NOLTA, IEICE Invited Paper Preconditioning of Taylor models, implementation and test cases Florian B¨unger 1 a) 1 Institute for Reliable Computing, Hamburg University of Technology Am Schwarzenberg-Campus 3, D-21073 Hamburg, Germany a) fl
[email protected] Received January 14, 2020; Revised April 3, 2020; Published January 1, 2021 Abstract: Makino and Berz introduced the Taylor model approach for validated integration of initial value problems (IVPs) for ordinary differential equations (ODEs). Especially, they invented preconditioning of Taylor models for stabilizing the integration and proposed the following different types: parallelepiped preconditioning (with and without blunting), QR pre- conditioning, and curvilinear preconditioning. We review these types of preconditioning and show how they are implemented in INTLAB’s verified ODE solver verifyode by stating explicit MATLAB code. Finally, we test our implementation with several examples. Key Words: ordinary differential equations, initial value problems, Taylor models, QR pre- conditioning, curvilinear preconditioning, parallelepiped preconditioning, blunting 1. Introduction Preconditioning is a general concept in large parts of numerical mathematics. It is also widely used in the area of reliable (verified) computing in which numerical results are calculated along with rigorous error bounds that cover all numerical as well as all rounding errors of a computer, meaning that a mathematically exact result is proved to be contained within these rigorous bounds. For verified integration of initial value problems (IVPs) for ordinary differential equations (ODEs) preconditioning goes back to Lohner’s fundamental research [20] in which he particularly introduced his famous parallelepiped and QR methods to reduce the well-known wrapping effect from which naive verified integration methods for IVPs necessarily suffer.