Terraforming

Total Page:16

File Type:pdf, Size:1020Kb

Terraforming Mars Future: Terraforming Preliminary Report - G14 Alysha Holmes Mike Jordan Date: 2/8/00 Why do we spend so much money and invest so much technology in the exploration of Mars? There are many reasons Mars is of interest, from satisfying our natural curiosity of the unknown, to harvesting resources that are in limited abundance on earth. However, Mars potentially provides a greater resource than any precious metal - inhabitable space. The thought of humans one day colonizing Mars has been a scientific consideration since before the first Mars mission. Since discoveries have been made about the climate and the elements present on Mars the idea of humans one day being able to live on Mars is becoming an increasing possibility. Although the conditions on Mars are not currently suitable for human life, there is the possibility of “Terraforming” Mars. terraform /'teraform/ v.t. M2O. [f. TERRA + FORM v.] Chiefly Sci. Fiction. Transform (a planet, environment, etc.) into something resembling the earth, esp. as regards suitability for human life Terraforming may seem like an unbelievable concept, however consider that when the earth was born, its atmospheric and temperature conditions were too harsh to support life. Over time these conditions changed and the climate became more temperate. Consider that Terraforming on Mars is changing the climate in much the same way Earth changed just speeding up this process. There are five necessary objectives in the terraforming of Mars (Fogg): 1.) The mean global surface temperature must be increased by approximately 60 K. At the present time, the current black body temperature of Mars is 213.5 K. An increase of 60 K would make the temperature similar to Earth’s at sea level (273 K). 2.) The mass of the atmosphere must be increased. Mars’ atmospheric pressure is between 6 and 10 mBar. The pressure on Earth is 1000 mBar. 3.) Liquid water must be made available. There is frozen H2O at the polar regions of Mars. Warming up the atmosphere will melt these polar ice caps and form a water supply. 4.) The UV ray and cosmic ray flux must be reduced. A thicker atmosphere can protect against these harmful rays that would normally penetrate the present thin Martian atmosphere. 5.) The O2 and N2 portions of the atmosphere must be increased. The N2 will be necessary in the introduction of plant life. And in time, the plants can convert the CO2 presently found on Mars, into the precious O2 needed for the full Terraforming process to take place. The most important step in attaining these goals is to raise the temperature of Mars. By raising the surface temperature, the CO2 found frozen at the poles will enter the atmosphere and contribute to the greenhouse effect. This will increase the temperature a little more, thus sublimating more CO2 from the poles, thickening the atmosphere, and adding to the greenhouse effect. This runaway CO2 greenhouse effect will hopefully continue on this cycle, autonomously, until the atmosphere is rich enough to support the establishment of the five objectives listed above (Fogg). But how will we increase the surface temperature of Mars? There are a few theories on how to do this. Large solar mirrors could redirect sunlight to Mars. Aimed towards the south pole, a solar mirror could aid in the runaway greenhouse effect. A 125 km in diameter solar sail-mirror could be positioned 214,000 km away in Mars’ orbit, sending an additional 27 TW of illumination to the south pole (Fogg). While this sounds like a huge undertaking, the amount of aluminum (200,000 tons) needed to produce this mirror is produced on Earth every 5 days (Fogg). The problem would be trying to export all of this aluminum from Earth to the Martian orbit. Not only would the expense be astronomical, but also the time period would be quite lengthy. The best solution may be to mine and manufacture the mirror in space (Fogg). Another option is to propel asteroids, rich in ammonia, into Mars. The advantage of this is two-fold. Ammonia is a powerful greenhouse gas, which would aid in raising the planet’s temperature, as well as thickening the atmosphere; and increase the nitrogen content in the atmosphere—an element necessary for plant growth (Zubrin). According to Zubrin, “If one such mission were launched per year [for forty years], within half a century or so most of Mars would have a temperate climate, and enough water would have been melted to cover a quarter of the planet with a layer of water 1 m deep.” By using nuclear thermal rocket engines to advance these asteroids, they could be redirected towards Mars, letting the planet’s gravitational pull do the rest of the work (Zubrin). Zubrin continues that it may be possible to set up a bacterial ecology on Mars’ surface that metabolizes water and nitrogen to produce ammonia, eliminating the need for further impacts. Possibly the most feasible method of terraforming Mars would be to introduce halocarbons into the atmosphere. The very gases that threaten the Earth with global warming are the same gases that could turn Mars into a safe haven for humans. PFC’s (perflourocarbons—similar to CFC’s, but more potent) could be introduced into the atmosphere to start the warming of the surface temperature. While it would be impractical to ship PFC’s from earth, it would be advantageous to produce them on the surface of Mars. First these gases could be produced chemically, then biologically by microorganisms (McKay). PFCs such as CF4, C2F6, and SF6, (McKay) would be ideal because they will start the greenhouse effect, reduce solar radiation, and will last long in the atmosphere. Carbon, fluorine, and sulfur are all abundant on Mars—offering the opportunity to have machines extract these elements from the soil, turn them into the desired compounds, and pumped into the atmosphere. How long would all these processes take before humans could utilize the results? It is estimated that after 50 to 60 years of runaway greenhouse effect (Zubrin, McKay), the atmosphere will have developed enough so that pressure suits would not be necessary for human habitation. Only breathing apparatus would need to be worn by humans on the planet’s surface. The global surface temperature would be tolerable for humans and plant life. Possibly the atmosphere would block most of the harmful radiation coming from the sun and the cosmos. Liquid water would be an available resource. Colonization could boom, and humankind could survive on what was once a dry, inhospitable, planet. With plant life flourishing, the continued process of turning carbon dioxide into breathable oxygen would set the stage for a day when humans and animals can breathe the air. Current estimates say that time may not arrive for another 1000 years (Zubrin). But when it comes, Earthlings—now Martians—will thrive on what was once known as the Red Planet. There are ethical dilemmas that surround the issue of terraforming. Should we introduce life into another planet? Consider that countless times in human history we have transformed the earth to make it inhabitable to allow human existence – what makes Mars any different? Also consider that the population of the earth right now is approximately 6 billion people, an in 2050 it is projected to rise to between 7.6 and 11.5 billion. At this exponential rate of growth, can we afford not to look for other inhabitable places beyond earth? The above images project the stages of development of Mars Terraforming Bibliography 1. Zubrin, Robert M. Technological Requirements for Terraforming Mars. 1 Feb 2000 <http://www.users.globalnet.co.uk/~mfogg/zubrin.htm>. 2. Fogg, Martyn J. Terraforming Mars: A Review Of Research. 1 Feb 2000 <http://www.users.globalnet.co.uk/~mfogg/paper1.htm>. 3. McKay, Christopher P. “Bringing Life to Mars.” Scientific American. Mar 1999: 1 Feb 2000, <http://www.sciam.com/1999/0399space/0399mckay.html>. 4. http://www.users.globalnet.co.uk/~mfogg/index.htm 5. http://www.sciam.com/1999/0399space/0399mckay.html 6. http://spot.colorado.edu/~marscase/cfm/articles/biorev3. 7. http://www.stellar.demon.co.uk/teraform.htm 8. http://www.reston.com/astro/terraforming.html 9. http://quest.arc.nasa.gov/mars/background/terra.html 10. http://library.thinkquest.org/11147/terrafrm.htm 11. http://quest.arc.nasa.gov/lfow/misc/other/making.html .
Recommended publications
  • A Theory of Mars Introduction Over the Last 10 Years Or So I Have Been
    A Theory of Mars Introduction Over the last 10 years or so I have been researching the idea there might be alien artifacts on Mars. Over this time there have been many interesting discoveries by myself and others, and some candidate artifacts have been found to be likely natural. So far proof remains elusive but some evidence has grown stronger. As more and more of these candidate artifacts have been found, similarities have begun to emerge, pointing at a more plausible theory for their origin. So in this paper I am explaining this theory, with the caveat that nothing is proven at this stage. If more candidate artifacts are found and they also support this theory then this will be additional evidence for artificiality. The reason is formations of randomly appearing similar to artifacts should also randomly seem to fit in with many different contradictory theories. To explain this theory I will need to start at the beginning of this story, which is likely to be at least several hundred million years and possibly over a billion years ago. So these artifacts, if they exist at all, are likely to be incredibly old and only have survived because erosion on Mars is very small. The main reason for this is the near vacuum on Mars prevents most erosion because most of the atmosphere is frozen at the poles. This subject then is far removed from such things as UFOs or Von Daniken like theories of extra terrestrials visiting us today. By contrast any evidence of visitation from so long ago is likely to be archeological with little more than ruins to be found.
    [Show full text]
  • An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger Depauw University
    DePauw University Scholarly and Creative Work from DePauw University Student research Student Work 2015 An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger DePauw University Follow this and additional works at: http://scholarship.depauw.edu/studentresearch Part of the Economics Commons, and the The unS and the Solar System Commons Recommended Citation Knappenberger, Clayton, "An Economic Analysis of Mars Exploration and Colonization" (2015). Student research. Paper 28. This Thesis is brought to you for free and open access by the Student Work at Scholarly and Creative Work from DePauw University. It has been accepted for inclusion in Student research by an authorized administrator of Scholarly and Creative Work from DePauw University. For more information, please contact [email protected]. An Economic Analysis of Mars Exploration and Colonization Clayton Knappenberger 2015 Sponsored by: Dr. Villinski Committee: Dr. Barreto and Dr. Brown Contents I. Why colonize Mars? ............................................................................................................................ 2 II. Can We Colonize Mars? .................................................................................................................... 11 III. What would it look like? ............................................................................................................... 16 A. National Program .........................................................................................................................
    [Show full text]
  • Environmental Philosophy and the Ethics of Terraforming Mars
    ENVIRONMENTAL PHILOSOPHY AND THE ETHICS OF TERRAFORMING MARS: ADDING THE VOICES OF ENVIRONMENTAL JUSTICE AND ECOFEMINISM TO THE ONGOING DEBATE Robert Heath French Thesis Prepared for the Degree of MASTER OF ARTS UNIVERSITY OF NORTH TEXAS August 2013 APPROVED: Robert Figueroa, Committee Chair Eugene Hargrove, Committee Member Adam Briggle, Committee Member Patricia Glazebrook, Chair of the Department of Philosophy and Religion Studies Mark Wardell, Dean of the Toulouse Graduate School French, Robert Heath. Environmental Philosophy and the Ethics of Terraforming Mars: Adding the Voices of Environmental Justice and Ecofeminism to the Ongoing Debate. Master of Arts (Philosophy), August 2013, 133 pp., 1 table, bibliography, 78 titles. Questions concerning the ethics of terraforming Mars have received some attention from both philosophers and scientists during recent decades. A variety of theoretical approaches have been supplied by a number of authors, however research pursuant to this thesis has indicated at least two major blindspots in the published literature on the topic. First, a broad category of human considerations involving risks, dangers, and social, political, and economic inequalities that would likely be associated with efforts to terraform Mars have been woefully overlooked in the published literature to date. I attempt to rectify that oversight by employing the interpretive lens of environmental justice to address questions of environmental colonialism, equality in terms of political participation and inclusion in decision making structures, risks associated with technological progressivism, and responses to anthropogenic climate change. Only by including the historically marginalized and politically disenfranchised “voices,” of both humans and nonhumans, can any future plan to terraform Mars be deemed ethical, moral or just according to the framework provided by environmental justice.
    [Show full text]
  • Moon-Miners-Manifesto-Mars.Pdf
    http://www.moonsociety.org/mars/ Let’s make the right choice - Mars and the Moon! Advantages of a low profile for shielding Mars looks like Arizona but feels like Antarctica Rover Opportunity at edge of Endeavor Crater Designing railroads and trains for Mars Designing planes that can fly in Mars’ thin air Breeding plants to be “Mars-hardy” Outposts between dunes, pulling sand over them These are just a few of the Mars-related topics covered in the past 25+ years. Read on for much more! Why Mars? The lunar and Martian frontiers will thrive much better as trading partners than either could on it own. Mars has little to trade to Earth, but a lot it can trade with the Moon. Both can/will thrive together! CHRONOLOGICAL INDEX MMM THEMES: MARS MMM #6 - "M" is for Missing Volatiles: Methane and 'Mmonia; Mars, PHOBOS, Deimos; Mars as I see it; MMM #16 Frontiers Have Rough Edges MMM #18 Importance of the M.U.S.-c.l.e.Plan for the Opening of Mars; Pavonis Mons MMM #19 Seizing the Reins of the Mars Bandwagon; Mars: Option to Stay; Mars Calendar MMM #30 NIMF: Nuclear rocket using Indigenous Martian Fuel; Wanted: Split personality types for Mars Expedition; Mars Calendar Postscript; Are there Meteor Showers on Mars? MMM #41 Imagineering Mars Rovers; Rethink Mars Sample Return; Lunar Development & Mars; Temptations to Eco-carelessness; The Romantic Touch of Old Barsoom MMM #42 Igloos: Atmosphere-derived shielding for lo-rem Martian Shelters MMM #54 Mars of Lore vs. Mars of Yore; vendors wanted for wheeled and walking Mars Rovers; Transforming Mars; Xities
    [Show full text]
  • V Isysphere Mars: Terraforming Meets Eng Ineered Life Adaptation MSS
    Visysphere mars: Terraforming meets engineered life adaptation MSS/MSM 2005 Visysphere Mars Terraforming Meets Engineered Life Adaptation International Space University Masters Program 2005 © International Space University. All Rights Reserved. Front Cover Artwork: “From Earth to Mars via technology and life”. Connecting the two planets through engineering of technology and life itself to reach the final goal of a terraformed Mars. The Executive Summary, ordering information and order forms may be found on the ISU web site at http://www.isunet.edu/Services/library/isu_publications.htm. Copies of the Executive Summary and the Final Report can also be ordered from: International Space University Strasbourg Central Campus Parc d’Innovation 1 rue Jean-Dominique Cassini 67400 Illkirch-Graffenstaden France Tel. +33 (0)3 88 65 54 32 Fax. +33 (0)3 88 65 54 47 e-mail. [email protected] ii International Space University, Masters 2005 Visysphere Mars Acknowledgements ACKNOWLEDGEMENTS The International Space University and the students of the Masters Program 2005 would like to thank the following people for their generous support and guidance: Achilleas, Philippe Hill, Hugh Part-Time Faculty Faculty, Space Science International Space University International Space University IDEST, Université Paris Sud, France Lapierre, Bernard Arnould, Jacques Coordinator “Ethics Applied to Special Advisor to the President Engineering” course. CNES Ecole Polytechnique of Montreal Averner, Mel Marinova, Margarita Program Manager, Fundamental Planetary
    [Show full text]
  • Planetary Protection
    OPEN ACCESS Freelyavailableonline Journal of Astrobiology &Outreach Editorial Terraforming of Mars Environment * Pekka Janhunen Department of Astrobiology, Finnish Meteorological Institute, Space Research, Helsinki, Finland ABSTRACT Mars also features a history of being wet and plush. It has been theorized that when it had been first formed 4.2 billion years ago it had an environment and high amounts of water. Since Mars is far smaller than Earth, its internal core gradually hardened, which caused Mars to lose its magnetic flux? Without a protective magnetic flux, the solar radiation was ready to strip away most of the Martian atmosphere. The end result's that over subsequent 500 million years, Mars gradually transformed from a warm, wet planet to a chilly, dry planet. Around 3.7 billion years ago, Mars eventually became almost like the barren planet we all know of today. Despite this, there's evidence that water still exists on Mars. Water in the form of ice has been found at the poles and underground in the Utopia Plantain region of Mars. There is up to five million cubic kilometers of ice on Mars, and if this were to be spread evenly over everything of the surface of Mars it would submerge the planet under 35 meters of water. Keywords: Mars, Utopia plantain region, Martian atmosphere INTRODUCTION or her visual or olfactory qualities. This, unfortunately, pales in comparison to the 1.36 billion cubic If we are to urge an accurate picture of the potential wealth to be kilometers of water found on Earth, but it is a start. We are gained from the system, we must recognize the successive waves of currently on the hunt for life on Mars, but this has not been economic energy through which our civilization is passing.
    [Show full text]
  • The Thermodynamics of Planetary Engineering on the Planet Mars
    University of Central Florida STARS HIM 1990-2015 2014 The Thermodynamics of Planetary Engineering on the Planet Mars Christopher Barsoum University of Central Florida Part of the Aerospace Engineering Commons Find similar works at: https://stars.library.ucf.edu/honorstheses1990-2015 University of Central Florida Libraries http://library.ucf.edu This Open Access is brought to you for free and open access by STARS. It has been accepted for inclusion in HIM 1990-2015 by an authorized administrator of STARS. For more information, please contact [email protected]. Recommended Citation Barsoum, Christopher, "The Thermodynamics of Planetary Engineering on the Planet Mars" (2014). HIM 1990-2015. 1552. https://stars.library.ucf.edu/honorstheses1990-2015/1552 THE THERMODYNAMICS OF PLANETARY ENGINEERING ON THE PLANET MARS by CHRISTOPHER BARSOUM A thesis submitted in partial fulfillment of the requirements for the Honors in the Major Program in Aerospace Engineering in the College of Mechanical and Aerospace Engineering and in The Burnett Honors College at the University of Central Florida Orlando, Florida Spring Term 2014 Thesis Chair: Dr. Kuo-Chi Lin © 2014 Christopher Barsoum ii ABSTRACT Mars is a potentially habitable planet given the appropriate planetary engineering efforts. In order to create a habitable environment, the planet must be terraformed, creating quasi-Earth conditions. Benchmarks for minimum acceptable survivable human conditions were set by observing atmospheric pressures and temperatures here on Earth that humans are known to exist in. By observing a positive feedback reaction, it is shown how the sublimation of the volatile southern polar ice cap on Mars can increase global temperatures and pressures to the benchmarks set for minimum acceptable survivable human conditions.
    [Show full text]
  • 1 Choi 2000 a SURVEY of MARS TERRAFORMING IN
    Choi_2000 A SURVEY OF MARS TERRAFORMING IN SPECULATIVE FICTION Eric M. Choi* ABSTRACT Terraforming is the process of transforming the present climate of Mars into a more Earth-like environment for the future human settlement of the planet. Although implementing such a project appears infeasible in the near-term, writers of speculative fiction (SF) have envisioned what it might be like since the beginning of the 20th Century. One of the first portrayals of terraforming was in the 1917 novel A Princess of Mars by Edgar Rice Burroughs, who wrote of an “atmosphere factory” that made the arid world he called Barsoom habitable. From the post-World War II period to the present day, terraforming continues to be a popular topic in SF. This paper will survey some of the major works of terraforming fiction, including The Sands of Mars (1952) by Arthur C. Clarke, Man Plus (1976) and Mars Plus (1994) by Frederik Pohl, Moving Mars (1993) by Greg Bear, Mining the Oort (1992) by Frederik Pohl, the Red Mars/Green Mars/Blue Mars (1993-96) trilogy by Kim Stanley Robinson, and White Mars (2000) by Brian Aldiss. INTRODUCTION Terraforming is the process of altering the present climate of Mars to a more Earth-like environment to make the planet more suitable for human settlement. The basic concept of terraforming has been mentioned in SF since the beginning of the 20th Century. Starting with A Princess of Mars in 1917, Edgar Rice Burroughs wrote 11 novels that portrayed an arid Mars made habitable by an “atmosphere factory”.[1] In the last 50 years, several SF novels have examined terraforming.
    [Show full text]
  • © in This Web Service Cambridge University
    Cambridge University Press 978-0-521-85001-8 - Earth: Evolution of a Habitable World: Second Edition Jonathan I. Lunine Index More information INDEX absolute chronologies 47 Alpha Centauri 14 solar system events 66–68 alpha decay (α decay) 29 absolute dating techniques alpha particles (α particles) 18 lack of samples for 61 alternative energy sources 292 radioisotopic dating of rocks 79 Altman, S. 154–155 absolute zero 29–30 aluminum absorption spectra 30–31 abundance in terrestrial rocks 190 acceleration 25 abundance in the solid planets 114–115 accretion stage, heat produced 120 production in stars 39 Ackerman,T.P.166 amberat evidence of climate change 65 actinide elements 19 amino acids 133 adenine 133–134 chirality (handedness) of molecules 151–152 adenosine triphosphate (ATP) 136, 157 codons 134 aerosols in the atmosphere 281 in meteorites 151–152 Africa synthesis in the laboratory 151–152 first migration by genus Homo 247–248 ammonia, contribution to greenhouse effect 167 fossil record of human origins 246–247, 249 anaerobic metabolism 140 second migration by genus Homo 248–249 Anasazi civilization 267 African Humid Period 267 ancient Egyptians 3 age dating ancient Greeks 3–4, 14–15 carbon-14 (14C) dating 48–50 andesites 91 cross-checks and error analysis 52 chemical relationships 192 fission track dating 52 formation of 192–194 half-life concept 47–49 andesitic volcanism, locations of 193–194 overview 47 angular momentum, conservation of 102 parent–daughter isotopic systems 48–52 anions, arrangement in minerals 190–191 types of chronologies
    [Show full text]
  • MAR 98-091 TERRAFORMATION of MARS 1996 (Revised August 1998)
    MAR 98-091 TERRAFORMATION OF MARS 1996 (Revised August 1998); Space Studies 997: Independent Study. Charles R. Hancox Student of Space Studies, University of North Dakota, Grand Forks, North Dakota 58202. TERRAFORMATION DEFINED The literal meaning of terraformation can be described by dividing the word into parts: terra— the earth, and formation—the process of giving form or shape (Fogg 9). There is not as of yet a universal definition for terraformation, but it can be described most generally by the following definition (Fogg 9): Terraforming is a process of planetary engineering, specifically directed at enhancing the capacity of an extraterrestrial planetary environment to support life. The ultimate in terraforming would be to create an unconstrained planetary biosphere emulating all the functions of the biosphere of the earth—one that would be fully habitable for human beings. The major steps to fully complete terraforming Mars consist of the following: raise planet surface temperature, raise atmospheric pressure, make the surface wet, change atmospheric chemical composition, and reduce the surface flux of UV radiation (Fogg 219). Clarity of Terminology To prevent any misunderstanding of terminology, distinction between, ecopoiesis, and planetary engineering is necessary: Ecopoiesis. The fabrication of an uncontained, anaerobic, biosphere on the surface of a sterile planet is called ecopoiesis. Ecopoiesis can represent an end in itself or be the initial stage in a more lengthy process of terraforming. Planetary engineering. The application of technology for the purpose of influencing the global properties of a planet is called planetary engineering (Fogg 122). These former definitions imply the following: Ecopoiesis Í Terraforming Í Planetary Engineering.
    [Show full text]
  • The Physics, Biology, and Environmental Ethics of Making Mars Habitable
    ASTROBIOLOGY Volume 1, Number 1, 2001 Mary Ann Liebert, Inc. Research Paper The Physics, Biology, and Environmental Ethics of Making Mars Habitable CHRISTOPHER P. MCKAY 1 and MARGARITA M. MARINOVA 1,2 ABSTRACT The considerable evidence that Mars once had a wetter, more clement, environment motivates the search for past or present life on that planet. This evidence also suggests the possibility of restoring habitable conditions on Mars. While the total amounts of the key molecules— carbon dioxide, water, and nitrogen—needed for creating a biosphere on Mars are unknown, estimates suggest that there may be enough in the subsurface. Super greenhouse gases, in particular, perfluorocarbons, are currently the most effective and practical way to warm Mars and thicken its atmosphere so that liquid water is stable on the surface. This process could take , 100 years. If enough carbon dioxide is frozen in the South Polar Cap and absorbed in the regolith, the resulting thick and warm carbon dioxide atmosphere could support many types of microorganisms, plants, and invertebrates. If a planet-wide martian biosphere con- verted carbon dioxide into oxygen with an average efficiency equal to that for Earth’s bios- phere, it would take .100,000 years to create Earth-like oxygen levels. Ethical issues associ- ated with bringing life to Mars center on the possibility of indigenous martian life and the relative value of a planet with or without a global biosphere. Key Words:Mars— Terraform- ing—Planetary ecosynthesis—Greenhouse warming—Environmental ethics. Astrobiology 1, 89–109. INTRODUCTION There is direct evidence that early in martian his- tory, liquid water was stable and present at the HESURFACEOF MARS is cold and dry, the re- surface.
    [Show full text]
  • Planetary Ecosynthesis As Ecological Succession
    PLANETARY ECOSYNTHESIS AS ECOLOGICAL SUCCESSION. James M. Graham Department of Botany, University of Wisconsin-Madison, Madison, WI. 53706 ABSTRACT Terraforming is the process of applying global in the past. Mars Global Surveyor (MGS) returned engineering techniques to transform the climate of a altimeter data indicating shorelines consistent with the planet into one that is habitable for terrestrial organisms. past existence of a northern ocean (Head et al., 1999). If Ecosynthesis is the process of introducing a succession of water was once stable on the surface and flowed in such ecosystems to such a terraformed planet. The process of vast quantities, the atmosphere must have been denser and introducing terrestrial ecosystems to Mars can be the climate warmer in the past. compared to a descent down a terrestrial mountain. Each drop in elevation results in a warmer, wetter climate and These observations are the basis for the current search for more diverse biological community. Beginning with a evidence of past or present life on Mars (McKay, 1997). polar desert, the sequence of ecosystems passes through They are also the source of speculation that Mars might tundra, boreal forest, and temperate ecosystems where be returned to its former warmer climate by some sort of moisture determines the presence of desert, grassland, or global engineering techniques (Sagan, 1971; Oberg, 1981; forest. Mars is like a very high terrestrial mountain. The McKay et al., 1991). The new science of planetary goal of planetary engineering is to bring the climate of engineering became known as “terraforming” in which an Mars down that mountain to the point where some areas extraterrestrial body is modified to make an environment of the planet have a climate similar to a polar desert At suitable for habitation by terrestrial organisms.
    [Show full text]