Eclipses and the Lunar Cycle.Key

Total Page:16

File Type:pdf, Size:1020Kb

Eclipses and the Lunar Cycle.Key Eclipses and the Lunar Cycle Learning Objectives ! How much of the Moon’s surface is illuminated by the Sun at any time of the month? Why do we see Moon phases? What are waxing, waning, gibbous, crescent, first and third quarter? ! Does the Moon have a dark side? A far side? ! Can you draw the geometry of lunar and solar eclipses? When would we see annular, penumbral, partial and total eclipses? Why don’t eclipses occur every month? ! Can you draw a diagram that shows at what time the different Moon phases rise, cross meridian and set? ! Note the [xtra] beside lectures 1-7 on the schedule. These may be helpful to learn difficult concepts The Cycle of Phases ! As the Moon orbits the Earth, we see a cycle of phases ! The Moon’s phases depend on how much of the sun-lit Moon we see ! Not caused by the shadow of the Earth (Not to scale) Lunar Phases - Terms ! Waxing: Becoming Fuller ! Waning: Becoming Newer (less Full) ! Crescent: croissant-shaped (the Moon appears to be less than half lit) ! Gibbous: “rounded” (the Moon appears to be more than half lit) ! First Quarter: The Moon’s orbit is one-quarter complete (the right-half of the Moon appears to be lit as viewed from the Earth’s Northern Hemisphere) ! Third Quarter: The Moon’s orbit is three-quarters complete (the left-half of the Moon appears to be lit as viewed from the Earth’s Northern Hemisphere) Waxing crescent The Face of the Moon ! From the Earth, we only see one face of the Moon ! Does this mean the Moon doesn’t rotate? ! No…in fact the Moon rotates so that the same face is always pointed towards the Earth ! A lunar day equals a lunar orbit ! There is no dark side of the Moon! Rotational period= No rotation Orbital period Basics of Eclipses ! Lunar Eclipse ! When the Moon passes into the Earth's shadow ! Sun – Earth – Moon happen at Full Moon ! Solar Eclipse ! When the Earth crosses the Moon's shadow ! Sun – Moon – Earth happen at New Moon ! Why don’t eclipses happen every Full and New moon? The Moon’s Orbit is Tilted! ! The Moon’s orbit is tilted to the ecliptic by 5º ! The Moon appears to be about ½o in angular size in the sky, so 5o is ~10 Moon diameters ! The Moon must also be near the ecliptic for an eclipse to occur Lunar Eclipses Umbra? Penumbra? Latin for “complete shadow” and “partial shadow” Red Moon ! During a total lunar eclipse, the Moon turns a blood-red/burnt orange color ! The red color is caused by sunlight diffused through the Earth's atmosphere ! The atmosphere scatters blue light more, so the Moon is dimly illuminated in red Solar Eclipses ! The Earth passes into the Moon’s shadow ! Occur roughly twice a year ! The Moon’s shadow does not cover the entire Earth ! A solar eclipse will only be visible on a small part of the Earth’s surface Solar Eclipses ! Three types ! Partial – when the Moon only partially blocks the Sun ! Total – when the Moon completely blocks the Sun ! Annular – when the Moon appears too small to completely block the Sun WY Solar Eclipse: 8/21/2017 More on the Lunar Orbit ! The Moon's orbit around the Earth is not a perfect circle apogee ! The distance perigee from the Earth to the Moon varies by about 10% ! This makes a difference to the Moon’s size in the sky ! This causes annular eclipses Important bad drawing Moon phases, eclipses, what Moon phase is up at what time of day Next Time Kepler’s Laws, or Ne Frustra Vixisse Videar.
Recommended publications
  • Lunar Eclipse? a Lunar Eclipse
    What Causes a Lunar Eclipse? A Lunar Eclipse An eclipse of the Moon (lunar eclipse) occurs when a full moon moves into the shadow of the Earth. The Earth blocks some of the sunlight that would otherwise shine on the face of the Moon. From our position on Earth it looks as though a dark Earth’s Orbital plane Sun Earth Moon spot is moving across the Moon. The Moon travels once around the Earth every month. Why don’t we see an eclipse every month? The Earth orbits in a plane called the ecliptic. The Moon’s orbit is tilted slightly at 5 degrees. This means that there are only two points where the Moon crosses the ecliptic plane. These spots, called nodes, are the only places where the Moon will line up with the Earth and the Sun. The rest of its orbit is either above or below the Earth’s orbital plane. Descending Node Moon’s Orbital Path The Ecliptic (Earth’s Orbital Plane) 5° Ascending Node Lunar Eclipse An eclipse only occurs when the Moon, the Earth and the Sun all line up in the same plane. If the Earth is between the Sun and the Moon and the Moon is full when it crosses a node, a lunar eclipse can occur. The Earth will cast a shadow on the Moon. Solar Eclipse However, another type of eclipse will occur if the Moon lines up with a node between the Sun and the Earth. A solar eclipse will take place in this event. The Moon blocks the Earth’s view of the light of the Sun.
    [Show full text]
  • II. Causes of Tides III. Tidal Variations IV. Lunar Day and Frequency of Tides V
    Tides I. What are Tides? II. Causes of Tides III. Tidal Variations IV. Lunar Day and Frequency of Tides V. Monitoring Tides Wikimedia FoxyOrange [CC BY-SA 3.0 Tides are not explicitly included in the NGSS PerFormance Expectations. From the NGSS Framework (M.S. Space Science): “There is a strong emphasis on a systems approach, using models oF the solar system to explain astronomical and other observations oF the cyclic patterns oF eclipses, tides, and seasons.” From the NGSS Crosscutting Concepts: Observed patterns in nature guide organization and classiFication and prompt questions about relationships and causes underlying them. For Elementary School: • Similarities and diFFerences in patterns can be used to sort, classiFy, communicate and analyze simple rates oF change For natural phenomena and designed products. • Patterns oF change can be used to make predictions • Patterns can be used as evidence to support an explanation. For Middle School: • Graphs, charts, and images can be used to identiFy patterns in data. • Patterns can be used to identiFy cause-and-eFFect relationships. The topic oF tides have an important connection to global change since spring tides and king tides are causing coastal Flooding as sea level has been rising. I. What are Tides? Tides are one oF the most reliable phenomena on Earth - they occur on a regular and predictable cycle. Along with death and taxes, tides are a certainty oF liFe. Tides are apparent changes in local sea level that are the result of long-period waves that move through the oceans. Photos oF low and high tide on the coast oF the Bay oF Fundy in Canada.
    [Show full text]
  • Building Structures on the Moon and Mars: Engineering Challenges and Structural Design Parameters for Proposed Habitats
    Building Structures on the Moon and Mars: Engineering Challenges and Structural Design Parameters for Proposed Habitats Ramesh B. Malla, Ph.D., F. ASCE, A.F. AIAA Professor Department of Civil and Environmental Engineering University of Connecticut, Storrs, CT 06269 (E-Mail: [email protected]) Presented at the Breakout Panel Session- Theme C - Habitats (Preparation and Architecture) RETH Workshop- Grand Challenges and Key Research Questions to Achieve Resilient Long-Term Extraterrestrial Habitats Purdue University; October 22-23, 2018 What is Structural Resiliency? Characterized by four traits: Robustness Ability to maintain critical functions in crisis Minimization of direct and indirect Resourcefulness losses from hazards through enhanced Ability to effectively manage crisis as it resistance and robustness to extreme unfolds events, as well as more effective Rapid Recovery recovery strategies. Reconstitute normal operations quickly and effectively Redundancy Backup resources to support originals Per: National Infrastructure Advisory Council, 2009 Hazard Sources & Potential Lunar Habitats Potential Hazard Sources Available Habitat Types Impact (Micrometeorite, Debris) Inflatable Hard Vacuum Membrane Extreme Temperature Rigid-Frame Structure Seismic Activity Hybrid Frame- Low Gravity “Bessel Crater” - https://www.lpi.usra.edu/science/kiefer/Education/SSRG2- Craters/craterstructure.html Membrane Radiation Structure Galactic Cosmic Rays (GCR) Subsurface Solar-Emitted Particles (SEP) Variants Malla, et al. (1995)
    [Show full text]
  • Solar and Lunar Eclipses Reading
    Eclipses What would you think if you were walking home from school on a sunny afternoon and the sun began to disappear? Would you be frightened? On rare occasions, the moon completely blocks the sun. The sky grows as dark as night even in the middle of a clear day. The air gets cool and the sky becomes an eerie color. If you don’t know what is happening, you can become very frightened. The moon doesn’t usually go directly between Earth and the sun or directly behind Earth. As the diagram below shows, the moon’s orbit around Earth is slightly tilted with respect to Earth’s orbit around the sun. As a result, in most months the moon revolves completely around Earth without the moon moving into Earth’s shadow or the moon’s shadow hitting Earth. When the moon’s shadow hits Earth or Earth’s shadow hits the moon, an eclipse occurs. An eclipse (ih klips) occurs when an object in space comes between the sun and a third object, and casts a shadow on that object. There are two types of eclipses: solar eclipses and lunar eclipses. (The words solar and lunar come from the Latin words for “sun” and “moon.”) The Tilt of the Moon’s Orbit The moon’s orbit is tilted with respect to Earth’s orbit. So the moon rarely goes directly between Earth and the sun. Solar Eclipses During a new moon, the moon is almost exactly between Earth and the sun. But most months, as you have seen, the moon travels a little above or below the sun in the sky.
    [Show full text]
  • The Calendars of India
    The Calendars of India By Vinod K. Mishra, Ph.D. 1 Preface. 4 1. Introduction 5 2. Basic Astronomy behind the Calendars 8 2.1 Different Kinds of Days 8 2.2 Different Kinds of Months 9 2.2.1 Synodic Month 9 2.2.2 Sidereal Month 11 2.2.3 Anomalistic Month 12 2.2.4 Draconic Month 13 2.2.5 Tropical Month 15 2.2.6 Other Lunar Periodicities 15 2.3 Different Kinds of Years 16 2.3.1 Lunar Year 17 2.3.2 Tropical Year 18 2.3.3 Siderial Year 19 2.3.4 Anomalistic Year 19 2.4 Precession of Equinoxes 19 2.5 Nutation 21 2.6 Planetary Motions 22 3. Types of Calendars 22 3.1 Lunar Calendar: Structure 23 3.2 Lunar Calendar: Example 24 3.3 Solar Calendar: Structure 26 3.4 Solar Calendar: Examples 27 3.4.1 Julian Calendar 27 3.4.2 Gregorian Calendar 28 3.4.3 Pre-Islamic Egyptian Calendar 30 3.4.4 Iranian Calendar 31 3.5 Lunisolar calendars: Structure 32 3.5.1 Method of Cycles 32 3.5.2 Improvements over Metonic Cycle 34 3.5.3 A Mathematical Model for Intercalation 34 3.5.3 Intercalation in India 35 3.6 Lunisolar Calendars: Examples 36 3.6.1 Chinese Lunisolar Year 36 3.6.2 Pre-Christian Greek Lunisolar Year 37 3.6.3 Jewish Lunisolar Year 38 3.7 Non-Astronomical Calendars 38 4. Indian Calendars 42 4.1 Traditional (Siderial Solar) 42 4.2 National Reformed (Tropical Solar) 49 4.3 The Nānakshāhī Calendar (Tropical Solar) 51 4.5 Traditional Lunisolar Year 52 4.5 Traditional Lunisolar Year (vaisnava) 58 5.
    [Show full text]
  • Multi-Lunar Day Polar Missions with a Solar-Only Rover. A. Colaprete1, R
    Survive the Lunar Night Workshop 2018 (LPI Contrib. No. 2106) 7007.pdf Multi-Lunar Day Polar Missions with a Solar-Only Rover. A. Colaprete1, R. C. Elphic1, M. Shirley1, M. Siegler2, 1NASA Ames Research Center, Moffett Field, CA, 2Planetary Science Institute, Tucson, AZ Introduction: Resource Prospector (RP) was a lu- Polar Solar “Oases”: Numerous studies have nar HEOMD/Advanced Exploration Systems volatiles identified regions near the lunar poles that have sus- prospecting mission developed for potential flight in tained periods of solar illumination. In some places the early 2020s. The mission includes a rover-borne these periods of sustained sunlight extend across sever- payload that (1) can locate surface and near-subsurface al lunations, while others have very short (24-48 hours) volatiles, (2) excavate and analyze samples of the vola- nights. A study was conducted to evaluate if the RP tile-bearing regolith, and (3) demonstrate the form, rover system could take advantage of these “oases” to extractability and usefulness of the materials. The pri- survive the lunar night. While the Earth would set, as mary mission goal for RP is to evaluate the In-Situ seen by the rover, every approximately 2-weeks, these Resource Utilization (ISRU) potential of the lunar “oases” could provide sufficient power, and have lu- poles, to determine their utility within future NASA nar-nights short enough, for the rover system to sur- and commercial spaceflight architectures. While the vive. current RP rover design did not require a system that Results: The study focused in the area surrounding could survive lunar nights, it has been demonstrated the north pole crater Hermite-A (primarily due to the that the current design could conduct multi-lunar day fidelity of existing traverse planner data sets in this missions by taking advantage of areas that receive pro- area).
    [Show full text]
  • The Moon and Eclipses
    Lecture 10 The Moon and Eclipses Jiong Qiu, MSU Physics Department Guiding Questions 1. Why does the Moon keep the same face to us? 2. Is the Moon completely covered with craters? What is the difference between highlands and maria? 3. Does the Moon’s interior have a similar structure to the interior of the Earth? 4. Why does the Moon go through phases? At a given phase, when does the Moon rise or set with respect to the Sun? 5. What is the difference between a lunar eclipse and a solar eclipse? During what phases do they occur? 6. How often do lunar eclipses happen? When one is taking place, where do you have to be to see it? 7. How often do solar eclipses happen? Why are they visible only from certain special locations on Earth? 10.1 Introduction The moon looks 14% bigger at perigee than at apogee. The Moon wobbles. 59% of its surface can be seen from the Earth. The Moon can not hold the atmosphere The Moon does NOT have an atmosphere and the Moon does NOT have liquid water. Q: what factors determine the presence of an atmosphere? The Moon probably formed from debris cast into space when a huge planetesimal struck the proto-Earth. 10.2 Exploration of the Moon Unmanned exploration: 1950, Lunas 1-3 -- 1960s, Ranger -- 1966-67, Lunar Orbiters -- 1966-68, Surveyors (first soft landing) -- 1966-76, Lunas 9-24 (soft landing) -- 1989-93, Galileo -- 1994, Clementine -- 1998, Lunar Prospector Achievement: high-resolution lunar surface images; surface composition; evidence of ice patches around the south pole.
    [Show full text]
  • Lunar Sourcebook : a User's Guide to the Moon
    3 THE LUNAR ENVIRONMENT David Vaniman, Robert Reedy, Grant Heiken, Gary Olhoeft, and Wendell Mendell 3.1. EARTH AND MOON COMPARED fluctuations, low gravity, and the virtual absence of any atmosphere. Other environmental factors are not The differences between the Earth and Moon so evident. Of these the most important is ionizing appear clearly in comparisons of their physical radiation, and much of this chapter is devoted to the characteristics (Table 3.1). The Moon is indeed an details of solar and cosmic radiation that constantly alien environment. While these differences may bombard the Moon. Of lesser importance, but appear to be of only academic interest, as a measure necessary to evaluate, are the hazards from of the Moon’s “abnormality,” it is important to keep in micrometeoroid bombardment, the nuisance of mind that some of the differences also provide unique electrostatically charged lunar dust, and alien lighting opportunities for using the lunar environment and its conditions without familiar visual clues. To introduce resources in future space exploration. these problems, it is appropriate to begin with a Despite these differences, there are strong bonds human viewpoint—the Apollo astronauts’ impressions between the Earth and Moon. Tidal resonance of environmental factors that govern the sensations of between Earth and Moon locks the Moon’s rotation working on the Moon. with one face (the “nearside”) always toward Earth, the other (the “farside”) always hidden from Earth. 3.2. THE ASTRONAUT EXPERIENCE The lunar farside is therefore totally shielded from the Earth’s electromagnetic noise and is—electro- Working within a self-contained spacesuit is a magnetically at least—probably the quietest location requirement for both survival and personal mobility in our part of the solar system.
    [Show full text]
  • Workshop Report
    WORKSHOP REPORT July 2019 This report was compiled by Andrew Petro, Anna Schonwald, Chris Britt, Renee Weber, Jeff Sheehy, Allison Zuniga, and Lee Mason. Contents Page EXECUTIVE SUMMARY AND RECOMMENDATIONS 2 WORKSHOP SUMMARY 5 Workshop Purpose and Scope 5 Background and Objectives 5 Workshop Agenda 6 Overview of Lunar Day/Night Environmental Conditions 7 Lessons Learned From Missions That Have Survived Lunar Night 8 Science Perspective 9 Exploration Perspective 10 Evolving Requirements from Survival to Continuous Operations for Science, 11 Exploration, and Commercial Activities Power Generation, Storage and Distribution - State of the Art, Potential 13 Solutions, and Technology Gaps Thermal Management Systems, Strategies, and Component Design Features - 16 State of the Art, Potential Solutions, and Technology Gaps The Economic Business Case for Creating Lunar Infrastructure Services and 18 Lunar Markets International Space University Summer Project “Lunar Night Survival” 20 Open Discussion Summary 21 APPENDIX A: Workshop Organizing Committee and Participants 23 APPENDIX B: Poster Session Participants 28 1 Survive and Operate Through the Lunar Night WORKSHOP REPORT June 2019 EXECUTIVE SUMMARY AND RECOMMENDATIONS The lunar day/night cycle, which at most locations on the Moon, includes fourteen Earth days of continuous sunlight followed by fourteen days of continuous darkness and extreme cold presents one of the most demanding environmental challenge that will be faced in the exploration of the solar system. Due to the lack of a moderating atmosphere, temperatures on the lunar surface can range from as high as +120 C during the day to as low as -180 C during the night. Permanently shadowed regions can be even colder.
    [Show full text]
  • Lunar Motion Motion A
    2 Lunar V. Lunar Motion Motion A. The Lunar Calendar Dr. Bill Pezzaglia B. Motion of Moon Updated 2012Oct30 C. Eclipses 3 1. Phases of Moon 4 A. The Lunar Calendar 1) Phases of the Moon 2) The Lunar Month 3) Calendars based on Moon b). Elongation Angle 5 b.2 Elongation Angle & Phase 6 Angle between moon and sun (measured eastward along ecliptic) Elongation Phase Configuration 0º New Conjunction 90º 1st Quarter Quadrature 180º Full Opposition 270º 3rd Quarter Quadrature 1 b.3 Elongation Angle & Phase 7 8 c). Aristarchus 275 BC Measures the elongation angle to be 87º when the moon is at first quarter. Using geometry he determines the sun is 19x further away than the moon. [Actually its 400x further !!] 9 Babylonians (3000 BC) note phases are 7 days apart 10 2. The Lunar Month They invent the 7 day “week” Start week on a) The “Week” “moon day” (Monday!) New Moon First Quarter b) Synodic Month (29.5 days) Time 0 Time 1 week c) Spring and Neap Tides Full Moon Third Quarter New Moon Time 2 weeks Time 3 weeks Time 4 weeks 11 b). Stone Circles 12 b). Synodic Month Stone circles often have 29 stones + 1 xtra one Full Moon to Full Moon off to side. Originally there were 30 “sarson The cycle of stone” in the outer ring of Stonehenge the Moon’s phases takes 29.53 days, or ~4 weeks Babylonians measure some months have 29 days (hollow), some have 30 (full). 2 13 c1). Tidal Forces 14 c). Tides This animation illustrates the origin of tidal forces.
    [Show full text]
  • The Moon and Eclipses
    The Moon and Eclipses ASTR 101 September 14, 2018 • Phases of the moon • Lunar month • Solar eclipses • Lunar eclipses • Eclipse seasons 1 Moon in the Sky An image of the Earth and the Moon taken from 1 million miles away. Diameter of Moon is about ¼ of the Earth. www.nasa.gov/feature/goddard/from-a-million-miles-away-nasa-camera-shows-moon-crossing-face-of-earth • Moonlight is reflected sunlight from the lunar surface. Moon reflects about 12% of the sunlight falling on it (ie. Moon’s albedo is 12%). • Dark features visible on the Moon are plains of old lava flows, formed by ancient volcanic eruptions – When Galileo looked at the Moon through his telescope, he thought those were Oceans, so he named them as Marias. – There is no water (or atmosphere) on the Moon, but still they are known as Maria – Through a telescope large number of craters, mountains and other geological features visible. 2 Moon Phases Sunlight Sunlight full moon New moon Sunlight Sunlight Quarter moon Crescent moon • Depending on relative positions of the Earth, the Sun and the Moon we see different amount of the illuminated surface of Moon. 3 Moon Phases first quarter waxing waxing gibbous crescent Orbit of the Moon Sunlight full moon new moon position on the orbit View from the Earth waning waning gibbous last crescent quarter 4 Sun Earthshine Moon light reflected from the Earth Earth in lunar sky is about 50 times brighter than the moon from Earth. “old moon" in the new moon's arms • Night (shadowed) side of the Moon is not completely dark.
    [Show full text]
  • Erogenous Zones: Described in Old Sanskrit Literature
    Advances in Sexual Medicine, 2014, 4, 25-28 Published Online April 2014 in SciRes. http://www.scirp.org/journal/asm http://dx.doi.org/10.4236/asm.2014.42005 Erogenous Zones: Described in Old Sanskrit Literature R. Nambisan1, K. P. Skandhan2 1Senior Medical Officer Government Ayurveda Hospital, Ponnani, India 2Department of Physiology, Sree Narayana Institute of Medical Sciences, Chalakka, India Email: [email protected] Received 29 November 2013; revised 29 December 2013; accepted 6 Janaury 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Our knowledge on erogenous points in both male and female is limited. We present here the vast knowledge on the same availability which existed in India during the 13th century. Keywords Erogenous Zones, Moon Influence, Lunar Month, Synodic Month, Sexual Excitement, Sexual Pleasure 1. Introduction Sex secured deserving attention and was discussed in depth largely in private circle, during early years in India. The best example for their knowledge is “Kamasutra” by Vatsyayanamuni [1], the foremost and eminent writing on the subject in Sanskrit. Unknown to the modern world is yet another elaborate study on erogenous zones present in men and women influenced by moon. We present here an abstract of the said erogenous zones working under the influence of moon. This is based on four prominent publications of the first half of last century. Originaly this was written anytime before the 13th century. 2. Discussion An accepted fact is that human body in health and diseases is influenced by celestial bodies like sun and moon.
    [Show full text]