Testing Conservation Applications for Environmental DNA Techniques Through Field Surveys of Presence, Richness and Assemblage of Lotic Biodiversity

Total Page:16

File Type:pdf, Size:1020Kb

Testing Conservation Applications for Environmental DNA Techniques Through Field Surveys of Presence, Richness and Assemblage of Lotic Biodiversity Testing conservation applications for environmental DNA techniques through field surveys of presence, richness and assemblage of lotic biodiversity Author Patricio, Harmony Published 2018-02 Thesis Type Thesis (PhD Doctorate) School School of Environment and Sc DOI https://doi.org/10.25904/1912/1626 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/381270 Griffith Research Online https://research-repository.griffith.edu.au Testing conservation applications for environmental DNA techniques through field surveys of presence, richness and assemblage of lotic biodiversity Harmony C. Patricio, M.P.A. Australian Rivers Institute and the School of Environment and Science GRIFFITH UNIVERSITY Submitted in fulfillment of the requirements of the degree of Doctor of Philosophy February 2018 SYNOPSIS “Each year at the season of the falling of the waters, the people living in the vicinity of the Golden Basin, the home of the Pla Buk [Mekong giant catfish, Pangasianodon gigas], join together for the purpose of catching these fish…..The ceremonies connected with the taking of these fish are ancient and have been performed from time immemorial, and carried out once a year.” - F.H. Giles, 1935 This thesis was undertaken to test the potential of the relatively new survey technique of analyzing water samples which contain DNA that has been shed by organisms (environmental DNA) for the study of diversity and distributions of fishes inhabiting tropical and subtropical rivers. The purpose was to gain information on species richness, assemblages, and distributions; with the ultimate aim of improving conservation management of rare and endangered freshwater fishes. The limitations of conventional (observation-based) survey methods to study rare and threatened fishes in large tropical rivers motivated the choice of testing environmental DNA (eDNA) analysis approaches. Specifically, challenges encountered during prior work to conserve the Mekong giant catfish and other rare species fostered the goal of testing eDNA analysis methods. The Mekong giant catfish was once part of a fishery with substantial cultural and socioeconomic import, as described by Giles (1935). However; today the fishery and ceremony surrounding it no longer exists, as the species has become so rare that the capture of wild individuals is banned and it has been assessed as Critically Endangered by the IUCN Red List. The case of the Mekong River and giant catfish represents an archetypical example of the challenges and limitations of using conventional methods to study and conserve rare fishes in large tropical rivers. These rivers host the highest species diversity of any freshwater environment, yet are facing I the highest rates of extinction. This dire situation is partially due to the difficulty of gaining access to data on spatiotemporal distributions that are needed to inform effective conservation actions. The relatively new technique of using eDNA to access data on species richness, assemblages and distributions may enable access to data from tropical rivers that are not accessible with conventional methods. This thesis compares the benefits and limitations of conventional survey methods with eDNA techniques, within the context of rare species in large rivers. It reviews the development and application of eDNA to study aquatic macroorganisms, specifically fishes. It describes the rapid growth in application of the technique through an analysis of published literature, and finds the majority of studies are focused on developing the methodology. This technique was tested on captive populations of Mekong giant catfish (Pangasianodon gigas) in Thailand, and then used to detect wild giant catfish in the Mekong River at locations where it has been captured in the past. The giant catfish was detected in one of six survey locations, and only one sample from the river. Given the developmental stage of the eDNA technique, the method was further tested in two smaller subtropical rivers with well-known fish species composition. Three different clade-specific (also termed ‘universal’ or ‘generic’) fish primers were used to see if they returned congruent results. Clade-specific primers are designed to amplify all species within a given group, such as bony fishes, without amplifying species outside that group, such as other vertebrates. It was found that each primer set had different biases and that eDNA samples did not cluster either by primer set or by location. A subsequent study analyzed whether such variance was related to the choice of sampling location within the river. Given the highly dynamic and heterogeneous II nature of rivers, it is reasonable to assume that eDNA may not be equally distributed along a cross-section within a single hydraulic unit. High variation was found among samples collected at three different points along a cross-section in a pool and riffle in the Brisbane River, Queensland, Australia when using universal primers and eDNA metabarcoding to determine taxa assemblage. Finally, the method was tested on sediment cores collected in a subtropical embayment at the outflow of the Brisbane River to determine whether a chronology of catchment-scale assemblage of freshwater fish communities could be identified. The results were inconclusive, as primarily bacterial sequences were identified from high-throughput sequencing. These results could indicate that eDNA of macroorganisms is not preserved well enough for detection in subtropical sediment cores. This is consistent with the endosymbiont theory that states that mitochondria are descendent from bacteria that have been assimilated into another cell (Sagan, 1967). This has implications for the design of eDNA experiments that target extremely low copy number template, because eDNA studies often target mitochondria rather than nuclear DNA. The conservation implications of the overall findings of this thesis highlight the fact that all survey methods face limitations when the target organisms are rare aquatic species. Conservation practitioners and resource managers must be creative and forward-thinking in order to gain data on the distribution of threatened species that are needed to inform effective conservation actions. The lack of such data is a contributing factor to the high rates of decline faced by freshwater biodiversity around the globe. The potential of eDNA tools as described in the literature’s early stages may have been somewhat overstated, given that the limitations of the method hadn’t yet been exhaustively tested. There is still a great deal to learn about how useful this method can III be. The tool seems to work best when using species-specific primers, which amplify a single species, rather than clade-specific primers which can assess total species richness or assemblage through metabarcoding. The method needs further refinement, yet is currently most useful when applied in tandem with conventional sampling methods to survey areas that are difficult to access or for the case of large tropical rivers that have high spatial extent and little knowledge currently available regarding distributions of threatened species. IV STATEMENT OF ORIGINALITY This work has not previously been submitted for a degree or diploma at any university. To the best of my knowledge and belief, the thesis contains no material previously published or written by another person except where due reference is made in the thesis itself. - Harmony Patricio V TABLE OF CONTENTS SYNOPSIS .................................................................................................................................................. I STATEMENT OF ORIGINALITY .................................................................................................................. V TABLE OF CONTENTS .............................................................................................................................. VI LIST OF TABLES ....................................................................................................................................... IX LIST OF FIGURES ..................................................................................................................................... XI ACKNOWLEDGEMENTS ........................................................................................................................ XIV ACKNOWLEDGEMENT OF PUBLISHED PAPER INCLUDED IN THE THESIS............................................. XVI Chapter 1: INTRODUCTION ..................................................................................................................... 1 Chapter 2: LITERATURE REVIEW ............................................................................................................. 7 2.1 Summary ....................................................................................................................................... 7 2.2 Introduction ................................................................................................................................. 9 2.3 Evolution and application of eDNA methods .............................................................................. 13 2.4 Sampling challenges .................................................................................................................... 18 2.4.1 Detection probability .......................................................................................................... 19 2.4.2 Habitat
Recommended publications
  • Uncorrected Proofs for Review Only C5478.Indb 28 1/24/11 2:08:33 PM M
    Chapter 3 Variation and evolution of reproductive strategies Marcelo N. Pires, Amanda Banet, Bart J. A. Pollux, and David N. Reznick 3.1 Introduction sociation between these two traits suggests that one of the two traits might be more likely to evolve when the other he family poeciliidae (Rosen & Bailey 1963) trait is already present (the latter facilitating the evolu- consists of a well-defi ned, monophyletic group of tion of the former). However, the existence of a notable Tnearly 220 species with a fascinating heterogene- exception in the literature (the lecithotrophic, superfetat- ity in life-history traits. Reznick and Miles (1989a) made ing Poeciliopsis monacha, the only known exception at the one of the fi rst systematic attempts to gather information time) showed that superfetation and matrotrophy were not from a widely scattered literature on poeciliid life histo- strictly linked, indicating that these two traits can evolve ries. They focused on two important female reproductive independently of each other. traits: (1) the ability to carry multiple broods at different Reznick and Miles (1989a) also proposed a framework developmental stages (superfetation; Turner 1937, 1940b, for future research that was aimed at evaluating possible 1940c), which tends to cause females to produce fewer off- causes and mechanisms for the evolution of superfetation spring per brood and to produce broods more frequently, and matrotrophy by (1) gathering detailed life-history de- and (2) the provisioning of eggs and developing embryos scriptions of a greater number of poeciliid species, either by the mother, which may occur prior to (lecithotrophy) or through common garden studies or from fi eld-collected after (matrotrophy) fertilization.
    [Show full text]
  • Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report
    Cairns Regional Council Water and Waste Report for Mulgrave River Aquifer Feasibility Study Flora and Fauna Report November 2009 Contents 1. Introduction 1 1.1 Background 1 1.2 Scope 1 1.3 Project Study Area 2 2. Methodology 4 2.1 Background and Approach 4 2.2 Demarcation of the Aquifer Study Area 4 2.3 Field Investigation of Proposed Bore Hole Sites 5 2.4 Overview of Ecological Values Descriptions 5 2.5 PER Guidelines 5 2.6 Desktop and Database Assessments 7 3. Database Searches and Survey Results 11 3.1 Information Sources 11 3.2 Species of National Environmental Significance 11 3.3 Queensland Species of Conservation Significance 18 3.4 Pest Species 22 3.5 Vegetation Communities 24 3.6 Regional Ecosystem Types and Integrity 28 3.7 Aquatic Values 31 3.8 World Heritage Values 53 3.9 Results of Field Investigation of Proposed Bore Hole Sites 54 4. References 61 Table Index Table 1: Summary of NES Matters Protected under Part 3 of the EPBC Act 5 Table 2 Summary of World Heritage Values within/adjacent Aquifer Area of Influence 6 Table 3: Species of NES Identified as Occurring within the Study Area 11 Table 4: Summary of Regional Ecosystems and Groundwater Dependencies 26 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report Table 5: Freshwater Fish Species in the Mulgrave River 36 Table 6: Estuarine Fish Species in the Mulgrave River 50 Table 7: Description of potential borehole field in Aloomba as of 20th August, 2009. 55 Figure Index Figure 1: Regional Ecosystem Conservation Status and Protected Species Observation 21 Figure 2: Vegetation Communities and Groundwater Dependencies 30 Figure 3: Locations of Study Sites 54 Appendices A Database Searches 42/15610/100421 Mulgrave River Aquifer Feasibility Study Flora and Fauna Report 1.
    [Show full text]
  • 01 Astyanax Final Version.Indd
    Vertebrate Zoology 59 (1) 2009 31 31 – 40 © Museum für Tierkunde Dresden, ISSN 1864-5755, 29.05.2009 Osteology of the African annual killifi sh genus Callopanchax (Teleostei: Cyprinodontiformes: Nothobranchiidae) and phylogenetic implications WILSON J. E. M. COSTA Laboratório de Ictiologia Geral e Aplicada, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Caixa Postal 68049, CEP 21944-970, Rio de Janeiro, Brazil E-mail: wcosta(at)acd.ufrj.br Received on May 5, 2008, accepted on October 6, 2008. Published online at www.vertebrate-zoology.de on May 15, 2009. > Abstract Osteological structures of Callopanchax are fi rst described and illustrated. Twenty-six characters derived from comparisons of osseous structures among some aplocheiloid fi shes provided evidence supporting hypotheses of relationships among three western African genera (Callopanchax, Scriptaphyosemion and Archiaphyosemion), as proposed in recent molecular analysis. The clade comprising Callopanchax, Scriptaphyosemion and Archiaphyosemion is supported by a laterally displaced antero-proximal process of the fourth ceratobranchial. The sister group relationship between Callopanchax and Scriptaphyosemion is supported by a constriction on the posterior portion of the parasphenoid, an anterior expansion of the hyomandibula, a rectangular basihyal cartilage, an anterior pointed process on the fi rst vertebra, and a long ventrally directed hemal prezygapophysis on the preural centrum 2. Monophyly of Callopanchax is supported by a convexity on the dorsal margin of the opercle, a long interarcual cartilage, and long neural prezygapophyses on the anterior caudal vertebrae. > Key words Killifi shes, Callopanchax, Africa, Osteology, Annual fi shes. Introduction COSTA, 1998a, 2004) and among genera and species of the Rivulidae (e. g., COSTA, 1998b, 2005, 2006a, b).
    [Show full text]
  • Part B: for Private and Commercial Use
    RESTRICTED ANIMAL LIST (PART B) §4-71-6.5 PART B: FOR PRIVATE AND COMMERCIAL USE SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Haplotaxida FAMILY Lumbricidae Lumbricus rubellus earthworm, red PHYLUM Arthropoda CLASS Crustacea ORDER Amphipoda FAMILY Gammaridae Gammarus (all species in genus) crustacean, freshwater; scud FAMILY Hyalellidae Hyalella azteca shrimps, imps (amphipod) ORDER Cladocera FAMILY Sididae Diaphanosoma (all species in genus) flea, water ORDER Cyclopoida FAMILY Cyclopidae Cyclops (all species in genus) copepod, freshwater ORDER Decapoda FAMILY Alpheidae Alpheus brevicristatus shrimp, Japan (pistol) FAMILY Palinuridae Panulirus gracilis lobster, green spiny Panulirus (all species in genus lobster, spiny except Panulirus argus, P. longipes femoristriga, P. pencillatus) FAMILY Pandalidae Pandalus platyceros shrimp, giant (prawn) FAMILY Penaeidae Penaeus indicus shrimp, penaeid 49 RESTRICTED ANIMAL LIST (Part B) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Penaeus californiensis shrimp, penaeid Penaeus japonicus shrimp, wheel (ginger) Penaeus monodon shrimp, jumbo tiger Penaeus orientalis (chinensis) shrimp, penaeid Penaeus plebjius shrimp, penaeid Penaeus schmitti shrimp, penaeid Penaeus semisulcatus shrimp, penaeid Penaeus setiferus shrimp, white Penaeus stylirostris shrimp, penaeid Penaeus vannamei shrimp, penaeid ORDER Isopoda FAMILY Asellidae Asellus (all species in genus) crustacean, freshwater ORDER Podocopina FAMILY Cyprididae Cypris (all species in genus) ostracod, freshwater CLASS Insecta
    [Show full text]
  • Systematic Taxonomy and Biogeography of Widespread
    Systematics and Biogeography of Three Widespread Australian Freshwater Fish Species. by Bernadette Mary Bostock B.Sc. (Hons) Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Deakin University February 2014 i ABSTRACT The variation within populations of three widespread and little studied Australian freshwater fish species was investigated using molecular genetic techniques. The three species that form the focus of this study are Leiopotherapon unicolor, Nematalosa erebi and Neosilurus hyrtlii, commonly recognised as the three most widespread Australian freshwater fish species, all are found in most of the major Australian drainage basins with habitats ranging from clear running water to near stagnant pools. This combination of a wide distribution and tolerance of a wide range of ecological conditions means that these species are ideally suited for use in investigating phylogenetic structure within and amongst Australian drainage basins. Furthermore, the combination of increasing aridity of the Australian continent and its diverse freshwater habitats is likely to promote population differentiation within freshwater species through the restriction of dispersal opportunities and localised adaptation. A combination of allozyme and mtDNA sequence data were employed to test the null hypothesis that Leiopotherapon unicolor represents a single widespread species. Conventional approaches to the delineation and identification of species and populations using allozyme data and a lineage-based approach using mitochondrial 16S rRNA sequences were employed. Apart from addressing the specific question of cryptic speciation versus high colonisation potential in widespread inland fishes, the unique status of L. unicolor as both Australia’s most widespread inland fish and most common desert fish also makes this a useful species to test the generality of current biogeographic hypotheses relating to the regionalisation of the Australian freshwater fish fauna.
    [Show full text]
  • The Origin and Biogeographic Diversification of Fishes in the Family Poeciliidae
    RESEARCH ARTICLE The origin and biogeographic diversification of fishes in the family Poeciliidae David N. Reznick1*, Andrew I. Furness2, Robert W. Meredith3, Mark S. Springer1 1 Department of Biology, University of California Riverside, Riverside, California, United States of America, 2 Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California, United States of America, 3 Department of Biology and Molecular Biology, Montclair State University, Montclair, New Jersey, United States of America * [email protected] a1111111111 a1111111111 a1111111111 Abstract a1111111111 a1111111111 The fish subfamily Poeciliinae (sensu Parenti, 1981) is widely distributed across the West- ern Hemisphere and a dominant component of the fish communities of Central America. Poeciliids have figured prominently in previous studies on the roles of dispersal and vicari- ance in shaping current geographic distributions. Most recently, Hrbek et al. combined a OPEN ACCESS DNA-based phylogeny of the family with geological models to provide a biogeographic per- spective that emphasized the role of both vicariance and dispersal. Here we expand on that Citation: Reznick DN, Furness AI, Meredith RW, Springer MS (2017) The origin and biogeographic effort with a database enlarged in the quantity of sequence represented per species, in the diversification of fishes in the family Poeciliidae. number of species included, and in an enlarged and more balanced representation of the PLoS ONE 12(3): e0172546. doi:10.1371/journal. order Cyprinodontiformes. We combine a robust timetree based upon multiple fossil calibra- pone.0172546 tions with enhanced biogeographic analyses that include ancestral area reconstructions to Editor: Axel Meyer, University of Konstanz, provide a detailed biogeographic history of this clade.
    [Show full text]
  • Pisces: Terapontidae) with Particular Reference to Ontogeny and Phylogeny
    ResearchOnline@JCU This file is part of the following reference: Davis, Aaron Marshall (2012) Dietary ecology of terapontid grunters (Pisces: Terapontidae) with particular reference to ontogeny and phylogeny. PhD thesis, James Cook University. Access to this file is available from: http://eprints.jcu.edu.au/27673/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://eprints.jcu.edu.au/27673/ Dietary ecology of terapontid grunters (Pisces: Terapontidae) with particular reference to ontogeny and phylogeny PhD thesis submitted by Aaron Marshall Davis BSc, MAppSci, James Cook University in August 2012 for the degree of Doctor of Philosophy in the School of Marine and Tropical Biology James Cook University 1 2 Statement on the contribution of others Supervision was provided by Professor Richard Pearson (James Cook University) and Dr Brad Pusey (Griffith University). This thesis also includes some collaborative work. While undertaking this collaboration I was responsible for project conceptualisation, laboratory and data analysis and synthesis of results into a publishable format. Dr Peter Unmack provided the raw phylogenetic trees analysed in Chapters 6 and 7. Peter Unmack, Tim Jardine, David Morgan, Damien Burrows, Colton Perna, Melanie Blanchette and Dean Thorburn all provided a range of editorial advice, specimen provision, technical instruction and contributed to publications associated with this thesis. Greg Nelson-White, Pia Harkness and Adella Edwards helped compile maps. The project was funded by Internal Research Allocation and Graduate Research Scheme grants from the School of Marine and Tropical Biology, James Cook University (JCU).
    [Show full text]
  • Molecular Phylogeny of Philippine Tigerperches (Perciformes: Terapontidae) Based on Mitochondrial Genes
    Philippine Journal of Science 148 (S1): 251-261, Special Issue on Genomics ISSN 0031 - 7683 Date Received: 18 Mar 2019 Molecular Phylogeny of Philippine Tigerperches (Perciformes: Terapontidae) Based on Mitochondrial Genes Reynand Jay C. Canoy1,2,3, Ian Kendrich C. Fontanilla1,2, and Jonas P. Quilang1,2* 1Natural Sciences Research Institute, University of the Philippines Diliman, Quezon City 1101 Philippines 2Institute of Biology, College of Science, University of the Philippines Diliman, Quezon City 1101 Philippines 3Institute of Human Genetics, National Institutes of Health University of the Philippines Manila, 625 Pedro Gil St., Ermita, Manila 1000 Philippines The molecular phylogeny of the Philippine tigerperches is first described in this study. Eight species were analyzed: these include one endemic species (Leiopotherapon plumbeus); one introduced species (Bidyanus bidyanus); and six native species (Terapon jarbua, Terapon puta, Terapon theraps, Pelates quadrilineatus, Helotes sexlineatus, and Mesopristes cancellatus). Primers were designed to amplify and sequence the 12S rRNA (12S), cytochrome c oxidase subunit I (COI), and cytochrome b (CytB) genes. The concatenated 12S, COI, and CytB sequences (3529 bp) were used to construct the phylogeny of the tigerperches using Maximum Parsimony (MP), Neighbor Joining (NJ), Maximum Likelihood (ML), and Bayesian Inference (BI) analyses. All four analyses supported the monophyly of tigerperches. Except for the MP tree, all phylogenetic trees showed that Terapon jarbua was the first to have diverged from the rest of the tigerperch species examined. The congeneric T. jarbua, T. puta and T. theraps did not group together, suggesting their non-monophyly. However, SH test on the unconstrained (actual observation) and constrained (the three congeneric species were forced to group together) NJ trees showed no significant difference (p = 0.55).
    [Show full text]
  • Fitzroy, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Genetic Differentiation in Scriptaphyosemion Geryi (Lambert, 1958) Suggests the Existence of a Species Complex
    Genetic differentiation in Scriptaphyosemion geryi (Lambert, 1958) suggests the existence of a species complex by Jean-François AGNÈSE* (1), Christian CAUVET (2) & Raymond ROMAND (3) Abstract. – Scriptaphyosemion geryi (Lambert, 1958) is a well-defined taxa easily distinguished from the other congeneric species by a red marbled pattern, unpaired fins with deep blue blotches, blue margin and red sub- margin. A zigzag mid longitudinal dark line on sides characterizes females. For long, due to a high phenotypic variability, this taxa was suspected to encompass several cryptic species. We sampled 20 populations represent- ing the entire species range and characterized the genotypes (cytochrome b, mitochondrial DNA) of their speci- mens. Results allowed grouping populations in five clusters composed of geographically-linked populations. Compared with those observed in other species from the subgenus Chromaphyosemion (Radda, 1971), all these results strongly suggested that S. geryi encompassed five different species. © SFI Résumé. – La différenciation génétique chez Scriptaphyosemion geryi (Lambert, 1958) révèle l’existence d’un Received: 18 Apr. 2012 complexe d’espèces. Accepted: 19 Apr. 2013 Editor: A. Gilles Scriptaphyosemion geryi est un taxon bien défini dont les mâles se distinguent facilement des mâles des autres espèces du genre par un aspect général rouge marbré, des nageoires impaires avec des taches bleu pro- fond, une bande marginale bleue et une bande submarginale rouge. Les femelles sont caractérisées par une ligne longitudinale noire en zigzag sur les côtés. Depuis longtemps on pense, en raison de la grande variabilité phéno- Key words typique observée, que ce taxon pourrait en fait englober plusieurs espèces cryptiques. Nous avons échantillonné 20 populations réparties sur toute l’aire de répartition de l’espèce et représentant toute la variabilité phénotypique Nothobranchiidae connue.
    [Show full text]
  • Intraspecific Morphological and Reproductive Trait Variation in Mouth Almighty Glossamia Aprion (Apogonidae) Across Different Flow Environments
    Charles Darwin University Intraspecific morphological and reproductive trait variation in mouth almighty Glossamia aprion (Apogonidae) across different flow environments Abecia, Janine E.D.; Luiz, Osmar J.; King, Alison J. Published in: Journal of Fish Biology DOI: 10.1111/jfb.13821 Published: 01/11/2018 Document Version Peer reviewed version Link to publication Citation for published version (APA): Abecia, J. E. D., Luiz, O. J., & King, A. J. (2018). Intraspecific morphological and reproductive trait variation in mouth almighty Glossamia aprion (Apogonidae) across different flow environments. Journal of Fish Biology, 93(5), 961-971. https://doi.org/10.1111/jfb.13821 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 07. Oct. 2021 Intraspecific morphological and reproductive trait variation in mouth almighty Glossamia aprion (Apogonidae) across different flow environments J. E. ABECIA, O. J. LUIZ, A. J. KING Research Institute for the Environment and Livelihoods, Charles Darwin University, Ellengowan Drive, Darwin, Northern Territory, Australia Correspondence J.
    [Show full text]
  • Pangasius Rheophilus ERSS
    Pangasius rheophilus (a catfish, no common name) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, April 2012 Revised, August 2018 Web Version, 2/10/2021 Organism Type: Fish Overall Risk Assessment Category: Uncertain 1 Native Range and Status in the United States Native Range From Froese and Pauly (2018): “Asia: Indonesia.” From Gustiano (2009): “Distribution: P. rheophilus is presently known from Kayan and Berau River in the Bulungan Regency, Kalimantan Timur (Indonesia). P. rheophilus has been collected from freshwater near the mouth but also from the upper reaches of the two basins. In the lower reaches, the habitats consist of large pools near the sea, with deep and turbid waters. In the upper reaches, the habitats consist of big torrent characterized by turbulent and clear water (altitude 200-400 m).” 1 Status in the United States No records of Pangasius rheophilus in the wild or in trade in the United States were found. Pseudolais micronemus falls within Group I of New Mexico’s Department of Game and Fish Director’s Species Importation List (New Mexico Department of Game and Fish 2010). Group I species “are designated semi-domesticated animals and do not require an importation permit.” With the added restriction of “Not to be used as bait fish.” Means of Introductions in the United States No records of Pangasius rheophilus in the wild in the United States were found. Remarks No additional remarks. 2 Biology and Ecology Taxonomic Hierarchy and Taxonomic Standing According to Eschmeyer et al. (2018), Pangasius rheophilus Pouyaud and G. Teugels 2000 is the current valid name and the original name for this species.
    [Show full text]