Using Value Prediction to Increase the Power of Speculative Execution Hardware

Total Page:16

File Type:pdf, Size:1020Kb

Using Value Prediction to Increase the Power of Speculative Execution Hardware Using Value Prediction to Increase the Power of Speculative Execution Hardware Freddy Gabbay Avi Mendelson Department of Electrical Engineering National Semiconductor Israel Technion - Israel Institute of Technology, [email protected] Haifa 32000, Israel. [email protected] Abstract handled (or even eliminated in several cases) by various This paper presents an experimental and analytical hardware and software techniques ([1], [2], [3], [4], [5], study of value prediction and its impact on speculative [6], [8], [9], [10], [12], [13], [14], [21], [22], [23], [24], execution in superscalar microprocessors. Value [27], [29], [32], [33], [36], [37], [38], [39]). As opposed to prediction is a new paradigm that suggests predicting name dependencies and control dependencies, only outcome values of operations (at run-time) and using these true-data dependencies are considered to be a fundamental predicted values to trigger the execution of true-data limit on the extractable ILP, since they reflect the serial dependent operations speculatively. As a result, stalls to nature of a program by dictating in which sequence data memory locations can be reduced and the amount of should be passed between instructions. This kind of instruction-level parallelism can be extended beyond the extractable parallelism is represented by the dataflow limits of the program’s dataflow graph. This paper graph of the program ([21]). examines the characteristics of the value prediction In this paper we deal with a superscalar processor concept from two perspectives: 1. the related phenomena execution model ([9], [11], [20], [21], [34]). This machine that are reflected in the nature of computer programs, and model is divided into two major subsystems: 2. the significance of these phenomena to boosting instruction-fetch and instruction-execution, which are instruction-level parallelism of super-scalar separated by a buffer, termed the instruction window. The microprocessors that support speculative execution. In instruction fetch subsystem acts as a producer of order to better understand these characteristics, our work instructions. It fetches multiple instructions from a combines both analytical and experimental studies. sequential instruction stream, decodes them simultaneously and places them in the program appearance order in the 1 . Introduction instruction window. The instruction execution subsystem The growing density of gates on a silicon die allows acts as a consumer, since it attempts to execute instructions modern microprocessors to employ increasing number of placed in the instruction window. If this subsystem execution units. Current microprocessor architectures executed instructions according to their appearance order assume sequential programs as an input and a parallel in the program (in-order execution), it would have to stall execution model. Thus, the hardware is expected to extract each time an instruction proves unready to be executed. In the parallelism at run time out of the instruction stream order to overcome this limitation and better utilize the without violating the sequential correctness of the machine’s available resources, most existing modern execution. The efficiency of such architectures is highly superscalar architectures are capable of searching and dependent on both the hardware mechanisms and the sending the ready instructions for execution beyond the application characteristic; i.e., the instruction-level stalling instruction (out-of-order execution). Since the parallelism (ILP) the program exhibits. original instruction sequence is not preserved, superscalar Instructions within the sequential program cannot processors employ a special mechanism, termed the always be ready for parallel execution due to several reorder buffer ([21]). The reorder buffer forces the constraints. These are traditionally classified as: true-data completion of the execution of instructions to become dependencies, name dependencies (false dependencies) visible (retire) in-order. Therefore, although instructions and control dependencies ([21], [35]). Neither control may complete their execution, they cannot completely dependencies nor name dependencies are considered an retire since they are forced to wait in the reorder buffer upper bound on the extractable ILP since they can be until all previous instructions complete correctly. This capability is essential in order to keep the correct order of value locality and they suggested exploiting this property exceptions and interrupts and to deal with control in order to reduce memory latency and increase memory dependencies as well. In order to tolerate the effect of bandwidth. They proposed a special mechanism, termed control dependencies, many superscalar processors also “Load Value Prediction Unit” (LVP), which attempts to support speculative execution. This technique involves the predict the values that were about to be loaded from introduction of a branch prediction mechanism ([33], [37], memory. The LVP was suggested for current processors [38], [39]) and a means for allowing the processor to models (PowerPC 620 and ALPHA AXP 21164) where its continue executing control dependent instructions before relative performance gain was also examined. In their resolving the branch outcome. Execution of such control further work ([26]), they extended the notion of value dependent instructions is termed “speculative execution”. locality and showed that this property may appear not only In order to maintain the correctness of the execution, a in load instructions but also in other types of instructions speculatively-executed instruction can only retire if the such as arithmetic instructions. As a result of this prediction it relies upon was proven to be correct; observation, they suggested value prediction also in order otherwise, it is discarded. to collapse true-data dependencies. In this paper we study the concept of value prediction Gabbay et al. ([16], [17]) have simultaneously and introduced in [25], [26], [16], [17] and [18]. The new independently studied the value prediction paradigm. Their approach attempts to eliminate true-data dependencies by approach was different in the sense that they focused on predicting at run-time the outcome values of instructions, exploring phenomena related to value prediction and their and executing the true-data dependent instructions based significance for future processor architecture. In addition on that prediction. Moreover, it has been shown that the they examined the different effects of value prediction on bound of true-data dependencies can be exceeded without an abstract machine model. This was useful since it violating sequential program correctness. This claim allowed examination of the pure potential of this overcomes two commonly recognized fundamental phenomenon independent of the limitations of individual principles: 1. the ILP of a sequential program is limited by machines. In this paper and our previous studies we its dataflow graph representation, and 2. in order to initially review substantial evidence confirming that guarantee the correctness of the program, true-data computed values during the execution of a program are dependent instructions cannot be executed in parallel. likely to be correctly predicted at run-time. In addition, we The integration of value prediction in superscalar extend the notion of value locality and show that programs processors introduces a new kind of speculative execution. may exhibit different patterns of predictable values which In this case the execution of instructions becomes can be exploited by various value predictors. Our focus on speculative when it is not assured that these instructions the statistical patterns of value prediction also provides us were fed with the correct input values. Note that since with better understanding of the possible exploitation of present superscalar processors already employ a certain value prediction and its mechanisms. form of speculative execution, from the hardware This paper extends our previous studies, broadly perspective value prediction is a feasible and natural examines the potential of these new concepts and presents extension of the current technology. Moreover, even an analytical model that predicts the expected increase in though both value prediction and branch prediction use a the ILP as a result of using value prediction. In addition, similar technology, there are fundamental differences the pioneer study presented in this paper aims at opening between the goals of these mechanisms. While branch new opportunities for future studies which would examine prediction aims at increasing the number of candidate the related microarchitectural considerations and solutions instructions for execution by executing control-dependent such as [18]. The rest of this paper is organized as follows: instructions (since the amount of available parallelism Section 2 introduces the concept of value prediction and within a basic block is relatively small [21]), value various value predictors and shows how value prediction prediction aims at allowing the processor to execute can exceed current ultimate limits. Section 3 broadly operations beyond the limit of true-data dependencies studies and analyzes the characteristics of value prediction. (given by the dataflow graph). Section 4 presents an analytical model and experimental measurements of the extractable ILP. We conclude this Related work: work in Section 5. The pioneer studies that introduced the concept of value
Recommended publications
  • Computer Science 246 Computer Architecture Spring 2010 Harvard University
    Computer Science 246 Computer Architecture Spring 2010 Harvard University Instructor: Prof. David Brooks [email protected] Dynamic Branch Prediction, Speculation, and Multiple Issue Computer Science 246 David Brooks Lecture Outline • Tomasulo’s Algorithm Review (3.1-3.3) • Pointer-Based Renaming (MIPS R10000) • Dynamic Branch Prediction (3.4) • Other Front-end Optimizations (3.5) – Branch Target Buffers/Return Address Stack Computer Science 246 David Brooks Tomasulo Review • Reservation Stations – Distribute RAW hazard detection – Renaming eliminates WAW hazards – Buffering values in Reservation Stations removes WARs – Tag match in CDB requires many associative compares • Common Data Bus – Achilles heal of Tomasulo – Multiple writebacks (multiple CDBs) expensive • Load/Store reordering – Load address compared with store address in store buffer Computer Science 246 David Brooks Tomasulo Organization From Mem FP Op FP Registers Queue Load Buffers Load1 Load2 Load3 Load4 Load5 Store Load6 Buffers Add1 Add2 Mult1 Add3 Mult2 Reservation To Mem Stations FP adders FP multipliers Common Data Bus (CDB) Tomasulo Review 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 LD F0, 0(R1) Iss M1 M2 M3 M4 M5 M6 M7 M8 Wb MUL F4, F0, F2 Iss Iss Iss Iss Iss Iss Iss Iss Iss Ex Ex Ex Ex Wb SD 0(R1), F0 Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss M1 M2 M3 Wb SUBI R1, R1, 8 Iss Ex Wb BNEZ R1, Loop Iss Ex Wb LD F0, 0(R1) Iss Iss Iss Iss M Wb MUL F4, F0, F2 Iss Iss Iss Iss Iss Ex Ex Ex Ex Wb SD 0(R1), F0 Iss Iss Iss Iss Iss Iss Iss Iss Iss M1 M2
    [Show full text]
  • OS and Compiler Considerations in the Design of the IA-64 Architecture
    OS and Compiler Considerations in the Design of the IA-64 Architecture Rumi Zahir (Intel Corporation) Dale Morris, Jonathan Ross (Hewlett-Packard Company) Drew Hess (Lucasfilm Ltd.) This is an electronic reproduction of “OS and Compiler Considerations in the Design of the IA-64 Architecture” originally published in ASPLOS-IX (the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems) held in Cambridge, MA in November 2000. Copyright © A.C.M. 2000 1-58113-317-0/00/0011...$5.00 Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full cita- tion on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permis- sion and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or [email protected]. ASPLOS 2000 Cambridge, MA Nov. 12-15 , 2000 212 OS and Compiler Considerations in the Design of the IA-64 Architecture Rumi Zahir Jonathan Ross Dale Morris Drew Hess Intel Corporation Hewlett-Packard Company Lucas Digital Ltd. 2200 Mission College Blvd. 19447 Pruneridge Ave. P.O. Box 2459 Santa Clara, CA 95054 Cupertino, CA 95014 San Rafael, CA 94912 [email protected] [email protected] [email protected] [email protected] ABSTRACT system collaborate to deliver higher-performance systems.
    [Show full text]
  • Selective Eager Execution on the Polypath Architecture
    Selective Eager Execution on the PolyPath Architecture Artur Klauser, Abhijit Paithankar, Dirk Grunwald [klauser,pvega,grunwald]@cs.colorado.edu University of Colorado, Department of Computer Science Boulder, CO 80309-0430 Abstract average misprediction latency is the sum of the architected latency (pipeline depth) and a variable latency, which depends on data de- Control-flow misprediction penalties are a major impediment pendencies of the branch instruction. The overall cycles lost due to high performance in wide-issue superscalar processors. In this to branch mispredictions are the product of the total number of paper we present Selective Eager Execution (SEE), an execution mispredictions incurred during program execution and the average model to overcome mis-speculation penalties by executing both misprediction latency. Thus, reduction of either component helps paths after diffident branches. We present the micro-architecture decrease performance loss due to control mis-speculation. of the PolyPath processor, which is an extension of an aggressive In this paper we propose Selective Eager Execution (SEE) and superscalar, out-of-order architecture. The PolyPath architecture the PolyPath architecture model, which help to overcome branch uses a novel instruction tagging and register renaming mechanism misprediction latency. SEE recognizes the fact that some branches to execute instructions from multiple paths simultaneously in the are predicted more accurately than others, where it draws from re- same processor pipeline, while retaining maximum resource avail- search in branch confidence estimation [4, 6]. SEE behaves like ability for single-path code sequences. a normal monopath speculative execution architecture for highly Results of our execution-driven, pipeline-level simulations predictable branches; it predicts the most likely successor path of a show that SEE can improve performance by as much as 36% for branch, and evaluates instructions only along this path.
    [Show full text]
  • Igpu: Exception Support and Speculative Execution on Gpus
    Appears in the 39th International Symposium on Computer Architecture, 2012 iGPU: Exception Support and Speculative Execution on GPUs Jaikrishnan Menon, Marc de Kruijf, Karthikeyan Sankaralingam Department of Computer Sciences University of Wisconsin-Madison {menon, dekruijf, karu}@cs.wisc.edu Abstract the evolution of traditional CPUs to illuminate why this pro- gression appears natural and imminent. Since the introduction of fully programmable vertex Just as CPU programmers were forced to explicitly man- shader hardware, GPU computing has made tremendous age CPU memories in the days before virtual memory, for advances. Exception support and speculative execution are almost a decade, GPU programmers directly and explicitly the next steps to expand the scope and improve the usabil- managed the GPU memory hierarchy. The recent release ity of GPUs. However, traditional mechanisms to support of NVIDIA’s Fermi architecture and AMD’s Fusion archi- exceptions and speculative execution are highly intrusive to tecture, however, has brought GPUs to an inflection point: GPU hardware design. This paper builds on two related in- both architectures implement a unified address space that sights to provide a unified lightweight mechanism for sup- eliminates the need for explicit memory movement to and porting exceptions and speculation on GPUs. from GPU memory structures. Yet, without demand pag- First, we observe that GPU programs can be broken into ing, something taken for granted in the CPU space, pro- code regions that contain little or no live register state at grammers must still explicitly reason about available mem- their entry point. We then also recognize that it is simple to ory. The drawbacks of exposing physical memory size to generate these regions in such a way that they are idempo- programmers are well known.
    [Show full text]
  • A Survey of Published Attacks on Intel
    1 A Survey of Published Attacks on Intel SGX Alexander Nilsson∗y, Pegah Nikbakht Bideh∗, Joakim Brorsson∗zx falexander.nilsson,pegah.nikbakht_bideh,[email protected] ∗Lund University, Department of Electrical and Information Technology, Sweden yAdvenica AB, Sweden zCombitech AB, Sweden xHyker Security AB, Sweden Abstract—Intel Software Guard Extensions (SGX) provides a Unfortunately, a relatively large number of flaws and attacks trusted execution environment (TEE) to run code and operate against SGX have been published by researchers over the last sensitive data. SGX provides runtime hardware protection where few years. both code and data are protected even if other code components are malicious. However, recently many attacks targeting SGX have been identified and introduced that can thwart the hardware A. Contribution defence provided by SGX. In this paper we present a survey of all attacks specifically targeting Intel SGX that are known In this paper, we present the first comprehensive review to the authors, to date. We categorized the attacks based on that includes all known attacks specific to SGX, including their implementation details into 7 different categories. We also controlled channel attacks, cache-attacks, speculative execu- look into the available defence mechanisms against identified tion attacks, branch prediction attacks, rogue data cache loads, attacks and categorize the available types of mitigations for each presented attack. microarchitectural data sampling and software-based fault in- jection attacks. For most of the presented attacks, there are countermeasures and mitigations that have been deployed as microcode patches by Intel or that can be employed by the I. INTRODUCTION application developer herself to make the attack more difficult (or impossible) to exploit.
    [Show full text]
  • SUPPORT for SPECULATIVE EXECUTION in HIGH- PERFORMANCE PROCESSORS Michael David Smith Technical Report: CSL-TR-93456 November 1992
    SUPPORT FOR SPECULATIVE EXECUTION IN HIGH- PERFORMANCE PROCESSORS Michael David Smith Technical Report: CSL-TR-93456 November 1992 Computer Systems Laboratory Departments of Electrical Engineering and Computer Science Stanford University Stanford, California 94305-4055 Abstract Superscalar and superpipelining techniques increase the overlap between the instructions in a pipelined processor, and thus these techniques have the potential to improve processor performance by decreasing the average number of cycles between the execution of adjacent instructions. Yet, to obtain this potential performance benefit, an instruction scheduler for this high-performance processor must find the independent instructions within the instruction stream of an application to execute in parallel. For non-numerical applications, there is an insufficient number of independent instructions within a basic block, and consequently the instruction scheduler must search across the basic block boundaries for the extra instruction-level parallelism required by the superscalar and superpipelining techniques. To exploit instruction-level parallelism across a conditional branch, the instruction scheduler must support the movement of instructions above a conditional branch, and the processor must support the speculative execution of these instructions. We define boosting, an architectural mechanism for speculative execution, that allows us to uncover the instruction-level parallelism across conditional branches without adversely affecting the instruction count of the application
    [Show full text]
  • High Performance Architecture Using Speculative Threads and Dynamic Memory Management Hardware
    HIGH PERFORMANCE ARCHITECTURE USING SPECULATIVE THREADS AND DYNAMIC MEMORY MANAGEMENT HARDWARE Wentong Li Dissertation Prepared for the Degree of DOCTOR OF PHILOSOPHY UNIVERSITY OF NORTH TEXAS December 2007 APPROVED: Krishna Kavi, Major Professor and Chair of the Department of Computer Science and Engineering Phil Sweany, Minor Professor Robert Brazile, Committee Member Saraju P. Mohanty, Committee Member Armin R. Mikler, Departmental Graduate Coordinator Oscar Garcia, Dean of College of Engineering Sandra L. Terrell, Dean of the Robert B. Toulouse School of Graduate Studies Li, Wentong, High Performance Architecture using Speculative Threads and Dynamic Memory Management Hardware. Doctor of Philosophy (Computer Science), December 2007, 114 pp., 28 tables, 27 illustrations, bibliography, 82 titles. With the advances in very large scale integration (VLSI) technology, hundreds of billions of transistors can be packed into a single chip. With the increased hardware budget, how to take advantage of available hardware resources becomes an important research area. Some researchers have shifted from control flow Von-Neumann architecture back to dataflow architecture again in order to explore scalable architectures leading to multi-core systems with several hundreds of processing elements. In this dissertation, I address how the performance of modern processing systems can be improved, while attempting to reduce hardware complexity and energy consumptions. My research described here tackles both central processing unit (CPU) performance and memory subsystem performance. More specifically I will describe my research related to the design of an innovative decoupled multithreaded architecture that can be used in multi-core processor implementations. I also address how memory management functions can be off-loaded from processing pipelines to further improve system performance and eliminate cache pollution caused by runtime management functions.
    [Show full text]
  • Whitepaper Cache Speculation Side-Channels Author: Richard Grisenthwaite Date: January 2018 Version 1.1
    Whitepaper Cache Speculation Side-channels Author: Richard Grisenthwaite Date: January 2018 Version 1.1 Introduction This whitepaper looks at the susceptibility of Arm implementations following recent research findings from security researchers at Google on new potential cache timing side-channels exploiting processor speculation. This paper also outlines possible mitigations that can be employed for software designed to run on existing Arm processors. Overview of speculation-based cache timing side-channels Cache timing side-channels are a well understood concept in the area of security research. As such, this whitepaper will provide a simple conceptual overview rather than an in-depth explanation. The basic principle behind cache timing side-channels is that the pattern of allocations into the cache, and, in particular, which cache sets have been used for the allocation, can be determined by measuring the time taken to access entries that were previously in the cache, or by measuring the time to access the entries that have been allocated. This then can be used to determine which addresses have been allocated into the cache. The novelty of speculation-based cache timing side-channels is their use of speculative memory reads. Speculative memory reads are typical of advanced micro-processors and part of the overall functionality which enables very high performance. By performing speculative memory reads to cacheable locations beyond an architecturally unresolved branch (or other change in program flow), and, further, the result of those reads can themselves be used to form the addresses of further speculative memory reads. These speculative reads cause allocations of entries into the cache whose addresses are indicative of the values of the first speculative read.
    [Show full text]
  • Invisispec: Making Speculative Execution Invisible in the Cache Hierarchy
    InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy Mengjia Yany, Jiho Choiy, Dimitrios Skarlatos, Adam Morrison∗, Christopher W. Fletcher, and Josep Torrellas University of Illinois at Urbana-Champaign ∗Tel Aviv University fmyan8, jchoi42, [email protected], [email protected], fcwfletch, [email protected] yAuthors contributed equally to this work. Abstract— Hardware speculation offers a major surface for the attacker’s choosing. Different types of attacks are possible, micro-architectural covert and side channel attacks. Unfortu- such as the victim code reading arbitrary memory locations nately, defending against speculative execution attacks is chal- by speculating that an array bounds check succeeds—allowing lenging. The reason is that speculations destined to be squashed execute incorrect instructions, outside the scope of what pro- the attacker to glean information through a cache-based side grammers and compilers reason about. Further, any change to channel, as shown in Figure 1. In this case, unlike in Meltdown, micro-architectural state made by speculative execution can leak there is no exception-inducing load. information. In this paper, we propose InvisiSpec, a novel strategy to 1 // cache line size is 64 bytes defend against hardware speculation attacks in multiprocessors 2 // secret value V is 1 byte 3 // victim code begins here: Fig. 1: Spectre variant 1 at- by making speculation invisible in the data cache hierarchy. 4 uint8 A[10]; tack example, where the at- InvisiSpec blocks micro-architectural covert and side channels 5 uint8 B[256∗64]; tacker obtains secret value V through the multiprocessor data cache hierarchy due to specula- 6 // B size : possible V values ∗ line size 7 void victim ( size t a) f stored at address X.
    [Show full text]
  • A State of the Art Investigation
    Report Type Deliverable D1.1 Report Name A State-of-the-Art Investigation Dissemination Level Public Status Final Version Number 1.0 Date of Preparation 16th October 2019 CyReV (Dnr 2018-05013) Deliverable D1.2 - A State-of-the-Art Investigation ©2019 The CyReV Consortium ii Executive Summary This deliverable (D1.1 State-of-the-Art Investigation) presents the results and achieve- ments of sub-work package WP1.1 (State of the art) of the CyReV project. The goal of this deliverable is to provide insight into the state of current research frontiers in security and resiliency for vehicles and vehicular security. It also serves as an introduction to the issues faced in the automotive domain with an extensive reference list for more detailed studies. Finally, it can be used as background on which to base further investigations. The FFI HOLIstic Approach to Improve Data SECurity (HoliSec) project produced the deliverable “D1.2 State of the art”, CyReV uses this deliverable as a baseline and extends the current state of the art in regards to resiliency. The report includes discussions about hardware and operating system level secur- ity, internal and external communication security, intrusion detection systems, secure software development, and related research projects. Many topics are discussed very briefly, since an exhaustive treatment of each would certainly be out of the scope of this deliverable. iii CyReV (Dnr 2018-05013) Deliverable D1.2 - A State-of-the-Art Investigation ©2019 The CyReV Consortium iv Contributors Editor(s) Affiliation Email
    [Show full text]
  • Speculative Execution and Instruction-Level Parallelism
    M A R C H 1 9 9 4 WRL Technical Note TN-42 Speculative Execution and Instruction-Level Parallelism David W. Wall d i g i t a l Western Research Laboratory 250 University Avenue Palo Alto, California 94301 USA The Western Research Laboratory (WRL) is a computer systems research group that was founded by Digital Equipment Corporation in 1982. Our focus is computer science research relevant to the design and application of high performance scientific computers. We test our ideas by designing, building, and using real systems. The systems we build are research prototypes; they are not intended to become products. There is a second research laboratory located in Palo Alto, the Systems Research Cen- ter (SRC). Other Digital research groups are located in Paris (PRL) and in Cambridge, Massachusetts (CRL). Our research is directed towards mainstream high-performance computer systems. Our prototypes are intended to foreshadow the future computing environments used by many Digital customers. The long-term goal of WRL is to aid and accelerate the development of high-performance uni- and multi-processors. The research projects within WRL will address various aspects of high-performance computing. We believe that significant advances in computer systems do not come from any single technological advance. Technologies, both hardware and software, do not all advance at the same pace. System design is the art of composing systems which use each level of technology in an appropriate balance. A major advance in overall system performance will require reexamination of all aspects of the system. We do work in the design, fabrication and packaging of hardware; language processing and scaling issues in system software design; and the exploration of new applications areas that are opening up with the advent of higher performance systems.
    [Show full text]
  • PA-RISC 8X00 Family of Microprocessors with Focus on PA-8700
    PA-RISC 8x00 Family of Microprocessors with Focus on PA-8700 Technical White Paper April 2000 1 Preliminary PA-8700 circuit information — production system specifications may differ Table of Contents 1. PA-RISC: Betting the House and Winning...............................................3 2. RISC Philosophy ........................................................................................4 Clock Frequency ............................................................................................................................................................4 VLSI Integration..............................................................................................................................................................4 Architectural Enhancements ........................................................................................................................................5 3. Evolution of the PA-RISC Family ..............................................................6 4. Key Highlights from PA-8000 to PA-8600.................................................7 5. PA-8700 Feature Set Highlights ................................................................8 Large Robust Primary Caches.....................................................................................................................................9 Data Integrity - Error Detection and Error Correction Capabilities ........................................................................10 Static and Dynamic Branch Prediction - Faster Program
    [Show full text]