VLA-4 Integrin Concentrates at the Peripheral Supramolecular Activation Complex of the Immune Synapse and Drives T Helper 1 Responses

Total Page:16

File Type:pdf, Size:1020Kb

VLA-4 Integrin Concentrates at the Peripheral Supramolecular Activation Complex of the Immune Synapse and Drives T Helper 1 Responses VLA-4 integrin concentrates at the peripheral supramolecular activation complex of the immune synapse and drives T helper 1 responses Marı´aMittelbrunn*†, Ana Molina†‡, Marı´aM. Escribese‡, Marı´aYa´ n˜ ez-Mo´ *, Ester Escudero‡, Angeles´ Ursa*, Reyes Tejedor*, Francisco Mampaso‡, and Francisco Sa´ nchez-Madrid*§ *Servicio de Inmunologı´a,Hospital de la Princesa, Universidad Auto´noma de Madrid, Madrid 28006, Spain; and ‡Departamento de Patologı´a,Hospital Ramo´n y Cajal, Universidad de Alcala´, Madrid 28001, Spain Edited by Ralph M. Steinman, The Rockefeller University, New York, NY, and approved June 10, 2004 (received for review November 28, 2003) ␣ ␤ ␣ ␤ The integrin 4 1 (VLA-4) not only mediates the adhesion and whereas the involvement of L 2 during Ag presentation is well ␣ ␤ ␣ ␤ transendothelial migration of leukocytes, but also provides co- known, the role of 4 1 has not been addressed. The L 2 stimulatory signals that contribute to the activation of T lympho- integrin mediates T cell adhesion to APCs, facilitating the cytes. However, the behavior of ␣4␤1 during the formation of the formation of the immunological synapse (IS) (6). The pair ␣ ␤ ␣ ␤ ͞ immune synapse is currently unknown. Here, we show that 4 1 L 2 intracellular adhesion molecule-1 (ICAM-1) forms an is recruited to both human and murine antigen-dependent immune adhesion ring that is called the peripheral supramolecular acti- synapses, when the antigen-presenting cell is a B lymphocyte or a vation complex (pSMAC), that surrounds the T cell receptor– dendritic cell, colocalizing with LFA-1 at the peripheral supramo- peptide–MHC complexes localized at the central SMAC of the ␣ ␤ ͞ lecular activation complex. However, when conjugates are formed IS (7, 8). Several studies in mouse models revealed that L 2 in the presence of anti-␣4 antibodies, VLA-4 colocalizes with the ICAM-1 interaction could be important for driving Th1 polar- CD3-␨ chain at the center of the synapse. In addition, antibody ization (9, 10). engagement of ␣4 integrin promotes polarization toward a T The ␣4␤1 integrin is predominantly expressed on hematopoi- helper 1 (Th1) response in human in vitro models of CD4؉ T cell etic cells and serves as a receptor for fibronectin and vascular differentiation and naı¨ve T cell priming by dendritic cells. The in cell adhesion molecule 1 (VCAM-1). In addition to mediating vivo administration of anti-␣4 integrin antibodies also induces an leukocyte adhesion to endothelium and extracellular matrix, immune deviation to Th1 response that dampens a Th2-driven ␣4␤1 has been implicated in T cell costimulation (11–13). The autoimmune nephritis in Brown Norway rats. These data reveal a dual role of ␣4␤1 as an adhesion and costimulatory molecule regulatory role of ␣4 integrins on T lymphocyte-antigen presenting suggests that this integrin could be involved in the modulation of cell cognate immune interactions. the T cell response during Ag presentation. However, the behavior of ␣4␤1 and its possible function during the establish- fter the recognition of antigens (Ag) presented by dendritic ment of an IS has not been examined. Here, we show that ␣4␤1 Acells (DCs), naı¨ve T lymphocytes proliferate and differen- is recruited to the pSMAC of IS colocalizing with LFA-1 tiate into T helper (Th) 1 or 2 effector cells. These effector integrin. We also demonstrate the functional involvement of this lymphocytes are characterized by distinct patterns of cytokine integrin in the priming of T lymphocytes toward a Th1 response production and homing behavior. Th1 cells mainly produce in vitro and in vivo. IFN-␥ and IL-2 and have a key role in the cellular immune Materials and Methods responses. Conversely, Th2 cells produce IL-4, IL-5, IL-6, and Cells, Antibodies, and Reactives. The Jurkat-derived human T cell IL-10 and promote the humoral immune responses (1). DCs are ϩ the only Ag-presenting cells (APCs) involved in the priming of line V␤8 J77cl20, the lymphoblastoid B cell line Raji, the naı¨ve Th cells and their polarization toward Th1 or Th2 differ- murine Th cell clone SR.D10, the I-Ak transgenic B lymphoma entiation. To acquire this capacity, DCs must undergo a matu- cell line TAK, and the S3085B (S3) human T cell clone have been ration process characterized by the loss of their Ag-capturing described (14). Human monocyte-derived DCs were generated capacity and the increase of their expression of costimulatory as described (14) and matured with lipopolysaccharide (LPS) (10 and adhesion molecules, including ␣4␤1 integrin (2). However, ng͞ml) (Sigma) or calcium ionophore A23187 (150 ng͞ml) other APCs (e.g., B lymphocytes) are also involved in regulating (Sigma) for 48 h or with tumor necrosis factor (TNF)-␣ (50 the cytokine profiles of Th cell responses, indicating the impor- ng͞ml) plus IL-1␤ (10 ng͞ml) for 4 days. The phenotype of tance of postpriming events (3). mature DCs (CD83 high CD86 high CD14low) was confirmed by The interaction between T cells and APCs plays an important flow cytometry. The murine anti-human ␣4 integrin mAbs role in directing Th cell polarization. The strength of antigenic HP2͞1 (epitope B1) and HP2͞4 (epitope B2) are mouse IgG1␬, stimulation, the duration of T cell receptor engagement, the bind with comparable affinity to ␣4 integrin, and cross-react with presence of different cytokines, and the participation of distinct rat ␣4 integrins (15); and anti-␣4 integrin mAb HP1͞7 (epitope costimulatory molecules are critical in determining the pheno- A) have been described (16). Anti-human ␤1 integrin TS2͞16, type of differentiated T cells. The cytokine IL-12, high doses of Ag, and CD28͞B7–1 interaction promote Th1 differentiation, whereas an environment enriched in IL-4, low doses of Ag, and This paper was submitted directly (Track II) to the PNAS office. CD28͞B7–2 or inducible costimulator (ICOS)͞ICOS ligand Abbreviations: Ag, antigen; DC, dendritic cell; Th, T helper; APC, Ag-presenting cell; SMAC, supramolecular activation complex; pSMAC, peripheral SMAC; VCAM-1; vascular cellular participation promote Th2 responses (4). adhesion molecule 1; ICAM-1, intracellular adhesion molecule 1; IS, immunological syn- Integrins are a large family of ␣␤ heterodimeric transmem- apse; LPS, lipopolysaccharide; TNF, tumor necrosis factor; CMAC, chloromethyl derivative of brane proteins that mediate cell–cell and cell–extracellular aminocoumarin; SEB, staphylococcal enterotoxin B; SEE, staphylococcal enterotoxin E; BN, matrix adhesion. Several integrins, lymphocyte function- Brown Norway; PMA, phorbol 12-myristate 13-acetate. ␣ ␤ †M.M. and A.M. contributed equally to this work. associated (LFA-1; L 2), very late activation antigen-4 (VLA-4; ␣4␤1), and VLA-1 (␣1␤1) have been involved also in the §To whom correspondence should be addressed. E-mail: [email protected]. transduction of costimulatory signals in T cells (5). However, © 2004 by The National Academy of Sciences of the USA 11058–11063 ͉ PNAS ͉ July 27, 2004 ͉ vol. 101 ͉ no. 30 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0307927101 Downloaded by guest on September 29, 2021 ␣ ͞ ͞ ␮ ͞ anti-CD3 T3b, anti- L integrin TP1 40, anti-CD45 D3 9, anti- in 96-well culture plates (Costar) in the presence of 2 g ml human CD9 VJ1͞10, and anti-CD28 (CD28.2) mAbs have been HP2͞1, HP2͞4, or control Ab anti-␣3 integrin VJ1͞6. On day 5, described (14). Rat anti-mouse ␣4PS͞2 mAb was provided by T. IL-2 (10 units͞ml) was added. On day 14, Th cells were stimu- Issekutz (Dalhousie University, Halifax, Canada), rat anti- lated with PMA͞A23187, and IL-4 and IFN-␥ levels were mouse ICAM-1 was provided by D. Vestweber (University of measured as described above. Mu¨nster, Mu¨nster, Germany), anti-JAM-A antibody was pro- vided by E. Dejana (Instituto FIRC di Oncologia, Milan), and Flow Cytometry Analysis. Mature DCs were incubated with human rabbit anti-human CD3-␨ chain 448 was provided by B. Alarco´n ␥-globulin (100 ␮g͞ml) in PBS for 20 min and then with anti-␣4 (Centro de Biologı´a Molecular, Madrid). integrin HP2͞1 or anti-CD3 T3b mAb (negative control) for 30 Mouse anti-rat mAbs specific for CD45RC (FITC-OX22), min. After washing, cells were incubated with an FITC- CD4 (PE-W6͞25), and CD45 (OX1) were purchased from conjugated secondary Ab and analyzed in a FACScan flow Serotec (Oxford). Secondary Alexa 488- and Rhodamine red cytometer (Becton Dickinson). X-labeled Abs, streptavidin, and the fluorescent tracker CMAC (chloromethyl derivative of aminocoumarin) were from Molec- In Vivo Treatment Protocols. Brown Norway (BN) rats were sep- ular Probes. Poly(L -lysine) was from Sigma, and the superan- arated into two main groups. Group 1 served as a normal tigen staphylococcal enterotoxin E (SEE) was from Toxin control, whereas group 2 animals received five s.c. injections of ͞ Technology (Sarasota, FL). The human recombinant IL-2 was HgCl2 (1 mg kg body weight) over a period of 2 weeks (15). obtained through the National Institutes of Health AIDS Re- Within each group, rats were i.p. injected with vehicle (phos- search and Reference Reagent Program, Division of AIDS, phate buffer, pH 7.5) or 0.5 mg of HP2͞1, HP2͞4, or OX1 National Institute of Allergy and Infectious Diseases, contrib- (anti-rat CD45) mAbs on days 0, 8, and 13. At days 0, 6, 9, 13, uted by M. Gately (Hoffmann-LaRoche, Nutley, NJ). 15, and 23, rats (n ϭ 6) were bled and killed, and their spleens were removed. Blood was either heparinized for flow cytometry Cell Conjugate Assays and Immunofluorescence Microscopy. APCs studies or allowed to clot to obtain serum. were loaded for 20 min at 37°C with the fluorescent tracker Serum samples were tested for IFN-␥ levels by ELISA (R & CMAC (10 ␮M) (Molecular Probes) and incubated for 20 min ␮ ͞ ␮ ͞ D Systems).
Recommended publications
  • Egg Consumption and Human Health
    nutrients Egg Consumption and Human Health Edited by Maria Luz Fernandez Printed Edition of the Special Issue Published in Nutrients www.mdpi.com/journal/nutrients Egg Consumption and Human Health Special Issue Editor Maria Luz Fernandez MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editor Maria Luz Fernandez University of Connecticut USA Editorial Office MDPI AG St. Alban-Anlage 66 Basel, Switzerland This edition is a reprint of the Special Issue published online in the open access journal Nutrients (ISSN 2072-6643) in 2015–2016 (available at: http://www.mdpi.com/journal/nutrients/special issues/egg-consumption-human-health). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: Lastname, F.M.; Lastname, F.M. Article title. Journal Name. Year. Article number, page range. First Edition 2018 ISBN 978-3-03842-666-0 (Pbk) ISBN 978-3-03842-667-7 (PDF) Articles in this volume are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book taken as a whole is c 2018 MDPI, Basel, Switzerland, distributed under the terms and conditions of the Creative Commons license CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/). Table of Contents About the Special Issue Editor ...................................... v Preface to ”Egg Consumption and Human Health” .......................... vii Jose M. Miranda, Xaquin Anton, Celia Redondo-Valbuena, Paula Roca-Saavedra, Jose A.
    [Show full text]
  • Tangential Flow Filtration of Haptoglobin
    Received: 10 January 2020 Revised: 7 April 2020 Accepted: 21 April 2020 DOI: 10.1002/btpr.3010 RESEARCH ARTICLE Tangential flow filtration of haptoglobin Ivan S. Pires | Andre F. Palmer William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State Abstract University, Columbus, Ohio Haptoglobin (Hp) is a plasma glycoprotein that scavenges cell-free hemoglobin (Hb). Correspondence Hp has various potential therapeutic applications, but it has been mainly studied for *Andre F. Palmer, William G. Lowrie treatment of acute hemolytic conditions that can arise from situations such as mas- Department of Chemical and Biomolecular Engineering, The Ohio State University, sive blood transfusion, infusion of stored red blood cells, severe burns, trauma, sepsis, 151 West Woodruff Ave, Columbus, OH radiation injury, and others. Therefore, Hp may also be beneficial during chronic 43210. Email: [email protected] hemolytic disease states such as hereditary spherocytosis, nocturnal hemoglobinuria, sickle-cell anemia, and malaria. Various methods have been developed to purify Hp Funding information National Cancer Institute, Grant/Award from plasma or plasma fractions. However, none of these methods have exploited Number: P30 CA016058; National Heart, the large molecular weight (MW) range distribution of Hp polymers to easily isolate Lung, and Blood Institute, Grant/Award Numbers: R01HL126945, R01HL138116, Hp from other plasma proteins. The present study used tangential flow filtration R56HL123015; National Institute of (TFF) to isolate polymeric Hp from plasma proteins using human Fraction IV (FIV) as Biomedical Imaging and Bioengineering, Grant/ Award Number: R01EB021926; NIH Office of the starting material. After removal of insoluble material from a suspension of FIV the Director, Grant/Award Number: S10 paste, the protein mixture was clarified on a 0.2 μm hollow fiber (HF) TFF filter.
    [Show full text]
  • Life Technologies (India) Pvt. Ltd. 306, Aggarwal City Mall, Opposite M2K Pitampura, Delhi – 110034 (INDIA)
    Product Specification Sheet Chicken conalbumin (ovotransferrin) proteins Antibodies Cat # CECA15-S Rabbit Anti-Chicken conalbumin protein antiserum SIZE: 100 ul Cat # CECA15-C Chicken conalbumin protein control for Western blot SIZE: 100 ul Cat # CECA16-N Chicken conalbumin proteins SIZE: 10 mg liquid at 10 mg/ml in PBS 0.05% azide or in powder form. Allergy to chicken egg or proteins is one of the more frequent Reconstitute powder in PBS at 1-10 mg/ml. It can be used causes of food hypersensitivity in infants and young children. Both positive control for antibody #CECA15-S or for coating IgG and IgA class antibodies may be detected. Ovalbumin ELISA plates. intolerance has been implicated in a number of conditions affecting children. In particular, children with cystic fibrosis show elevated anti-ovalbumin antibodies. Ovalbumin antibodies have For Western blot +ve control (Cat # CECA15-C) is supplied also been noted in some forms of kidney disease. A relationship in SDS-PAGE sample buffer (reduced). Load 10 ul/lane of between food allergy and infantile autism has also been observed. #CECA15-C for good visibility with antibody Cat #CECA15- Children with insulin-dependent diabetes mellitus show an S. Store at –20oC in suitable size aliquots. SDS may enhanced immune response to both β-lactoglobulin and crystallize in cold conditions. It should redissolve by ovalbumin, a phenomenon that may be related to the development warming before taking it from the stock. It should be of the disease. Conditions related to ovalbumin intolerance usually heated once prior to loading on gels. If the product has resolve once egg and egg based foods have been withdrawn from been stored for several weeks, then it may be preferable to the patient's diet.
    [Show full text]
  • Conalbumin More Resistant to Proteolysis and Ther- the Use Of
    IRON AND PROTEIN KINETICS STUDIED BY MEANS OF DOUBLY LABELED HUMAN CRYSTALLINE TRANSFERRIN * BY JAY H. KATZ (From the Radioisotope and Medical Services of the Boston Veterans Administration Hospital, and the Dept. of Medicine, Boston University School of Medicine, Boston, Mass.) (Submitted for publication June 16, 1961; accepted August 10, 1961) Although proteins isotopically labeled with io- demonstrated that not only is the iron complex of dine have been used in tracer studies for some conalbumin more resistant to proteolysis and ther- years, interest has been mainly focused on their mal denaturation than the metal-free protein, but distribution and degradation in the body. While it that it is possible to maintain the iron-binding ca- is often possible to produce iodoproteins whose pacity of the former after extensive iodination. physical and chemical properties are not grossly Since both iron and transferrin levels are af- altered, the possible effects of iodination on the fected in a variety of disease states, a technique functional properties of such substances in a in which both can be followed simultaneously in physiologic setting have been less thoroughly in- vivo should prove valuable. Elmlinger and co- vestigated. That it is possible to trace label pro- workers (18) have reported in abstract form on teins without significantly reducing their biologi- the use of doubly labeled "iron-binding globulin" cal activities has been demonstrated in the case of in human subjects, but few details were given as insulin (2) and certain anterior pituitary hor- to the methods of preparation and the distribution mones (3, 4). of the two labels.
    [Show full text]
  • Sites of Formation of the Serum Proteins Transferrin and Hemopexin
    Sites of Formation of the Serum Proteins Transferrin and Hemopexin G. J. Thorbecke, … , K. Cox, U. Muller-Eberhard J Clin Invest. 1973;52(3):725-731. https://doi.org/10.1172/JCI107234. Research Article Sites of synthesis of hemopexin and transferrin were determined by culturing various tissues of rabbits and monkeys in the presence of labeled amino acids. Labeling of the serum proteins was examined by means of autoradiographs of immunoelectrophoretic patterns as well as by precipitation in the test tubes employing immunospecific antisera. Good correlation was seen between the results obtained by the two different methods. The liver was found to be the only site of many tissues studied that synthesized hemopexin. Transferrin production was observed in the liver, submaxillary gland, lactating mammary gland, testis, and ovary. Find the latest version: https://jci.me/107234/pdf Sites of Formation of the Serum Proteins Transferrin and Hemopexin G. J. THORBECKE, H. H. LiEM, S. KNIGHT, K. Cox, and U. MULLER-EBERHARD From the Department of Pathology, New York University School of Medicine, New York 10016, and the Department of Biochemistry, Scripps Clinic and Research Foundation, and Division of Pediatric Hematology, University of California at San Diego, La Jolla, California 92037 A B S T R A C T Sites of synthesis of hemopexin and in iron deficiency and the decrease in inflammatory re- transferrin were determined by culturing various tis- actions (8). sues of rabbits and monkeys in the presence of labeled Preliminary findings (9, 10) suggested that hemo- amino acids. Labeling of the serum proteins was ex- pexin is formed by the liver.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,940,687 B2 Naidu Et Al
    USOO8940687B2 (12) United States Patent (10) Patent No.: US 8,940,687 B2 Naidu et al. (45) Date of Patent: Jan. 27, 2015 (54) ANTIMICROBIAL ANGIOGENIN 5,286,487 A 2/1994 Vallee et al. COMPLEXES (ANGEX) AND USES THEREOF 7,074,7596,172,040 B2B1 7,1/2001 2006 Naidu 7,125,963 B2 10/2006 Naidu (71) Applicant: Naidu LP, Pomona, CA (US) 7,601,689 B2 10/2009 Naidu 7.956,031 B2 6, 2011 Naidu et al. (72) Inventors: A. Satyanarayan Naidu, Diamond Bar, 8,003,603 B2 8/2011 Naidu CA (US); A. G. Tezus Naidu, Santa 8,021,659 B2 9, 2011 Naidu et al. Ana, CA (US); A. G. Sreus Naidu, 8,309,080 B2 11/2012 Naidu et al. Santa Ana, CA (US 2007, 0141101 A1 6/2007 Nugent et al. anta Ana, CA (US) 2008/02540.18 A1 10, 2008 Naidu 2011/0200575 A1 8, 2011 Naidu et al. (73) Assignee: Naidu LP, Pomona, CA (US) 2011/0286986 A1 11/2011 Naidu et al. (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. González-Chávez et al. ((International Journal of Antimicrobial 21) Appl. No.: 13/861,236 Agents 33 (2009) 301.e1-301.e8).* (21) ppl. No.: 9 Acharya, et al. “Crystal Structure of Human Angiogenin Reveals the Structural Basis for its Functional Divergence from Ribonuclease.” (22) Filed: Apr. 11, 2013 Proc. Natl. Acad. Sci. USA, vol. 91, pp. 2915-2919, Apr. 1994. O O Hu, et al.
    [Show full text]
  • Sourcebook in Forensic Serology, Immunology, and Biochemistry
    UNIT VII. HEMOGLOBIN, SERUM GROUP SYSTEMS, HLA AND OTHER GENETIC MARKERS Hemoglobin SECTION 38. HEMOGLOBIN 38.1 Introduction Hemoglobin (Hb)is the major protein of human red cells, forth. Hemoglobins exist which contain only one kind of comprising about 95% of their dry weight. Adult human chain: Hb H is B4, for example, and Hb Bart's is 7,. blood normally contains from about 4 million to 6.5 million Jones (1961) pointed out that hemoglobin structural red cells per mm3 blood, the average figure being slightly heterogeneity can be classified as follows: (1) Maturation higher for men. Hemoglobin itself is present in concentra- heterogeneity, which refers to the fact that different tions of about 14 to 16 g per 100 mP blood. It is the oxygen hemoglobins are normally synthesized during different transporting protein in higher animals; without a molecule stages of development. There are embryonic, fetal and adult having its properties, complex multicellular aerobic life as hemoglobins. (2) Minor hemoglobin heterogeneity, which we know it would not be possible. refers to the presence of small amounts of structurally dif- Hemoglobin is one of the most extensively studied of all ferent but normal hemoglobins along with the major proteins, and its literature fills many volumes. As noted in component characteristic of a particular stage of develop- section 5.1, it acquired its present name over 100 years ago ment; and (3) genetic heterogeneity, which refers to the (Hoppe-Seyler, 1864). In forensic serology, hemoglobiin is various "abnormal" hemoglobin variants. Many of these important in two principal contexts: (1) Blood is normally are thought to be the result of point mutations, and with a idenad in questioned samples by procedures designed to few exceptions, variant hemoglobins are very rare.
    [Show full text]
  • The Nutraceutical Properties of Ovotransferrin and Its Potential Utilization As a Functional Food
    Review The Nutraceutical Properties of Ovotransferrin and Its Potential Utilization as a Functional Food Francesco Giansanti 1,2,*, Loris Leboffe 2,3, Francesco Angelucci 1 and Giovanni Antonini 2,3 Received: 29 September 2015 ; Accepted: 23 October 2015 ; Published: 4 November 2015 1 Department of Health, Life and Environmental Sciences, University of L’Aquila, L’Aquila I-67100, Italy; [email protected] 2 Interuniversity Consortium INBB Biostructures and Biosystems National Institute, Rome I-00136, Italy; [email protected] (L.L.); [email protected] (G.A.) 3 Department of Sciences, Roma Tre University, Rome I-00146, Italy * Correspondence: [email protected]; Tel.: +39-0862-433245; Fax: +39-0862-433273 Abstract: Ovotransferrin or conalbumin belong to the transferrin protein family and is endowed with both iron-transfer and protective activities. In addition to its well-known antibacterial properties, ovotransferrin displays other protective roles similar to those already ascertained for the homologous mammalian lactoferrin. These additional functions, in many cases not directly related to iron binding, are also displayed by the peptides derived from partial hydrolysis of ovotransferrin, suggesting a direct relationship between egg consumption and human health. Keywords: ovotransferrin; nutraceutical; functional food; antioxidant 1. Introduction Ovotransferrin (Otrf) or conalbumin belongs to the family of transferrin iron-binding glycoproteins. In mammals, two different soluble iron-binding glycoproteins are present: (i) serum transferrin, involved in iron transport and delivery to cells and (ii) lactoferrin, involved in the so-called natural immunity. Differently, Otrf is the only soluble glycoprotein of the transferrin protein family present in avian. Otrf is present both in avian plasma and egg white and possesses both iron-transfer and protective properties [1].
    [Show full text]
  • A Review on Ovalbumin Gene in Poultry
    Journal of Entomology and Zoology Studies 2018; 6(4): 1497-1503 E-ISSN: 2320-7078 P-ISSN: 2349-6800 A review on ovalbumin gene in poultry JEZS 2018; 6(4): 1497-1503 © 2018 JEZS Received: 04-05-2018 Accepted: 05-06-2018 Kanaka KK, Jeevan C, Chethan Raj R, NG Sagar, Rajendra Prasad, C Kotresh Prasad and Shruthi S Kanaka KK Indian Veterinary Research Institute, Izatnagar, Abstract Utter Pradesh, India Ovalbumin is a major protein in the egg white. It is a monomeric phosphor glycoprotein with a known complete amino acid sequence of 386 residues. Due to its structural similarities with the serine protease Jeevan C inhibitors (Ser PIns), it is included in the serpin super family, although it lacks inhibitory activities. The National Dairy Research size of the entire ovalbumin gene in poultry is approximately 7.6 kb of DNA with 7 exons and 6 introns, Institute, Karnal, Haryana, in order to code for mRNA of 1859 nucleotides. Tubular gland cells of magnum are responsible for the India production of ovalbumin protein. Ovalbumin gene in poultry have been found polymorphic in various Chethan Raj R populations in various parts of gene including coding sequence, promoter region etc., ovalbumin serve as Indian Veterinary Research a source of amino acid and may also have a more active/direct function on developing tissues and Institute, Izatnagar, believed to play a crucial role in bio mineralization. Utter Pradesh, India Keywords: Ovalbumin, characterization, expression, polymorphism NG Sagar Indian Veterinary Research Introduction Institute, Izatnagar, Ovalbumin, a SERPIN family protein is the major protein in the egg white.
    [Show full text]
  • For Reference Only
    Product Manual Revision date: 24/Apr/2019 Chicken Ovotransferrin (Conalbumin) ELISA Kit Catalog No.: abx356943 Size: 96T Range: 31.2 pg/ml - 2000 pg/ml Sensitivity: 18.8 pg/ml Storage: Store the 96-well plate, Standards, HRP-conjugate reagent and Biotin-conjugated antibody at -20°C, and the rest of the kit components at 4°C for up to 6 months. Application: For quantitative detection of Conalbumin in Chicken Serum, Plasma and other biological fluids. Introduction: Ovotransferrin (conalbumin) is a glycoprotein of egg white albumen. Egg white albumen is composed of multiple proteins, of which ovotransferrin is the most heat reliable. It has a molecular weight of 76,000 daltons and contains about 700 amino acids. Ovotransferrin makes up approximately 13% of egg albumen (in contrast to ovalbumin, which comprises 54%). As a member of the transferrin and metalloproteinase family, ovotransferrin has been found to produce heat shock proteins. When these heat shock proteins are induced in the skin, they provide protection against cold stress and other environmental stresses. Principle of the Assay This kit is based on sandwich enzyme-linked immuno-sorbent assay technology. An antibody specific to Conalbumin is pre-coated onto a 96-well plate. The standards and samples are added to the wells, incubated and washed with wash buffer. A biotin conjugated antibody specific to Conalbumin is used for detection. TMB substrate is used to visualize HRP activity. TMB is catalyzed by HRP to produce a blue colour product that changes into yellow after adding stop solution. The intensity of the color yellow is proportional to the Conalbumin amount bound on the plate.
    [Show full text]
  • Rabbit Anti Ovotransferrin Polyclonal Antibody Application: ELISA, WB Alternate Names: Ovotransferrin (Otf); LTF; Conalbumin, TF; TFEW Reactivity: Chicken
    Order Information Description: Rabbit anti-Ovotransferrin Catalogue#: 601-760 Lot#: See the label Size: 100 ug/200 ul Host: Rabbit Clone: N/A Rabbit anti Ovotransferrin Polyclonal Antibody Application: ELISA, WB Alternate Names: Ovotransferrin (OTf); LTF; Conalbumin, TF; TFEW Reactivity: Chicken ANTIGEN PREPARATION A synthetic peptide close to C-terminus of chicken egg white Ovotransferrin protein. BACKGROUND Ovotransferrin is a 705 aa, monomeric, glycosylated, 80 kDa protein isolated from chicken egg white. It is involved in response to oxidative stress in embryogenesis to maintain a steady reducing environment (known as confer protection). Ovotransferrin is the second major protein in egg albumin, undergoes autocleavage at distinct sites upon reduction with thiol- reducing system. The major proteins of chicken eggs are: Ovalbumin (45 kda, 54%), Conalbumin/Ovotransferrin (13%, 80 kda), Ovomucoid (11%, 28 kda), Lysozyme (3.5%, 14 kda), and other proteins. PURIFICATION FORMULATION This affinity purified antibody is supplied in sterile phosphate- The Rabbit IgG is purified by Epitope Affinity Purification. buffered saline (pH7.2) containing antibody stabilizer SPECIFICITY STORAGE The antibodies are stable for 12 months from date of receipt when This antibody recognizes ~80 kDa of chicken egg white stored at –20 oC to –70 oC. The antibodies can be stored at 2 oC-8oC Ovotransferrin. for three month without detectable loss of activity. Avoid repeated freezing-thawing cycles. APPLICATIONS/SUGGESTED WORKING DILUTIONS Western Blot 0.1-1 µg/ml MOLECULAR WEIGHT: ~80 kDa ELISA 0.01-0.1 µg/ml POSITIVE CONTROL: Ovotransferrin Immunoprecipitation N/A CELLULAR LOCATION: N/A IHC N/A Optimal dilutions should be determined by researchers for the Flow cytometry N/A specific applications.
    [Show full text]
  • Comparison of Lectins and Their Suitability in Lectin Affinity Chromatography for Isolation of Glycoproteins
    UPTEC X20 008 Examensarbete 30 hp Juni 2020 Comparison of Lectins and their suitability in Lectin Affinity Chromatography for isolation of Glycoproteins Pontus Andersson Abstract Comparison of Lectins and their suitability in Lectin Affinity Chromatography for isolation of Glycoproteins Pontus Andersson Teknisk- naturvetenskaplig fakultet UTH-enheten Virtually all extracellular proteins in humans are glycoproteins and likewise are many biopharmaceuticals. The glycosylation is directly Besöksadress: correlated to biological function and stability of these proteins. Ångströmlaboratoriet Lägerhyddsvägen 1 The ability to isolate glycoproteins is thus of great importance in Hus 4, Plan 0 many applications. The most common isolation method for glycoproteins is affinity chromatography using lectins, a ubiquitous and versatile Postadress: group of carbohydrate-binding proteins. The lectin Concanavalin A Box 536 751 21 Uppsala (ConA) has long been used for this purpose but suffers from undesired leakage into the eluate, causing an inquiry of alternative Telefon: chromatography ligands or optimization of the ConA resin. 018 – 471 30 03 In this study, a total of 20 different lectins, including ConA, were Telefax: evaluated and compared in terms of suitability as ligands in affinity 018 – 471 30 00 chromatography for glycoprotein isolation. The lectins’ binding to glycoproteins were studied, mainly through microtiter plate binding Hemsida: assays using a monoclonal IgG1 antibody and Conalbumin http://www.teknat.uu.se/student (Ovotransferrin). Further, sugar-specificities and potential eluting sugars for the lectins were examined through inhibition with eight different carbohydrates. Additionally, the glycoprotein binding and leakage of ConA columns were examined, and a potential leakage- reducing treatment of ConA resin evaluated. ConA was found to be superior in binding to the investigated glycoproteins but exhibited a limited binding when immobilized to an agarose resin.
    [Show full text]