Analyzing the Hardware Costs of Different Security-Layer Variants for a Low-Cost RFID

Total Page:16

File Type:pdf, Size:1020Kb

Analyzing the Hardware Costs of Different Security-Layer Variants for a Low-Cost RFID Analyzing the Hardware Costs of Different Security-Layer Variants for a Low-Cost RFID Tag Thomas Plos and Martin Feldhofer Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Inffeldgasse 16a, 8010 Graz, Austria {Thomas.Plos,Martin.Feldhofer}@iaik.tugraz.at Abstract. Radio-frequency identification (RFID) technology is the en- abler for the future Internet of Things (IoT) where security will play an important role. In this work, we evaluate the costs of adding different security-layer variants that are based on symmetric cryptography to a low-cost RFID tag. In contrast to related work, we do not only consider the costs of the cryptographic-algorithm implementation, but also the costs that relate to protocol handling of the security layer. Further we show that using a tag architecture based on a low-resource 8-bit micro- controller is highly advantageous. Such an approach is not only flexibility but also allows combining the implementation of protocol and crypto- graphic algorithm on the microcontroller. Expensive resources like mem- ory can be easily reused, lowering the overall hardware costs. We have synthesized the security-enabled tag for a 130 nm CMOS technology, us- ing the cryptographic algorithms AES and NOEKEON to demonstrate the effectiveness of our approach. Average power consumption of the mi- crocontroller is 2 ñW at a clock frequency of 106 kHz. Hardware costs of the security-layer variants range from about 1100 GEs using NOEKEON to 4500 GEs using AES. Keywords: Low-cost RFID tag, 8-bit microcontroller, AES, NOEKEON, security layer, low power consumption. 1 Introduction Over the last years, radio-frequency identification (RFID) technology has found its way into many applications of our daily life. The integration of RFID func- tionality into the latest smart phones (e.g. Nexus S, Blackberry Bold 9900) emphasizes the relevance of this technology. An upcoming application that re- lies on RFID technology is the Internet of Things (IoT). The vision of the future IoT is that every object has communication capabilities by equipping it with This work has been supported by the Austrian Government through the research program FIT-IT Trust in IT Systems under the Project Number 820843 (Project CRYPTA) and by the European Commission through the ICT programme under contract ICT-2007-216676 (ECRYPT II). M. Rajarajan et al. (Eds.): SecureComm 2011, LNICST 96, pp. 426–435, 2012. Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2012 Analyzing the Hardware Costs of Different Security-Layer Variants 427 an RFID tag. An important aspect of the IoT is security [5]. Equipping every object with a tag presumes that they are cheap in price, making the integration of security a challenging task. A typical RFID system mainly consists of three components: a back-end database, a reader, and one or more tags. The reader is connected to the back- end database and communicates with the tags contactlessly by means of a radio- frequency (RF) field. A tag is a small microchip attached to an antenna that receives its data and probably the clock signal from the RF field emitted by the reader. So-called passive tags also receive their power from the RF field. The emergence of the IoT will not only pave the way for new applications but will also require to have additional functionality available on the tags. Such additional functionality comprises for example file management and security features, which increases the control complexity on the tag. Today’s RFID tags use state machines fixed in hardware for handling their control tasks. As soon as the control complexity increases, the state-machine approach is no longer practical and even inefficient. Using a microcontroller approach instead that is more flexible seems to be favorable [13,14]. Having a microcontroller on the tag for handling the control tasks, allows reusing it for computing cryptographic algorithms that are necessary for the security features. Our contribution in this paper is twofold and deals with the integration of security on low-cost RFID tags. Firstly, we analyze the benefits of having a combined implementation of protocol handling and cryptographic algorithm on a microcontroller. We demonstrate this by using a synthesizable 8-bit microcon- troller that is optimized for low-resource usage. Secondly, we define three dif- ferent security-layer variants using the block ciphers AES and NOEKEON and evaluate the hardware costs introduced by them. In contrast to related work, not only the costs of the cryptographic-algorithm implementation alone are consid- ered, but also the costs that arise from protocol handling of the security layer. Our results underline that protocol handling constitutes a significant cost factor and must not be neglected. The remainder of this paper is structured as follows. In Section 2 we present a system overview of our low-cost tag. Section 3 gives details about the deployed security-layer variants and Section 4 describes the concept for realizing them on the tag. The implementation results are provided in Section 5. Conclusions are drawninSection6. 2 System Overview RFID tags consist of a small microchip attached to an antenna. The microchip contains an analog front-end and a digital part. Complexity of the digital part ranges from simple state machines with a small EEPROM for storing its unique identifier (UID), to contactless smart cards with powerful microcontrollers and special coprocessors. Powerful microcontrollers as they are found in contactless smart cards are not suitable for our low-cost tag. They consume too much power and require too much hardware resources. Hence, we are using a self-designed 428 T. Plos and M. Feldhofer 8-bit microcontroller for our tag that is optimized for low-resource usage. A preliminary version of the microcontroller has been published in [12]. Our tag uses the ISO14443 standard for communication and operates in the high frequency range at a carrier frequency of 13.56 MHz. Low-level functional- ity is implemented according to ISO14443-3 [6]. High-level functionality is im- plemented according to ISO14443-4 [9] and uses a block-transmission protocol for exchanging application data as specified in ISO7816-4 [7]. The digital part of our tag mainly consists of five components: the framing logic, the low-resource 8-bit microcontroller, the bus arbiter, the EEPROM, and the true-random num- ber generator (TRNG). The framing logic is connected to the analog front-end and provides a byte interface to the microcontroller. Low-level commands that are time critical are directly handled by the framing logic, commands on higher level are forwarded to the microcontroller. The 8-bit microcontroller is the cen- tral part of our security-enabled tag and controls all other components of the digital part through an Advanced Microcontroller Bus Architecture (AMBA) Advanced Peripheral Bus (APB) [1]. The APB is managed by the bus arbiter. High-level protocol functionality of the tag, including commands for security and file-management operations, as well as the cryptographic algorithm itself are entirely implemented in the program memory of the microcontroller. Hence, there is no dedicated coprocessor that handles encryption or decryption of data as typically found in the design of security-enabled tags. Random data that is required for security operations is generated within the TRNG and transferred to the memory of the microcontroller over the APB. The EEPROM is divided into files and is used for storing configuration data of the tag, the UID, the cipher key, and user data. Files are handled through file-management operations that allow selecting a file, reading from a file, or writing to a file. Depending on the file, different access rights are granted. 3 Security Layer Two security services have been selected for implementation on our tag to quan- tify the costs of adding security functionality. The two security services are tag authentication and reader authentication. Tag authentication ensures originality of the tag to prevent simple cloning of. Reader authentication ensures originality of the reader to restrict access to certain resources on the tag. The security services are based on a challenge-response protocol using sym- metric cryptography as defined in ISO9798-2 [8]. We have selected two different cryptographic algorithms for the security services: AES [11] and NOEKEON [2]. Both algorithms are block ciphers with a block size of n = 128 bits. Selecting two different block ciphers allows analyzing their influence on the overall implemen- tation costs. AES has been chosen because it is standardized and provides high security. NOEKEON has been selected since it provides a good trade off between security and resource usage (encryption and decryption function of NOEKEON can be implemented with very little overhead). Using symmetric cryptography requires that reader and tag share a secret key K. The key can be stored on Analyzing the Hardware Costs of Different Security-Layer Variants 429 RQ_CMD K K K K rT AT_CMD(rR) AR_CMD(EK (rT | rR)) EK (rR | rT) Reader Tag Reader Tag OK/FAIL Fig. 1. Tag authentication Fig. 2. Reader authentication the tag, for example, during a personalization phase that is performed within a protected environment (i.e. it can be assumed that there is no adversary). Tag Authentication. The basic principle of tag authentication is illustrated in Figure 1. The reader sends a randomly-selected challenge rR with a length n of 2 bits through a tag-authenticate command (AT CMD) to the tag. After receiving rR from the reader, the tag generates itself a random number rT of the same length, and encrypts the concatenation of the two random numbers rR | rT under the secret key K. The encrypted value is then sent to the reader, which can decrypt it with its secret key. If both reader and tag use the same secret key, the decrypted value will contain the random number rR that has initially been selected by the reader, and the tag is treated as authentic.
Recommended publications
  • Cryptographic Sponge Functions
    Cryptographic sponge functions Guido B1 Joan D1 Michaël P2 Gilles V A1 http://sponge.noekeon.org/ Version 0.1 1STMicroelectronics January 14, 2011 2NXP Semiconductors Cryptographic sponge functions 2 / 93 Contents 1 Introduction 7 1.1 Roots .......................................... 7 1.2 The sponge construction ............................... 8 1.3 Sponge as a reference of security claims ...................... 8 1.4 Sponge as a design tool ................................ 9 1.5 Sponge as a versatile cryptographic primitive ................... 9 1.6 Structure of this document .............................. 10 2 Definitions 11 2.1 Conventions and notation .............................. 11 2.1.1 Bitstrings .................................... 11 2.1.2 Padding rules ................................. 11 2.1.3 Random oracles, transformations and permutations ........... 12 2.2 The sponge construction ............................... 12 2.3 The duplex construction ............................... 13 2.4 Auxiliary functions .................................. 15 2.4.1 The absorbing function and path ...................... 15 2.4.2 The squeezing function ........................... 16 2.5 Primary aacks on a sponge function ........................ 16 3 Sponge applications 19 3.1 Basic techniques .................................... 19 3.1.1 Domain separation .............................. 19 3.1.2 Keying ..................................... 20 3.1.3 State precomputation ............................ 20 3.2 Modes of use of sponge functions .........................
    [Show full text]
  • The SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS (Full Version)
    The SKINNY Family of Block Ciphers and its Low-Latency Variant MANTIS (Full Version) Christof Beierle1, J´er´emy Jean2, Stefan K¨olbl3, Gregor Leander1, Amir Moradi1, Thomas Peyrin2, Yu Sasaki4, Pascal Sasdrich1, and Siang Meng Sim2 1 Horst G¨ortzInstitute for IT Security, Ruhr-Universit¨atBochum, Germany [email protected] 2 School of Physical and Mathematical Sciences Nanyang Technological University, Singapore [email protected], [email protected], [email protected] 3 DTU Compute, Technical University of Denmark, Denmark [email protected] 4 NTT Secure Platform Laboratories, Japan [email protected] Abstract. We present a new tweakable block cipher family SKINNY, whose goal is to compete with NSA recent design SIMON in terms of hardware/software perfor- mances, while proving in addition much stronger security guarantees with regards to differential/linear attacks. In particular, unlike SIMON, we are able to provide strong bounds for all versions, and not only in the single-key model, but also in the related-key or related-tweak model. SKINNY has flexible block/key/tweak sizes and can also benefit from very efficient threshold implementations for side-channel protection. Regarding performances, it outperforms all known ciphers for ASIC round-based implementations, while still reaching an extremely small area for serial implementations and a very good efficiency for software and micro-controllers im- plementations (SKINNY has the smallest total number of AND/OR/XOR gates used for encryption process). Secondly, we present MANTIS, a dedicated variant of SKINNY for low-latency imple- mentations, that constitutes a very efficient solution to the problem of designing a tweakable block cipher for memory encryption.
    [Show full text]
  • Modes of Operation for Compressed Sensing Based Encryption
    Modes of Operation for Compressed Sensing based Encryption DISSERTATION zur Erlangung des Grades eines Doktors der Naturwissenschaften Dr. rer. nat. vorgelegt von Robin Fay, M. Sc. eingereicht bei der Naturwissenschaftlich-Technischen Fakultät der Universität Siegen Siegen 2017 1. Gutachter: Prof. Dr. rer. nat. Christoph Ruland 2. Gutachter: Prof. Dr.-Ing. Robert Fischer Tag der mündlichen Prüfung: 14.06.2017 To Verena ... s7+OZThMeDz6/wjq29ACJxERLMATbFdP2jZ7I6tpyLJDYa/yjCz6OYmBOK548fer 76 zoelzF8dNf /0k8H1KgTuMdPQg4ukQNmadG8vSnHGOVpXNEPWX7sBOTpn3CJzei d3hbFD/cOgYP4N5wFs8auDaUaycgRicPAWGowa18aYbTkbjNfswk4zPvRIF++EGH UbdBMdOWWQp4Gf44ZbMiMTlzzm6xLa5gRQ65eSUgnOoZLyt3qEY+DIZW5+N s B C A j GBttjsJtaS6XheB7mIOphMZUTj5lJM0CDMNVJiL39bq/TQLocvV/4inFUNhfa8ZM 7kazoz5tqjxCZocBi153PSsFae0BksynaA9ZIvPZM9N4++oAkBiFeZxRRdGLUQ6H e5A6HFyxsMELs8WN65SCDpQNd2FwdkzuiTZ4RkDCiJ1Dl9vXICuZVx05StDmYrgx S6mWzcg1aAsEm2k+Skhayux4a+qtl9sDJ5JcDLECo8acz+RL7/ ovnzuExZ3trm+O 6GN9c7mJBgCfEDkeror5Af4VHUtZbD4vALyqWCr42u4yxVjSj5fWIC9k4aJy6XzQ cRKGnsNrV0ZcGokFRO+IAcuWBIp4o3m3Amst8MyayKU+b94VgnrJAo02Fp0873wa hyJlqVF9fYyRX+couaIvi5dW/e15YX/xPd9hdTYd7S5mCmpoLo7cqYHCVuKWyOGw ZLu1ziPXKIYNEegeAP8iyeaJLnPInI1+z4447IsovnbgZxM3ktWO6k07IOH7zTy9 w+0UzbXdD/qdJI1rENyriAO986J4bUib+9sY/2/kLlL7nPy5Kxg3 Et0Fi3I9/+c/ IYOwNYaCotW+hPtHlw46dcDO1Jz0rMQMf1XCdn0kDQ61nHe5MGTz2uNtR3bty+7U CLgNPkv17hFPu/lX3YtlKvw04p6AZJTyktsSPjubqrE9PG00L5np1V3B/x+CCe2p niojR2m01TK17/oT1p0enFvDV8C351BRnjC86Z2OlbadnB9DnQSP3XH4JdQfbtN8 BXhOglfobjt5T9SHVZpBbzhDzeXAF1dmoZQ8JhdZ03EEDHjzYsXD1KUA6Xey03wU uwnrpTPzD99cdQM7vwCBdJnIPYaD2fT9NwAHICXdlp0pVy5NH20biAADH6GQr4Vc
    [Show full text]
  • Truncated Differential Analysis of Round-Reduced Roadrunner
    Truncated Differential Analysis of Round-Reduced RoadRunneR Block Cipher Qianqian Yang1;2;3, Lei Hu1;2;??, Siwei Sun1;2, Ling Song1;2 1State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China 2Data Assurance and Communication Security Research Center, Chinese Academy of Sciences, Beijing 100093, China 3University of Chinese Academy of Sciences, Beijing 100049, China {qqyang13,hu,swsun,lsong}@is.ac.cn Abstract. RoadRunneR is a small and fast bitslice lightweight block ci- pher for low cost 8-bit processors proposed by Adnan Baysal and S¨ahap S¸ahin in the LightSec 2015 conference. While most software efficient lightweight block ciphers lacking a security proof, RoadRunneR's secu- rity is provable against differential and linear attacks. RoadRunneR is a Feistel structure block cipher with 64-bit block size. RoadRunneR-80 is a vision with 80-bit key and 10 rounds, and RoadRunneR-128 is a vision with 128-bit key and 12 rounds. In this paper, we obtain 5-round truncated differentials of RoadRunneR-80 and RoadRunneR-128 with probability 2−56. Using the truncated differentials, we give a truncated differential attack on 7-round RoadRunneR-128 without whitening keys with data complexity of 255 chosen plaintexts, time complexity of 2121 encryptions and memory complexity of 268. This is first known attack on RoadRunneR block cipher. Keywords: Lightweight, Block Cipher, RoadRunneR, Truncated Dif- ferential Cryptanalysis 1 Introduction Recently, lightweight block ciphers, which could be widely used in small embed- ded devices such as RFIDs and sensor networks, are becoming more and more popular.
    [Show full text]
  • Improved Side Channel Attack on the Block Cipher NOEKEON
    Improved side channel attack on the block cipher NOEKEON Changyong Peng a Chuangying Zhu b Yuefei Zhu a Fei Kang a aZhengzhou Information Science and Technology Institute,Zhengzhou, China, Email: [email protected],[email protected],[email protected],k [email protected] bSchool of Computer and Control, Guillin University of Electronic Technology, Guilin, China Abstract NOEKEON is a block cipher having key-size 128 and block size 128,proposed by Daemen, J et al.Shekh Faisal Abdul-Latip et al. give a side channel attack(under the single bit leakage model) on the cipher at ISPEC 2010.Their analysis shows that one can recover the 128-bit key of the cipher, by considering a one-bit information leakage from the internal state after the second round, with time complexity of O(268) evaluations of the cipher, and data complexity of about 210 chosen plaintexts.Our side channel attack improves upon the previous work of Shekh Faisal Abdul-Latip et al. from two aspects. First, we use the Hamming weight leakage model(Suppose the Hamming weight of the lower 64 bits and the higher 64 bits of the output of the first round can be obtained without error) which is a more relaxed leakage assumption, supported by many previously known practical results on side channel attacks, compared to the more challenging leakage assumption that the adversary has access to the ”exact” value of the internal state bits as used by Shekh Faisal Abdul-Latip et al. Second, our attack has also a reduced complexity compared to that of Shekh Faisal Abdul-Latip et al.
    [Show full text]
  • Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1
    International Journal of Grid and Distributed Computing Vol. 10, No. 11 (2017), pp.79-98 http://dx.doi.org/10.14257/ijgdc.2017.10.11.08 Identifying Open Research Problems in Cryptography by Surveying Cryptographic Functions and Operations 1 Rahul Saha1, G. Geetha2, Gulshan Kumar3 and Hye-Jim Kim4 1,3School of Computer Science and Engineering, Lovely Professional University, Punjab, India 2Division of Research and Development, Lovely Professional University, Punjab, India 4Business Administration Research Institute, Sungshin W. University, 2 Bomun-ro 34da gil, Seongbuk-gu, Seoul, Republic of Korea Abstract Cryptography has always been a core component of security domain. Different security services such as confidentiality, integrity, availability, authentication, non-repudiation and access control, are provided by a number of cryptographic algorithms including block ciphers, stream ciphers and hash functions. Though the algorithms are public and cryptographic strength depends on the usage of the keys, the ciphertext analysis using different functions and operations used in the algorithms can lead to the path of revealing a key completely or partially. It is hard to find any survey till date which identifies different operations and functions used in cryptography. In this paper, we have categorized our survey of cryptographic functions and operations in the algorithms in three categories: block ciphers, stream ciphers and cryptanalysis attacks which are executable in different parts of the algorithms. This survey will help the budding researchers in the society of crypto for identifying different operations and functions in cryptographic algorithms. Keywords: cryptography; block; stream; cipher; plaintext; ciphertext; functions; research problems 1. Introduction Cryptography [1] in the previous time was analogous to encryption where the main task was to convert the readable message to an unreadable format.
    [Show full text]
  • New Cryptanalysis of Block Ciphers with Low Algebraic Degree
    New Cryptanalysis of Block Ciphers with Low Algebraic Degree Bing Sun1,LongjiangQu1,andChaoLi1,2 1 Department of Mathematics and System Science, Science College of National University of Defense Technology, Changsha, China, 410073 2 State Key Laboratory of Information Security, Graduate University of Chinese Academy of Sciences, China, 10039 happy [email protected], ljqu [email protected] Abstract. Improved interpolation attack and new integral attack are proposed in this paper, and they can be applied to block ciphers using round functions with low algebraic degree. In the new attacks, we can determine not only the degree of the polynomial, but also coefficients of some special terms. Thus instead of guessing the round keys one by one, we can get the round keys by solving some algebraic equations over finite field. The new methods are applied to PURE block cipher successfully. The improved interpolation attacks can recover the first round key of 8-round PURE in less than a second; r-round PURE with r ≤ 21 is breakable with about 3r−2 chosen plaintexts and the time complexity is 3r−2 encryptions; 22-round PURE is breakable with both data and time complexities being about 3 × 320. The new integral attacks can break PURE with rounds up to 21 with 232 encryptions and 22-round with 3 × 232 encryptions. This means that PURE with up to 22 rounds is breakable on a personal computer. Keywords: block cipher, Feistel cipher, interpolation attack, integral attack. 1 Introduction For some ciphers, the round function can be described either by a low degree polynomial or by a quotient of two low degree polynomials over finite field with characteristic 2.
    [Show full text]
  • A Re-Examine on Assorted Digital Image Encryption Algorithm's
    Biostatistics and Biometrics Open Access Journal ISSN: 2573-2633 Review Article Biostat Biometrics Open Acc J Volume 4 Issue 2 - January 2018 Copyright © All rights are reserved by Thippanna G DOI: 10.19080/BBOAJ.2018.04.555633 A Re-Examine on Assorted Digital Image Encryption Algorithm’s Techniques Thippanna G* Assistant Professor, CSSR & SRRM Degree and PG College, India Submission: October 05, 2017; Published: January 17, 2018 *Corresponding author: Thippanna G, Assistant Professor, CSSR & SRRM Degree and PG College, India, Tel: ; Email: Abstract Image Encryption is a wide area epic topic to research. Encryption basically deals with converting data or information from its original form to another unreadable and unrecognizable form that hides the information in it. The protection of information from unauthorized access is important in network/internet communication. The use of Encryption is provides the data security. The Encrypted Image is secure from any kind cryptanalysis. In the proposed dissertation explain the different encryption algorithms and their approaches to encrypt the images. In this paper introduced a case study on assorted digital image encryption techniques, are helpful to gives knowledge on entire digital image encryption techniques. This can offer authentication of users, and integrity, accuracy and safety of images that is roaming over communication. Moreover, associate image based knowledge needs additional effort throughout encoding and cryptography. Keywords : Encryption; Cryptanalysis; Cryptographic; Algorithm; Block ciphers; Stream ciphers; Asymmetric Encryption Abbreviations : AES: Advanced Encryption Standard; DSA: Digital Signature Algorithm; DSS: Digital Signature Standard; ECDSA: Elliptic Curve Digital Signature Algorithm; DSA: Digital Signature Algorithm Introduction Some cryptographic methods rely on the secrecy of the Encryption algorithms encryption algorithms; such algorithms are only of historical Encryption algorithm, or cipher, is a mathematical function interest and are not adequate for real-world needs.
    [Show full text]
  • Cryptography
    What is this course about? Aims Cryptography This course provides an overview of basic modern cryptographic techniques and covers essential concepts that users of cryptographic standards need to understand to achieve their intended security goals. Markus Kuhn Objectives By the end of the course you should I be familiar with commonly used standardized cryptographic building Computer Laboratory, University of Cambridge blocks; I be able to match application requirements with concrete security definitions and identify their absence in naive schemes; https://www.cl.cam.ac.uk/teaching/1920/Crypto/ I understand various adversarial capabilities and basic attack These notes are merely provided as an aid for following the lectures. algorithms and how they affect key sizes; They are no substitute for attending the course. I understand and compare the finite groups most commonly used with discrete-logarithm schemes; Lent 2020 { CST Part II I understand the basic number theory underlying the most common public-key schemes, and some efficient implementation techniques. crypto-slides-4up.pdf 2020-04-23 20:49 b7c0c5f 1 2 1 Historic ciphers Related textbooks 2 Perfect secrecy Main reference: 3 Semantic security I Jonathan Katz, Yehuda Lindell: 4 Block ciphers Introduction to Modern Cryptography 2nd ed., Chapman & Hall/CRC, 2014 5 Modes of operation Further reading: 6 Message authenticity I Christof Paar, Jan Pelzl: 7 Authenticated encryption Understanding Cryptography Springer, 2010 8 Secure hash functions http://www.springerlink.com/content/978-3-642-04100-6/ http://www.crypto-textbook.com/ 9 Secure hash applications I Douglas Stinson: 10 Key distribution problem Cryptography { Theory and Practice 3rd ed., CRC Press, 2005 11 Number theory and group theory I Menezes, van Oorschot, Vanstone: 12 Discrete logarithm problem Handbook of Applied Cryptography 13 RSA trapdoor permutation CRC Press, 1996 http://www.cacr.math.uwaterloo.ca/hac/ 14 Digital signatures The course notes and some of the exercises also contain URLs with more detailed information.
    [Show full text]
  • Feature Comparison for GUI Keystore Managers
    Feature Comparison for GUI KeyStore Managers January 27, 2014 __________________ Document version 1.0.1 EduLib S.R.L. Legal Notice _______________________ No part of this publication may be reproduced stored in a retrieval system, or transmitted, in any form or by any means, without the prior written permission of EduLib S.R.L.. EDULIB S.R.L. MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTIES OR MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR PURPOSE. EDULIB IS A REGISTERED TRADEMARK OF EDULIB S.R.L. OTHER PRODUCT NAMES AND SERVICE NAMES ARE THE TRADEMARKS OR REGISTERED TRADEMARKS OF THEIR RESPECTIVE OWNERS AND ARE USED FOR IDENTIFICATION ONLY. Copyright _______________________ 2014, EduLib S.R.L. EduLib S.R.L. _______________________ Calea Bucuresti, Bl. 27B, Sc. 1, Ap. 2 Craiova, DOLJ, 200675, Romania Phone: +40 351 420970 Fax: +40 351 420971 E-mail: [email protected] 1. Feature Comparison for GUI KeyStore Managers We have made a comparison of the features between CERTivity® KeyStores Manager and the most relevant similar products. Although this comparison was made by EduLib, the creator of CERTivity, we tried to be as objective and fair as possible. If you have any comments or suggestions, do not hesitate to contact us at http://www.edulib.com/company/contact/. Feature Name CERTivity 2.0 Keystore Portecle 1.7 KeyTool IUI 2.4.1 Explorer 5.0.1 Released Date 2014-01-23 2013-11-24 2011-01-23 2008-10-18 Maintained + + - - Platforms On any Platform On any Platform On any
    [Show full text]
  • Differential Cryptanalysis on Lblock Using Differential Factors
    DIFFERENTIAL CRYPTANALYSIS ON LBLOCK USING DIFFERENTIAL FACTORS A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF APPLIED MATHEMATICS OF MIDDLE EAST TECHNICAL UNIVERSITY BY MERVE O¨ G˘ UNC¸¨ IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CRYPTOGRAPHY DECEMBER, 2018 Approval of the thesis: DIFFERENTIAL CRYPTANALYSIS ON LBLOCK USING DIFFERENTIAL FACTORS submitted by MERVE O¨ G˘ UNC¸¨ in partial fulfillment of the requirements for the de- gree of Master of Science in Department of Cryptography, Middle East Technical University by, Prof. Dr. Om¨ ur¨ UGUR˘ Director, Graduate School of Applied Mathematics Prof. Dr. Ferruh Ozbudak¨ Head of Department, Cryptography Assoc. Prof. Dr. Ali Doganaksoy˘ Supervisor, Mathematics, METU Dr. Cihangir Tezcan Co-supervisor, Mathematics, METU Examining Committee Members: Prof. Dr. Ferruh Ozbudak¨ Institute of Applied Mathematics, METU Assoc. Prof. Dr. Ali Doganaksoy˘ Department of Mathematics, METU Assoc. Prof. Dr. Murat Cenk Institute of Applied Mathematics, METU Assoc. Prof. Dr. Fatih Sulak Department of Mathematics, At˙ıl˙ım University Assoc. Prof. Dr. Zulf¨ ukar¨ Saygı Department of Mathematics, TOBB ETU Date: I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name: MERVE O¨ G˘ UNC¸¨ Signature : v vi ABSTRACT DIFFERENTIAL CRYPTANALYSIS ON LBLOCK USING DIFFERENTIAL FACTORS O¨ g˘unc¸,¨ Merve M.S., Department of Cryptography Supervisor : Assoc. Prof. Dr. Ali Doganaksoy˘ Co-Supervisor : Dr. Cihangir Tezcan December, 2018, 71 pages Cryptography had actually a long history and comes to today by evolving day by day.
    [Show full text]
  • SKINNY-AEAD and SKINNY-Hash Specification
    SKINNY-AEAD and SKINNY-Hash v1.1 Christof Beierle1;4, J´er´emy Jean2, Stefan K¨olbl3, Gregor Leander4, Amir Moradi4, Thomas Peyrin5, Yu Sasaki6, Pascal Sasdrich4;7, and Siang Meng Sim5 1 SnT, University of Luxembourg, Luxembourg [email protected] 2 ANSSI, Paris, France [email protected] 3 Cybercrypt A/S, Denmark [email protected] 4 Horst G¨ortzInstitute for IT Security, Ruhr-Universit¨atBochum, Germany [email protected] 5 School of Physical and Mathematical Sciences Nanyang Technological University, Singapore [email protected], [email protected] 6 NTT Secure Platform Laboratories, Japan [email protected] 7 Rambus Cryptography, The Netherlands Table of Contents 1 Introduction...........................................................3 2 Specification..........................................................5 2.1 Notations........................................................5 2.2 Parameter Sets....................................................5 2.3 The Tweakable Block Ciphers SKINNY-128-256 and SKINNY-128-384 ....6 2.4 The AEAD Scheme SKINNY-AEAD....................................9 2.5 The Hash Functionality SKINNY-Hash ................................ 26 3 Security Claims........................................................ 29 4 Design Rationale....................................................... 31 4.1 Rationale for the Tweakable Block Ciphers........................... 31 4.2 Rationale for the AEAD scheme..................................... 33 4.3 Rationale for the Hash Function Scheme............................
    [Show full text]