Synthesis of Nucleoside Analogues: Glycosylation, Rigid Nucleosides and Janus Wedge Derivatives

Total Page:16

File Type:pdf, Size:1020Kb

Synthesis of Nucleoside Analogues: Glycosylation, Rigid Nucleosides and Janus Wedge Derivatives Synthesis Of Nucleoside Analogues: Glycosylation, Rigid Nucleosides And Janus Wedge Derivatives Author: Ayan Pal Persistent link: http://hdl.handle.net/2345/2750 This work is posted on eScholarship@BC, Boston College University Libraries. Boston College Electronic Thesis or Dissertation, 2012 Copyright is held by the author, with all rights reserved, unless otherwise noted. Boston College The Graduate School of Arts and Sciences Department of Chemistry SYNTHESIS OF NUCLEOSIDE ANALOGUES: GLYCOSYLATION, RIGID NUCLEOSIDES AND JANUS WEDGE DERIVATIVES a dissertation by AYAN PAL submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy June 2012 © copyright by AYAN PAL 2012 Abstract Nucleic Acids are unique biopolymers capable of encoding and transferring genetic information from one generation to the next for every form of life. This fascinating property has made them the topic of intense research from a variety of aspects. Some researchers try to understand how life might have started. Some try to elucidate how the whole process works. Some try to use the properties of nucleic acids as a tool for various purposes. The continuous effort over more than a century explored a lot about the structures and functions of nucleic acids. There is a lot to be discovered yet. This work began with the design and development of a new class of nucleoside analogue with the goal to study their ability to bind nucleic acids. The ongoing research will establish their application as therapeutics and as biomolecular tools. Along the way significant effort went into preparing these analogues. New methodology was developed to address some of the unanswered synthetic problems of nucleoside chemistry. Table of Contents Dedication and Acknowledgement………..………………………….……..……………………iv Abbreviations and Acronyms………………………………………………………………...…viii Chapter 1: Introduction 1.1 Nucleic Acids- Discovery and Brief History……………………….…………………………2 1.2 Structure of DNA and RNA…………………………………………………………………...5 1.3 Different forms of DNA…………………………………………………………………….....8 1.4 Nucleoside Analogues…………………………….…..…………………………………......16 1.5 Peptide Nucleic Acid…………………………………………………….…………………..22 1.6 Factors Determining the Modified Nucleic Acids Binding Properties………………………30 1.7. Potential Applications of Modified Oligonucleotides as Therapeutics……………………..32 1.8. Application of Modified Oligonucleotides as Diagnostic Tool……………………………..34 1.9. Applications of PNA………………………………………………………………………...35 1.10. Specific Examples of Modified Nucleosides Which Have Medicinal Applications………39 1.11. Scope of the Research……………………………………………………………………...41 Chapter 2: Bicyclo-1,1’-dicarboxylic Acid Cyclicanhydride as a Directing/Protecting Group Purine Glycosylations 2.0. Background……………………………….............................................................................54 i 2.1. Common Routes to prepare 2′-deoxyribonucleosides………………..……………………..56 2.2. Problems with Traditional Routes for Modified Nucleoside Synthesis……………………..60 2.3. Development of Bulky Substituent at C6-position of Purines………………………………61 2.4. Screening New Bulky Substituent at C6-position of Purines…………………….…………64 2.5. Bicyclo-1,1’-dicarboxylic Acid Cyclicanhydride as a Directing/Protecting Group………...70 2.6. Experimental………………………………………………………………………………...77 Chapter 3: Cyclic Oligonucleotides 3.1. Rigidified Nucleic Acids……………………………………………………………...........108 3.2 Synthesis of 8,5-(S)-cyclo-2’-deoxyguanosine......................................................................113 3.3 Synthesis of 6,8’-cyclo-2’-deoxyadenosine...........................................................................118 3.4 Experimental and Methods………………………................................................................122 Chapter 4: Purine-like Janus Wedge Residues 4.1 Triplex Forming Oligonucleotides.........................................................................................152 4.2 Janus Wedge (Jw) Triplexes..................................................................................................153 4.3 Limitation with Pyrimidine-like Jw Triplexes……………………………….......................159 4.4 Preparation of Monomer to target T-A base pair Y1……….................................................161 ii 4.5 PNA Synthesis incorporating Y1…………………………………………………………...165 4.6 Preparation of Modified Base to target A-T base pair...........................................................168 4.7. Preparation of Modified Base to target C-G base pair…………………...………………...174 4.8. Attempt to Synthesize Modified Base to target G-C base pair…………………………….176 4.9. Experimental and Methods………………………………………………………………...179 iii Dedicated to My Family and Teachers iv Acknowledgement The journey of the graduate life has been incredible. It had the moments of highs and lows. And it is always great to find someone around the corner. I wonder how everyone you meet or work influences your life and makes you the person who you are today. I am glad to be at this stage of my life and grateful to every one of them. It is impossible to be writing today without paying my regards to Prof. McLaughlin. I would like to thank him for giving me the opportunity to work in his laboratory. He is truly a guide; a person who showed me the path to become a scientist and a person I can always come to whenever I need advice. Needless to say his guidance has been invaluable to the work I will be presenting in my thesis. I would like to thank Profs. McLaughlin, Roberts, Gao and Christianson for being in my Graduate Committee. Prof. Gao read my progress report every year and gave me his thoughts. Prof. Weerapana was very helpful. She analyzed a few sample for one of my projects during a weekend. Profs. Gao and Weerapana always were very supportive whenever I dropped in their office for their advice. Prof. Roberts is always encouraging. I have had the opportunity to work with a number of talented post-docs, grad students and under- grads. It is incredible that I can reach any of our past groups members any time I needed advice or anything. I would to thank Dr. Meena, Dr. Han Chen, Dr. Greco, Dr. Horhota and Dr. Arico for their support. I cannot thank enough to Dr. Christianson who has helped me a lot during last stage of my graduate school. He has been doing an incredible job managing our lab and going through the manuscripts and thesis. All these wonderful people make your life so easy. v I am also lucky to have Han, Eric, Chris, Kerry and Hongchuan as labmates for a long stretch of time. They are not only talented chemists but also fun and encouraging. Later Nick, Alena and Yiran joined our lab and doing exceedingly well. I also need to mention about Rabih and Kenny, the two undergrads whom I worked with. They made teaching chemistry a lot of fun. Research would have been impossible without the support from our instrumentation departments. I would like to thank Dr. Boylan, our Director of NMR Center, Mr. Domin, Director of Mass Spectrometry and Dr. Li, Director, Center for X-Ray Crystallography for their continuous support and advice. As an international student it is always difficult to first come to a new country and find your way in. I heard a lot of these stories before I came to here. But I have to say I never felt that way. There were cultural differences. But the Department of Chemistry at Boston College made sure I have to feel that way. Everyone, from Professors to Administrative personals to International Student Center, made my life as easier as anyone can imagine. The warmth of my classmates made my initial days so much enjoyable. My quest for Science in general started when I was in my high school. I remember Ms. G. Uma, our chemistry teacher, influenced me the most. She used to spread hours after the school to make sure that every one learns their lesson. I also like to thank my Professors at my undergraduate school, Jadavpur University, and my masters’ school, IIT Kanpur. They are the people who encouraged me to become a chemist. I would like to express my gratitude to Prof. Bharadwaj, Prof. Murthy, Prof. Gupta-Bhaya and Prof. Khan for their teachings, support and guidance. Staying in Boston can be challenging sometimes. And it is great to know that whenever you are overwhelmed for any reason there are a few people you can always count on. Joby is always vi there guiding me whenever I feel low or I had any issues regarding immigration. My three years long roommate Ritaban and two years long roommate Aritra became my best friends here in Boston. They made staying in an apartment a lot of fun. During the last year or so Ranjan and Erika became very close friends of me. Hanging out with them is always stress-relieving. There are always a few people who you really can never thank because they define your existence. They are your family. It is impossible to acknowledge their importance in a sentence or two. Without their unconditional love and support I could not have accomplished anything. My parents have always been beside me and made me the person I am today. Life would not have been enjoyable and cheerful without my wife, Samragnee. Even though she had to stay in India for most of the time, she made sure that I never felt alone. Her presence inspires me to go for the unknown. Boston Ayan Pal 16th May, 2012. vii Abbreviations and Acronyms A adenosine Ac acetyl ACN acetonitrile Ad adenine AIBN azobis(isobutyronitrile) Bn benzyl Boc tert-butyloxycarbonyl But tert-butyl Bz benzoyl calcd calculated Cbz carbobenzyloxy CD circular dichromism CDCl3 chloroform-d6
Recommended publications
  • (12) United States Patent (10) Patent No.: US 9,598.458 B2 Shimizu Et Al
    USO09598458B2 (12) United States Patent (10) Patent No.: US 9,598.458 B2 Shimizu et al. (45) Date of Patent: Mar. 21, 2017 (54) ASYMMETRICAUXILLARY GROUP 3,687,808 A 8/1972 Merigan et al. 3,745,162 A 7/1973 Helsley 4,022,791 A 5/1977 Welch, Jr. (71) Applicant: NYTE SCIENCES JAPAN, 4,113,869 A 9, 1978 Gardner ... Kagoshima-shi (JP) 4.415,732 A 1 1/1983 Caruthers et al. 4,458,066 A 7/1984 Caruthers et al. (72) Inventors: Mamoru Shimizu, Uruma (JP); 4,500,707 A 2f1985 Caruthers et al. Takeshi Wada, Kashiwa (JP) 4,542,142 A 9, 1985 Martel et al. 4,659,774 A 4, 1987 Webb et al. 4,663,328 A 5, 1987 Lafon (73) Assignee: YESCIENCES JAPAN, 4,668,777. A 5/1987 Caruthers et al. ... Kagoshima-shi (JP) 4,725,677 A 2/1988 Koster et al. 4,735,949 A 4, 1988 Domagala et al. (*) Notice: Subject to any disclaimer, the term of this 4,840,956 A 6/1989 Domagala et al. patent is extended or adjusted under 35 3:38 A . 3. EthOester Phet al. et al. U.S.C. 154(b) by 17 days. 4,973,679 A 1 1/1990 Caruthers et al. 4,981,957 A 1/1991 Lebleu et al. (21) Appl. No.: 14/414,604 5,047,524. A 9/1991 Andrus et al. 5,118,800 A 6/1992 Smith et al. (22) PCT Filed: Jul. 12, 2013 5,130,302 A 7/1992 Spielvogel et al.
    [Show full text]
  • Sequencing As a Way of Work
    Edinburgh Research Explorer A new insight into Sanger’s development of sequencing Citation for published version: Garcia-Sancho, M 2010, 'A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77', Journal of the History of Biology, vol. 43, no. 2, pp. 265-323. https://doi.org/10.1007/s10739-009- 9184-1 Digital Object Identifier (DOI): 10.1007/s10739-009-9184-1 Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Journal of the History of Biology Publisher Rights Statement: © Garcia-Sancho, M. (2010). A new insight into Sanger’s development of sequencing: From proteins to DNA, 1943-77. Journal of the History of Biology, 43(2), 265-323. 10.1007/s10739-009-9184-1 General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 28. Sep. 2021 THIS IS AN ADVANCED DRAFT OF A PUBLISHED PAPER. REFERENCES AND QUOTATIONS SHOULD ALWAYS BE MADE TO THE PUBLISHED VERION, WHICH CAN BE FOUND AT: García-Sancho M.
    [Show full text]
  • Cancer Drug Pharmacology Table
    CANCER DRUG PHARMACOLOGY TABLE Cytotoxic Chemotherapy Drugs are classified according to the BC Cancer Drug Manual Monographs, unless otherwise specified (see asterisks). Subclassifications are in brackets where applicable. Alkylating Agents have reactive groups (usually alkyl) that attach to Antimetabolites are structural analogues of naturally occurring molecules DNA or RNA, leading to interruption in synthesis of DNA, RNA, or required for DNA and RNA synthesis. When substituted for the natural body proteins. substances, they disrupt DNA and RNA synthesis. bendamustine (nitrogen mustard) azacitidine (pyrimidine analogue) busulfan (alkyl sulfonate) capecitabine (pyrimidine analogue) carboplatin (platinum) cladribine (adenosine analogue) carmustine (nitrosurea) cytarabine (pyrimidine analogue) chlorambucil (nitrogen mustard) fludarabine (purine analogue) cisplatin (platinum) fluorouracil (pyrimidine analogue) cyclophosphamide (nitrogen mustard) gemcitabine (pyrimidine analogue) dacarbazine (triazine) mercaptopurine (purine analogue) estramustine (nitrogen mustard with 17-beta-estradiol) methotrexate (folate analogue) hydroxyurea pralatrexate (folate analogue) ifosfamide (nitrogen mustard) pemetrexed (folate analogue) lomustine (nitrosurea) pentostatin (purine analogue) mechlorethamine (nitrogen mustard) raltitrexed (folate analogue) melphalan (nitrogen mustard) thioguanine (purine analogue) oxaliplatin (platinum) trifluridine-tipiracil (pyrimidine analogue/thymidine phosphorylase procarbazine (triazine) inhibitor)
    [Show full text]
  • DNA: the Timeline and Evidence of Discovery
    1/19/2017 DNA: The Timeline and Evidence of Discovery Interactive Click and Learn (Ann Brokaw Rocky River High School) Introduction For almost a century, many scientists paved the way to the ultimate discovery of DNA and its double helix structure. Without the work of these pioneering scientists, Watson and Crick may never have made their ground-breaking double helix model, published in 1953. The knowledge of how genetic material is stored and copied in this molecule gave rise to a new way of looking at and manipulating biological processes, called molecular biology. The breakthrough changed the face of biology and our lives forever. Watch The Double Helix short film (approximately 15 minutes) – hyperlinked here. 1 1/19/2017 1865 The Garden Pea 1865 The Garden Pea In 1865, Gregor Mendel established the foundation of genetics by unraveling the basic principles of heredity, though his work would not be recognized as “revolutionary” until after his death. By studying the common garden pea plant, Mendel demonstrated the inheritance of “discrete units” and introduced the idea that the inheritance of these units from generation to generation follows particular patterns. These patterns are now referred to as the “Laws of Mendelian Inheritance.” 2 1/19/2017 1869 The Isolation of “Nuclein” 1869 Isolated Nuclein Friedrich Miescher, a Swiss researcher, noticed an unknown precipitate in his work with white blood cells. Upon isolating the material, he noted that it resisted protein-digesting enzymes. Why is it important that the material was not digested by the enzymes? Further work led him to the discovery that the substance contained carbon, hydrogen, nitrogen and large amounts of phosphorus with no sulfur.
    [Show full text]
  • Physics Today - February 2003
    Physics Today - February 2003 Rosalind Franklin and the Double Helix Although she made essential contributions toward elucidating the structure of DNA, Rosalind Franklin is known to many only as seen through the distorting lens of James Watson's book, The Double Helix. by Lynne Osman Elkin - California State University, Hayward In 1962, James Watson, then at Harvard University, and Cambridge University's Francis Crick stood next to Maurice Wilkins from King's College, London, to receive the Nobel Prize in Physiology or Medicine for their "discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material." Watson and Crick could not have proposed their celebrated structure for DNA as early in 1953 as they did without access to experimental results obtained by King's College scientist Rosalind Franklin. Franklin had died of cancer in 1958 at age 37, and so was ineligible to share the honor. Her conspicuous absence from the awards ceremony--the dramatic culmination of the struggle to determine the structure of DNA--probably contributed to the neglect, for several decades, of Franklin's role in the DNA story. She most likely never knew how significantly her data influenced Watson and Crick's proposal. Franklin was born 25 July 1920 to Muriel Waley Franklin and merchant banker Ellis Franklin, both members of educated and socially conscious Jewish families. They were a close immediate family, prone to lively discussion and vigorous debates at which the politically liberal, logical, and determined Rosalind excelled: She would even argue with her assertive, conservative father. Early in life, Rosalind manifested the creativity and drive characteristic of the Franklin women, and some of the Waley women, who were expected to focus their education, talents, and skills on political, educational, and charitable forms of community service.
    [Show full text]
  • The Biochemistry of Gout: a USMLE Step 1 Study Aid
    The Biochemistry of Gout: A USMLE Step 1 Study Aid BMS 6204 May 26, 2005 Compiled by: Todd Kerensky Elizabeth Ballard Brendan Prendergast Eric Ritchie 1 Introduction Gout is a systemic disease caused by excess uric acid as the result of deficient purine metabolism. Clinically, gout is marked by peripheral arthritis and painful inflammation in joints resulting from deposition of uric acid in joint synovia as monosodium urate crystals. Although gout is the most common crystal-induced arthritis, a condition known as pseudogout can commonly be mistaken for gout in the clinic. Pseudogout results from deposition of calcium pyrophosphatase (CPP) crystals in synovial spaces, but causes nearly identical clinical presentation. Clinical findings Crystal-induced arthritis such as gout and pseudogout differ from other types of arthritis in their clinical presentations. The primary feature differentiating gout from other types of arthritis is the spontaneity and abruptness of onset of inflammation. Additionally, the inflammation from gout and pseudogout are commonly found in a single joint. Gout and pseudogout typically present with Podagra, a painful inflammation of the metatarsal- phalangeal joint of the great toe. However, gout can also present with spontaneous edema and painful inflammation of any other joint, but most commonly the ankle, wrist, or knee. As an exception, a spontaneous painful inflammation in the glenohumeral joint is usually the result of pseudogout. It is important to recognize the clinical differences between gout, pseudogout and other types of arthritis because the treatments differ markedly (Kaplan 2005). Pathophysiology and Treatment of Gout Although gout affects peripheral joints in clinical presentation, it is important to recognize that it is a systemic disorder caused by either overproduction or underexcretion of uric acid.
    [Show full text]
  • Analysis of Tautomeric Equilibrium of the Analogue D(Dinitro-Tc(O))TP During Incorporation by the Klenow Fragment of DNA Polymerase I
    Analysis of Tautomeric Equilibrium of the Analogue d(dinitro-tC(O))TP During Incorporation by the Klenow Fragment of DNA Polymerase I Arielle Baker Monday, April 7th, 2014: 4:00pm Thesis Advisor Robert Kuchta, Ph.D. | Dept. of Chemistry and Biochemistry Committee Members Robert Knight, Ph.D. | Dept. of Chemistry and Biochemistry Jennifer Martin, Ph.D. | Dept. of Molecular, Cellular and Developmental Biology This thesis is submitted in partial fulfillment of the requirements for graduation with honors in the Department of Molecular, Cellular and Developmental Biology at the University of Colorado, Boulder. Acknowledgements My most heartfelt thanks goes to my advisor, mentor and friend Dr. Rob Kuchta, for his unending patience and willingness to share his knowledge with me, as well as his continued support for my pursuit of science. I would like to thank my friends in the Kuchta lab, and to some colleagues in particular. Thank you to Dr. Andrew Olsen and Dr. Gudrun Stengel for being the very first overseers of my work, and for not scaring me off. Thanks to Dr. Ashwani Vashishtha, Dr. Joshua Gosling, Sarah Dickerson, Clarinda Hougen and Taylor Minckley for the many laughs we’ve shared benchside, and for answering even the most insignificant of questions. Thank you to my committee members, Dr. Jennifer Martin and Dr. Rob Knight, for their assistance in navigating my thesis work. My work would not have been possible without generous funding from the National Institutes of Health. Thank you to my dear friend Makenna Morck for always being available to discuss biochemistry with me in the wee hours of the morning.
    [Show full text]
  • Purine Analogue 6-Methylmercaptopurine Riboside Inhibits Early and Late Phases of the Angiogenesis Process1
    [CANCER RESEARCH 59, 2417–2424, May 15, 1999] Purine Analogue 6-Methylmercaptopurine Riboside Inhibits Early and Late Phases of the Angiogenesis Process1 Marco Presta,2 Marco Rusnati, Mirella Belleri, Lucia Morbidelli, Marina Ziche, and Domenico Ribatti Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, 25123 Brescia [M. P., M. R., M. B.]; Centro Interuniversitario di Medicina Molecolare e Biofisica Applicata (C.I.M.M.B.A.), Department of Pharmacology, University of Florence, 50134 Florence [L. M., M. Z.]; and Institute of Human Anatomy, Histology, and General Embryology, University of Bari, 70124 Bari [D. R.], Italy ABSTRACT purine synthesis and purine interconversion reactions, and their me- tabolites can be incorporated into nucleic acids (3). 6-TG3 and Angiogenesis has been identified as an important target for antineo- 6-MMPR also alter membrane glycoprotein synthesis (4). Purine plastic therapy. The use of purine analogue antimetabolites in combina- analogues can act as protein kinase inhibitors; 6-MMPR is a highly tion chemotherapy of solid tumors has been proposed. To assess the possibility that selected purine analogues may affect tumor neovascular- effective inhibitor of nerve growth factor-activated protein kinase N ization, 6-methylmercaptopurine riboside (6-MMPR), 6-methylmercapto- (5), and 2-AP inhibits proto-oncogene and IFN gene transcription (6). purine, 2-aminopurine, and adenosine were evaluated for the capacity to Moreover, purine analogues have found application in immunosup- inhibit angiogenesis in vitro and in vivo. 6-MMPR inhibited fibroblast pressive and antiviral therapy (3). At present, 6-MMP and 6-TG growth factor-2 (FGF2)-induced proliferation and delayed the repair of continue to be used mainly in the management of acute leukemia.
    [Show full text]
  • Nucleic Acids Research
    Volume 1 1 Number 4 1983 Nucleic Acids Research Isolation and nudeotide sequence of a plant tRNA gene: petunia asparagine tRNA Nurit Bawnik, Jacques S.Beckmann*, Sara Sarid + and Violet Daniel Departments of Biochemistry and + Biophysics, The Weizmann Institute of Science, Rehovot 76100, Israel, and *Institute of Field and Garden Crops, The Volcani Center, Bet Dagan 50200, Israel Received 29 October 1982; Revised and Accepted 18 January 1983 ABSTRACT A 14.3 kb petunia genomic DNA fragment was isolated and found to contain a single tRNA gene coding for asparagine tRNA. The nucleotide sequence of the asparagine tRNA gene and its flanking regions has been determined. This gene does not contain intervening sequences nor the 3'-end CCA sequence of the ma- ture tRNA and presents a similar overall sequence homology (70%) to both E. coli and mammalian asparagine tRNA. As in other eukaryotic tRNA genes the 5'-flanking region does not seem to contain any special sequence that could function as a regulatory element and the 3'-end is followed by a short cluster of T that may function as the transcription termination site. INTRODUCTION In contrast to the large amount of information that has been accumulated on the arrangement and structure of tRNA genes from a variety of eukaryotes such as yeast, Neurospora, Bombyx, Xenopus, Drosophila, rat and man (1-13), nothing is known about plant nuclear tRNA genes. To study genes for tRNA in plant cells, we have constructed a petunia genomic library and screened it with an unfractionated cytoplasmic petunia tRNA probe. Here we describe the detailed analysis of a tRNA gene-containing clone and the nucleotide se- Asn quence of a DNA fragment carrying a tRNAMKC(U) gene.
    [Show full text]
  • 5-Fluorocytosine/Isocytosine Monohydrate. the First Example of Isomorphic and Isostructural Co-Crystal of Pyrimidine Nucleobases
    crystals Article 5-Fluorocytosine/Isocytosine Monohydrate. The First Example of Isomorphic and Isostructural Co-Crystal of Pyrimidine Nucleobases Gustavo Portalone Department of Chemistry, ‘Sapienza’ University of Rome, 00185 Rome, Italy; [email protected]; Tel.: +396-4991-3715 Received: 1 October 2020; Accepted: 2 November 2020; Published: 3 November 2020 Abstract: To date, despite the crucial role played by cytosine, uracil, and thymine in the DNA/RNA replication process, no examples showing isomorphic and isostructural behavior among binary co-crystals of natural or modified pyrimidine nucleobases have been so far reported in the literature. In view of the relevance of biochemical and pharmaceutical compounds such as pyrimidine nucleobases and their 5-fluoroderivatives, co-crystals of the molecular complex formed by 5-fluorocytosine and isocytosine monohydrate, C H FN O C H N O H O, have been synthesized 4 4 3 · 4 5 3 · 2 by a reaction between 5-fluorocytosine and isocytosine. They represent the first example of isomorphic and isostructural binary co-crystals of pyrimidine nucleobases, as X-ray diffraction analysis shows structural similarities in the solid-state organization of molecules with that of the (1:1) 5-fluorocytosine/5-fluoroisocytosine monohydrate molecular complex, which differs solely in the H/F substitution at the C5 position of isocytosine. Molecules of 5-fluorocytosine and isocytosine are present in the crystal as 1H and 3H-ketoamino tautomers, respectively. They form almost coplanar WC base pairs through nucleobase-to-nucleobase DAA/ADD hydrogen bonding interactions, demonstrating that complementary binding enables the crystallization of specific tautomers. Additional peripheral hydrogen bonds involving all available H atom donor and acceptor sites of the water molecule give a three-dimensional polymeric structure.
    [Show full text]
  • Selective Ablation of Human Cancer Cells by Telomerase-Specific
    Oncogene (2003) 22, 370–380 & 2003 Nature Publishing Group All rights reserved 0950-9232/03 $25.00 www.nature.com/onc Selective ablation of human cancer cells by telomerase-specific adenoviral suicide gene therapy vectors expressing bacterial nitroreductase Alan E Bilsland1, Claire J Anderson1, Aileen J Fletcher-Monaghan1, Fiona McGregor1, TR Jeffry Evans1, Ian Ganly1, Richard J Knox2, Jane A Plumb1 and W Nicol Keith*,1 1Cancer Research UK Department of Medical Oncology, University of Glasgow, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK; 2Enact Pharma Plc, Porton Down Science Park, Salisbury SP4 0JQ, UK Reactivation of telomerase maintains telomere function malignant cells leading to dose-limiting toxicity. Recent and is considered critical to immortalization in most insights into tumour cell biology have provided a wealth human cancer cells. Elevation of telomerase expression in of possibilities for the development of novel mechanism- cancer cells is highly specific: transcription of both RNA based therapeutics (Garrett and Workman, 1999; (hTR) and protein (hTERT) components is strongly Karamouzis et al., 2002; Keith et al., 2002; Scapin, upregulated in cancer cells relative to normal cells. 2002). Therefore, telomerase promoters may be useful in cancer An interesting target for the development of novel gene therapy by selectively expressing suicide genes in anticancer strategies is telomerase, a ribonucleoprotein cancer cells and not normal cells. One example of suicide reverse transcriptase that extends human telomeres by a gene therapy is the bacterial nitroreductase (NTR) gene, terminal transferase activity (White et al., 2001; Keith which bioactivates the prodrug CB1954 into an active et al., 2002; Mergny et al., 2002).
    [Show full text]
  • Structural Studies of a Stable Parallel-Stranded DNA Duplex
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biophysical Journal Volume 75 September 1998 1163–1171 1163 Structural Studies of a Stable Parallel-Stranded DNA Duplex Incorporating Isoguanine:Cytosine and Isocytosine:Guanine Basepairs by Nuclear Magnetic Resonance Spectroscopy Xiang-Lei Yang,* Hiroshi Sugiyama,# Shuji Ikeda,§ Isao Saito,§ and Andrew H.-J. Wang* *Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801 USA; #Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan; and §Department of Synthetic Chemistry and Biological Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606-8501, Japan ABSTRACT Isoguanine (2-hydroxyladenine) is a product of oxidative damage to DNA and has been shown to cause mutation. It is also a potent inducer of parallel-stranded DNA duplex structure. The structure of the parallel-stranded DNA duplex (PS-duplex) 5Ј-d(TiGiCAiCiGiGAiCT) ϩ 5Ј-d(ACGTGCCTGA), containing the isoguanine (iG) and 5-methyl-isocytosine (iC) bases, has been determined by NMR refinement. All imino protons associated with the iG:C, G:iC, and A:T (except the two terminal A:T) basepairs are observed at 2°C, consistent with the formation of a stable duplex suggested by the earlier Tm measurements [Sugiyama, H., S. Ikeda, and I. Saito. 1996. J. Am. Chem. Soc. 118:9994–9995]. All basepairs are in the reverse Watson-Crick configuration. The structural characteristics of the refined PS-duplex are different from those of B-DNA. The PS duplex has two grooves with similar width (7.0 Å) and depth (7.7 Å), in contrast to the two distinct grooves (major groove width 11.7 Å, depth 8.5 Å, and minor groove width 5.7 Å, depth 7.5 Å) of B-DNA.
    [Show full text]