearing from 20 min to the extra stable form s-ovalbumin results from to 25% carbohydrates (Osuga & Feeney, 1977). It is differences in the structure of covalent bonding (Zabik, resistant to heat denaturation in acid solutions, and 1992). When eggs are covered with oil, coated with present inhibitory activity to trypsin (Stadelman & whey concentrate protein (Alleoni & Antunes, 2004), Coterril, 1973). Osuga & Feeney (1977) observed that or stored under refrigeration, this conversion is delayed ovomucoid from poultry eggs inhibits the bovine as a result of the lower carbon dioxide loss by the pores trypsin but not the human trypsin. Ovomucoid’s mo- of the egg shell. lecular weight varies from 26,100 to 28,300 Da, and Alleoni (1997) evaluated effects of storage its isoelectric point lies between 3.9 and 4.3 (Vadehra periods and two temperatures on poultry eggs. S-oval- & Nath, 1973). This protein is stabilized by hydropho- bumin contents registered were 18, 26 and 24% bic strengths and its high resistance to heat results from in eggs stored at 8°C for 7, 14 and 21 days, respec- its high cystine contents and, consequently, to the high tively. When stored at 25°C, eggs presented 56 and number of disulphide linkages – eight (Vadehra & 69% s-ovalbumin at 7 and 14 days, respectively. Nath, 1973). Smith & Back (1965) showed that 95% of ovalbumin is converted to s-ovalbumin when an ovalbumin so- 4. Ovomucin lution at pH 10 is kept and 55°C for 20 h. The maxi- Ovomucin is a glycosulphiprotein that contrib- mum production of s-ovalbumin occurs at pH 9.2 and utes to the gel-like structure of the eggwhite thick layer. the minimum at pH 7.9, both at 20°C (Nguyen & The eggwhite has two forms of ovomucin; the in- Smith, 1984). These refereed differences do not pro- soluble form characterizes the high viscosity of vide full explanation regarding the properties of s- eggwhite’s thin layer (Hayakawa & Sato, 1977). Ovo- ovalbumin, but properly exemplifies how little mucin presents from one to 2% of eggwhite’s total pro- changes in a given protein can significantly affect its teins (Vadehra & Nath, 1973), and differs from other properties. proteins because its molecule is extremely large and Sci. Agric. (Piracicaba, Braz.), v.63, n.3, p.291-298, May/June 2006 Proteins of albumen functional properties 293 contains sulphate esthers, large amounts of cystine (in- 1. Gelation terconnected through intermolecular linkages), and Gel is an intermediary form between solid and 50% of the total eggwhite sialic acid contents liquid. It is the cross-linking among polymeric mol- (Stadelman & Coterril, 1973). Ovomucin’s molecular ecules which make an intermolecular network within weight varies from 5.5 to 8.3 MDa. Ovomucin also has a liquid medium. In food systems, this liquid is water, a substantial amount of disulphide groups, and up to a solvent which affects the nature and the magnitude 33% carbohydrates (Vadehra & Nath, 1973). of intermolecular strengths that keep the integrity of the polymeric network. This network retains water, 5. Lysozyme avoiding losses (Oakenfull, 1987). Food processing Lysozyme is a glycoprotein, a single polypep- and the development of new products require ingredi- tide chain with 129 residues of aminoacids linked by ents such as the gelling agents, which build up a struc- four disulphide bonds, representing 3.5% of the tural matrix that supplies food’s desirable texture eggwhite; its molecular weight ranges from 14,300 to (Phillips et al., 1994). 14,600 Da, and its isoelectric point is 10.7 (Stadelman Gels can be described by their capacity to im- & Coterril, 1973). Lysozyme was previously placed in mobilize liquids, by their macromolecular structure, by the ovoglobulin group and referred to as G . Lysozyme’s 1 their texture, and by their rheological properties acid and basic lateral chains and terminal groups are dis- (Phillips et al., 1994).
Recommended publications
  • Normal Fibronectin Levels As a Function of Age in the Pediatric Population
    Pediatr. Res. 17: 482-485 (1983) Normal Fibronectin Levels as a Function of Age in the Pediatric Population MICHAEL H. MCCAFFERTY,'~"MARTHA LEPOW, THOMAS M. SABA,'21' ESHIN CHO, HILAIRE MEUWISSEN, JOHN WHITE, AND SHARON F. ZUCKERBROD Departments of Physiology and Pediatrics, Albany Medical College of Union University, Albany, New York, USA Summary pediatric population with age has not been reported. This may be important in terms of appropriate interpretation of prevailing Fibronectin is an important non-immune opsonic protein influ- levels in children with various disease states, because normal encing phagocytic clearance of blood-borne nonbacterial particu- concentrations in children may be different from normal levels in lates which may arise in association with septic shock, tissue adults. This study was designed to measure fibronectin levels in a injury, and intravascular coagulation. In the present study, serum large group (n = 114) of normal children in order to define its fibronectin was measured by both electroimmunoassay as well as normal concentration as a function of age. rapid immunoturbidimetric assay in healthy children (n = 114) ranging in age from 1 month to 15 years in order to delineate the temporal alterations in fibronectin with age. Normal adult serum MATERIALS AND METHODS fibronectin concentrations are typically 220 pg/ml + 20 pg/ml. Serum concentration is 3540% lower than normal plasma con- Healthy children (n = 114) ranging in age from 1 month to 15 centration due to the binding of fibronectin to fibrin during clot years were seen as outpatients or as inpatients for minor surgical formation. Children between 1-12 months of age had significantly procedures.
    [Show full text]
  • Egg Consumption and Human Health
    nutrients Egg Consumption and Human Health Edited by Maria Luz Fernandez Printed Edition of the Special Issue Published in Nutrients www.mdpi.com/journal/nutrients Egg Consumption and Human Health Special Issue Editor Maria Luz Fernandez MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Maria Luz Fernandez University of Connecticut USA Editorial Office MDPI AG St. Alban-Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal Nutrients (ISSN 2072-6643) in 2015–2016 (available at: http://www.mdpi.com/journal/nutrients/special issues/egg-consumption-human-health). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Lastname, F.M.; Lastname, F.M. Article title. Journal Name. Year. Article number, page range. First Edition 2018 ISBN 978-3-03842-666-0 (Pbk) ISBN 978-3-03842-667-7 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). Table of Contents About the Special Issue Editor ...................................... v Preface to ”Egg Consumption and Human Health” .......................... vii Jose M. Miranda, Xaquin Anton, Celia Redondo-Valbuena, Paula Roca-Saavedra, Jose A.
    [Show full text]
  • Tangential Flow Filtration of Haptoglobin
    Received: 10 January 2020 Revised: 7 April 2020 Accepted: 21 April 2020 DOI: 10.1002/btpr.3010 RESEARCH ARTICLE Tangential flow filtration of haptoglobin Ivan S. Pires | Andre F. Palmer William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State Abstract University, Columbus, Ohio Haptoglobin (Hp) is a plasma glycoprotein that scavenges cell-free hemoglobin (Hb). Correspondence Hp has various potential therapeutic applications, but it has been mainly studied for *Andre F. Palmer, William G. Lowrie treatment of acute hemolytic conditions that can arise from situations such as mas- Department of Chemical and Biomolecular Engineering, The Ohio State University, sive blood transfusion, infusion of stored red blood cells, severe burns, trauma, sepsis, 151 West Woodruff Ave, Columbus, OH radiation injury, and others. Therefore, Hp may also be beneficial during chronic 43210. Email: [email protected] hemolytic disease states such as hereditary spherocytosis, nocturnal hemoglobinuria, sickle-cell anemia, and malaria. Various methods have been developed to purify Hp Funding information National Cancer Institute, Grant/Award from plasma or plasma fractions. However, none of these methods have exploited Number: P30 CA016058; National Heart, the large molecular weight (MW) range distribution of Hp polymers to easily isolate Lung, and Blood Institute, Grant/Award Numbers: R01HL126945, R01HL138116, Hp from other plasma proteins. The present study used tangential flow filtration R56HL123015; National Institute of (TFF) to isolate polymeric Hp from plasma proteins using human Fraction IV (FIV) as Biomedical Imaging and Bioengineering, Grant/ Award Number: R01EB021926; NIH Office of the starting material. After removal of insoluble material from a suspension of FIV the Director, Grant/Award Number: S10 paste, the protein mixture was clarified on a 0.2 μm hollow fiber (HF) TFF filter.
    [Show full text]
  • Life Technologies (India) Pvt. Ltd. 306, Aggarwal City Mall, Opposite M2K Pitampura, Delhi – 110034 (INDIA)
    Product Specification Sheet Chicken conalbumin (ovotransferrin) proteins Antibodies Cat # CECA15-S Rabbit Anti-Chicken conalbumin protein antiserum SIZE: 100 ul Cat # CECA15-C Chicken conalbumin protein control for Western blot SIZE: 100 ul Cat # CECA16-N Chicken conalbumin proteins SIZE: 10 mg liquid at 10 mg/ml in PBS 0.05% azide or in powder form. Allergy to chicken egg or proteins is one of the more frequent Reconstitute powder in PBS at 1-10 mg/ml. It can be used causes of food hypersensitivity in infants and young children. Both positive control for antibody #CECA15-S or for coating IgG and IgA class antibodies may be detected. Ovalbumin ELISA plates. intolerance has been implicated in a number of conditions affecting children. In particular, children with cystic fibrosis show elevated anti-ovalbumin antibodies. Ovalbumin antibodies have For Western blot +ve control (Cat # CECA15-C) is supplied also been noted in some forms of kidney disease. A relationship in SDS-PAGE sample buffer (reduced). Load 10 ul/lane of between food allergy and infantile autism has also been observed. #CECA15-C for good visibility with antibody Cat #CECA15- Children with insulin-dependent diabetes mellitus show an S. Store at –20oC in suitable size aliquots. SDS may enhanced immune response to both β-lactoglobulin and crystallize in cold conditions. It should redissolve by ovalbumin, a phenomenon that may be related to the development warming before taking it from the stock. It should be of the disease. Conditions related to ovalbumin intolerance usually heated once prior to loading on gels. If the product has resolve once egg and egg based foods have been withdrawn from been stored for several weeks, then it may be preferable to the patient's diet.
    [Show full text]
  • Sex Hormone-Binding Globulin (SHBG) As an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome
    International Journal of Molecular Sciences Review Sex Hormone-Binding Globulin (SHBG) as an Early Biomarker and Therapeutic Target in Polycystic Ovary Syndrome Xianqin Qu 1,* and Richard Donnelly 2 1 School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia 2 School of Medicine, University of Nottingham, Derby DE22 3DT, UK; [email protected] * Correspondence: [email protected]; Tel.: +61-2-95147852 Received: 1 October 2020; Accepted: 28 October 2020; Published: 1 November 2020 Abstract: Human sex hormone-binding globulin (SHBG) is a glycoprotein produced by the liver that binds sex steroids with high affinity and specificity. Clinical observations and reports in the literature have suggested a negative correlation between circulating SHBG levels and markers of non-alcoholic fatty liver disease (NAFLD) and insulin resistance. Decreased SHBG levels increase the bioavailability of androgens, which in turn leads to progression of ovarian pathology, anovulation and the phenotypic characteristics of polycystic ovarian syndrome (PCOS). This review will use a case report to illustrate the inter-relationships between SHBG, NAFLD and PCOS. In particular, we will review the evidence that low hepatic SHBG production may be a key step in the pathogenesis of PCOS. Furthermore, there is emerging evidence that serum SHBG levels may be useful as a diagnostic biomarker and therapeutic target for managing women with PCOS. Keywords: adolescents; hepatic lipogenesis; human sex hormone-binding globulin; insulin resistance; non-alcoholic fatty liver disease; polycystic ovary syndrome 1. Introduction Polycystic ovary syndrome (PCOS) is a complex, common reproductive and endocrine disorder affecting up to 10% of reproductive-aged women [1].
    [Show full text]
  • Conalbumin More Resistant to Proteolysis and Ther- the Use Of
    IRON AND PROTEIN KINETICS STUDIED BY MEANS OF DOUBLY LABELED HUMAN CRYSTALLINE TRANSFERRIN * BY JAY H. KATZ (From the Radioisotope and Medical Services of the Boston Veterans Administration Hospital, and the Dept. of Medicine, Boston University School of Medicine, Boston, Mass.) (Submitted for publication June 16, 1961; accepted August 10, 1961) Although proteins isotopically labeled with io- demonstrated that not only is the iron complex of dine have been used in tracer studies for some conalbumin more resistant to proteolysis and ther- years, interest has been mainly focused on their mal denaturation than the metal-free protein, but distribution and degradation in the body. While it that it is possible to maintain the iron-binding ca- is often possible to produce iodoproteins whose pacity of the former after extensive iodination. physical and chemical properties are not grossly Since both iron and transferrin levels are af- altered, the possible effects of iodination on the fected in a variety of disease states, a technique functional properties of such substances in a in which both can be followed simultaneously in physiologic setting have been less thoroughly in- vivo should prove valuable. Elmlinger and co- vestigated. That it is possible to trace label pro- workers (18) have reported in abstract form on teins without significantly reducing their biologi- the use of doubly labeled "iron-binding globulin" cal activities has been demonstrated in the case of in human subjects, but few details were given as insulin (2) and certain anterior pituitary hor- to the methods of preparation and the distribution mones (3, 4). of the two labels.
    [Show full text]
  • Sites of Formation of the Serum Proteins Transferrin and Hemopexin
    Sites of Formation of the Serum Proteins Transferrin and Hemopexin G. J. Thorbecke, … , K. Cox, U. Muller-Eberhard J Clin Invest. 1973;52(3):725-731. https://doi.org/10.1172/JCI107234. Research Article Sites of synthesis of hemopexin and transferrin were determined by culturing various tissues of rabbits and monkeys in the presence of labeled amino acids. Labeling of the serum proteins was examined by means of autoradiographs of immunoelectrophoretic patterns as well as by precipitation in the test tubes employing immunospecific antisera. Good correlation was seen between the results obtained by the two different methods. The liver was found to be the only site of many tissues studied that synthesized hemopexin. Transferrin production was observed in the liver, submaxillary gland, lactating mammary gland, testis, and ovary. Find the latest version: https://jci.me/107234/pdf Sites of Formation of the Serum Proteins Transferrin and Hemopexin G. J. THORBECKE, H. H. LiEM, S. KNIGHT, K. Cox, and U. MULLER-EBERHARD From the Department of Pathology, New York University School of Medicine, New York 10016, and the Department of Biochemistry, Scripps Clinic and Research Foundation, and Division of Pediatric Hematology, University of California at San Diego, La Jolla, California 92037 A B S T R A C T Sites of synthesis of hemopexin and in iron deficiency and the decrease in inflammatory re- transferrin were determined by culturing various tis- actions (8). sues of rabbits and monkeys in the presence of labeled Preliminary findings (9, 10) suggested that hemo- amino acids. Labeling of the serum proteins was ex- pexin is formed by the liver.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,940,687 B2 Naidu Et Al
    USOO8940687B2 (12) United States Patent (10) Patent No.: US 8,940,687 B2 Naidu et al. (45) Date of Patent: Jan. 27, 2015 (54) ANTIMICROBIAL ANGIOGENIN 5,286,487 A 2/1994 Vallee et al. COMPLEXES (ANGEX) AND USES THEREOF 7,074,7596,172,040 B2B1 7,1/2001 2006 Naidu 7,125,963 B2 10/2006 Naidu (71) Applicant: Naidu LP, Pomona, CA (US) 7,601,689 B2 10/2009 Naidu 7.956,031 B2 6, 2011 Naidu et al. (72) Inventors: A. Satyanarayan Naidu, Diamond Bar, 8,003,603 B2 8/2011 Naidu CA (US); A. G. Tezus Naidu, Santa 8,021,659 B2 9, 2011 Naidu et al. Ana, CA (US); A. G. Sreus Naidu, 8,309,080 B2 11/2012 Naidu et al. Santa Ana, CA (US 2007, 0141101 A1 6/2007 Nugent et al. anta Ana, CA (US) 2008/02540.18 A1 10, 2008 Naidu 2011/0200575 A1 8, 2011 Naidu et al. (73) Assignee: Naidu LP, Pomona, CA (US) 2011/0286986 A1 11/2011 Naidu et al. (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. González-Chávez et al. ((International Journal of Antimicrobial 21) Appl. No.: 13/861,236 Agents 33 (2009) 301.e1-301.e8).* (21) ppl. No.: 9 Acharya, et al. “Crystal Structure of Human Angiogenin Reveals the Structural Basis for its Functional Divergence from Ribonuclease.” (22) Filed: Apr. 11, 2013 Proc. Natl. Acad. Sci. USA, vol. 91, pp. 2915-2919, Apr. 1994. O O Hu, et al.
    [Show full text]
  • Recurrent Angioedema Due to Lysozyme Allergy R Pérez-Calderón, MA Gonzalo-Garijo, a Lamilla-Yerga, R Mangas-Santos, I Moreno-Gastón
    R Pérez-Calderón, et al CASE REPORT Recurrent Angioedema Due to Lysozyme Allergy R Pérez-Calderón, MA Gonzalo-Garijo, A Lamilla-Yerga, R Mangas-Santos, I Moreno-Gastón Department of Allergology, Infanta Cristina University Hospital, Badajoz, Spain ■ Abstract A 54-year-old woman suffered an episode of dyspnea and edema affecting her eyelids, tongue, and lips a few minutes after intake of Lizipaina (bacitracin, papain, and lysozyme). She was treated with intravenous drugs and her symptoms improved within 2 hours. She had experienced 3 to 4 bouts of similar symptoms related to the ingestion of cured cheeses or raw egg. Specifi c serum immunoglobulin (Ig) E against lysozyme was present at a concentration of 0.45 kU/L, and no specifi c IgE was found against egg white and yolk, ovalbumin, or ovomucoid. Skin prick tests were positive with commercial extracts of egg white and lysozyme but doubtful with yolk, ovalbumin, and ovomucoid. Prick-to-prick tests with raw egg white and yolk gave positive results, but negative results were obtained with cooked egg white and yolk and 5 brands of cheese (3 of them containing lysozyme and the other 2 without lysozyme). Controlled oral administration of papain, bacitracin, and cheeses without lysozyme was well tolerated. We suggest that the presence of lysozyme in a pharmaceutical preparation, cured cheese, and raw egg was responsible for the symptoms suffered by our patient, probably through an IgE-mediated mechanism. Key words: Additives. Drug allergy. Food allergy. Hypersensitivity. Lysozyme. ■ Resumen Mujer de 54 años de edad, que presentó un cuadro de disnea y edema de párpados, lengua y labios a los pocos minutos de tomar un comprimido de Lizipaina (bacitracina, papaína y lisozima).
    [Show full text]
  • Avoiding Peanut, Tree Nuts, Egg, Corn, and Wheat Ingredients Common Food Allergens May Be Listed Many Different Ways on Food Labels and Can Be Hidden in Common Foods
    Food Allergen Graph: Avoiding Peanut, Tree Nuts, Egg, Corn, and Wheat Ingredients Common food allergens may be listed many different ways on food labels and can be hidden in common foods. Below you will find different labels for common allergens. Avoiding Peanuts: Avoiding Tree Nuts: Avoiding Egg: Avoiding Corn: Avoiding Wheat: Artificial nuts Almond Albumin / albumen Corn - meal, flakes, Bread Crumbs Beer nuts Artificial nuts Egg (dried, powdered, syrup, solids, flour, Bulgur Cold pressed, expeller Brazil nut solids, white, yolk) niblets, kernel, Cereal extract Flour: pressed or extruded peanut Beechnut Eggnog alcohol, on the cob, Club Wheat all-purpose Butternut oil Globulin / Ovoglobulin starch, bread,muffins Conscous bread Goobers Cashew Fat subtitutes sugar/sweetener, oil, Cracker meal cake Durum Ground nuts Chestnut Livetin Caramel corn / flavoring durum Einkorn Mandelonas (peanuts soaked Chinquapin nut Lysozyme Citric acid (may be corn enriched Emmer in almond flavoring) Coconut (really is a fruit not a based) graham Mayonnaise Farina Mixed nuts tree nut, but classified as a Grits high gluten Meringue (meringue Hydrolyzed Monkey nuts nut on some charts) high protein powder) Hominy wheat protein Nut meat Filbert / hazelnut instant Ovalbumin Maize Kamut Gianduja -a chocolate-nut mix pastry Nut pieces Ovomucin / Ovomucoid / Malto / Dextrose / Dextrate Matzoh Peanut butter Ginkgo nut Modified cornstarch self-rising Ovotransferrin Matzoh meal steel ground Peanut flour Hickory nut Polenta Simplesse Pasta stone ground Peanut protein hydrolysate
    [Show full text]
  • Protein Analysis Reveals Differential Accumulation of Late
    The following article appeared in BMC Plant Biology, 19: 59 (2019); and may be found at: https://doi.org/10.1186/s12870-019-1656-7 This is an open access article distributed under the Creative Commons Attribution 4.0 International (CC BY 4.0) license https://creativecommons.org/licenses/by/4.0/ Bojórquez-Velázquez et al. BMC Plant Biology (2019) 19:59 https://doi.org/10.1186/s12870-019-1656-7 RESEARCH ARTICLE Open Access Protein analysis reveals differential accumulation of late embryogenesis abundant and storage proteins in seeds of wild and cultivated amaranth species Esaú Bojórquez-Velázquez1, Alberto Barrera-Pacheco1, Eduardo Espitia-Rangel2, Alfredo Herrera-Estrella3 and Ana Paulina Barba de la Rosa1* Abstract Background: Amaranth is a plant naturally resistant to various types of stresses that produces seeds of excellent nutritional quality, so amaranth is a promising system for food production. Amaranth wild relatives have survived climate changes and grow under harsh conditions, however no studies about morphological and molecular characteristics of their seeds are known. Therefore, we carried out a detailed morphological and molecular characterization of wild species A. powellii and A. hybridus, and compared them with the cultivated amaranth species A. hypochondriacus (waxy and non-waxy seeds) and A. cruentus. Results: Seed proteins were fractionated according to their polarity properties and were analysed in one- dimensional gel electrophoresis (1-DE) followed by nano-liquid chromatography coupled to tandem mass spectrometry (nLC-MS/MS). A total of 34 differentially accumulated protein bands were detected and 105 proteins were successfully identified. Late embryogenesis abundant proteins were detected as species-specific.
    [Show full text]
  • Sourcebook in Forensic Serology, Immunology, and Biochemistry
    UNIT VII. HEMOGLOBIN, SERUM GROUP SYSTEMS, HLA AND OTHER GENETIC MARKERS Hemoglobin SECTION 38. HEMOGLOBIN 38.1 Introduction Hemoglobin (Hb)is the major protein of human red cells, forth. Hemoglobins exist which contain only one kind of comprising about 95% of their dry weight. Adult human chain: Hb H is B4, for example, and Hb Bart's is 7,. blood normally contains from about 4 million to 6.5 million Jones (1961) pointed out that hemoglobin structural red cells per mm3 blood, the average figure being slightly heterogeneity can be classified as follows: (1) Maturation higher for men. Hemoglobin itself is present in concentra- heterogeneity, which refers to the fact that different tions of about 14 to 16 g per 100 mP blood. It is the oxygen hemoglobins are normally synthesized during different transporting protein in higher animals; without a molecule stages of development. There are embryonic, fetal and adult having its properties, complex multicellular aerobic life as hemoglobins. (2) Minor hemoglobin heterogeneity, which we know it would not be possible. refers to the presence of small amounts of structurally dif- Hemoglobin is one of the most extensively studied of all ferent but normal hemoglobins along with the major proteins, and its literature fills many volumes. As noted in component characteristic of a particular stage of develop- section 5.1, it acquired its present name over 100 years ago ment; and (3) genetic heterogeneity, which refers to the (Hoppe-Seyler, 1864). In forensic serology, hemoglobiin is various "abnormal" hemoglobin variants. Many of these important in two principal contexts: (1) Blood is normally are thought to be the result of point mutations, and with a idenad in questioned samples by procedures designed to few exceptions, variant hemoglobins are very rare.
    [Show full text]