Invisispec: Making Speculative Execution Invisible in the Cache Hierarchy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Computer Science 246 Computer Architecture Spring 2010 Harvard University
Computer Science 246 Computer Architecture Spring 2010 Harvard University Instructor: Prof. David Brooks [email protected] Dynamic Branch Prediction, Speculation, and Multiple Issue Computer Science 246 David Brooks Lecture Outline • Tomasulo’s Algorithm Review (3.1-3.3) • Pointer-Based Renaming (MIPS R10000) • Dynamic Branch Prediction (3.4) • Other Front-end Optimizations (3.5) – Branch Target Buffers/Return Address Stack Computer Science 246 David Brooks Tomasulo Review • Reservation Stations – Distribute RAW hazard detection – Renaming eliminates WAW hazards – Buffering values in Reservation Stations removes WARs – Tag match in CDB requires many associative compares • Common Data Bus – Achilles heal of Tomasulo – Multiple writebacks (multiple CDBs) expensive • Load/Store reordering – Load address compared with store address in store buffer Computer Science 246 David Brooks Tomasulo Organization From Mem FP Op FP Registers Queue Load Buffers Load1 Load2 Load3 Load4 Load5 Store Load6 Buffers Add1 Add2 Mult1 Add3 Mult2 Reservation To Mem Stations FP adders FP multipliers Common Data Bus (CDB) Tomasulo Review 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 LD F0, 0(R1) Iss M1 M2 M3 M4 M5 M6 M7 M8 Wb MUL F4, F0, F2 Iss Iss Iss Iss Iss Iss Iss Iss Iss Ex Ex Ex Ex Wb SD 0(R1), F0 Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss Iss M1 M2 M3 Wb SUBI R1, R1, 8 Iss Ex Wb BNEZ R1, Loop Iss Ex Wb LD F0, 0(R1) Iss Iss Iss Iss M Wb MUL F4, F0, F2 Iss Iss Iss Iss Iss Ex Ex Ex Ex Wb SD 0(R1), F0 Iss Iss Iss Iss Iss Iss Iss Iss Iss M1 M2 -
Caching Basics
Introduction Why memory subsystem design is important • CPU speeds increase 25%-30% per year • DRAM speeds increase 2%-11% per year Autumn 2006 CSE P548 - Memory Hierarchy 1 Memory Hierarchy Levels of memory with different sizes & speeds • close to the CPU: small, fast access • close to memory: large, slow access Memory hierarchies improve performance • caches: demand-driven storage • principal of locality of reference temporal: a referenced word will be referenced again soon spatial: words near a reference word will be referenced soon • speed/size trade-off in technology ⇒ fast access for most references First Cache: IBM 360/85 in the late ‘60s Autumn 2006 CSE P548 - Memory Hierarchy 2 1 Cache Organization Block: • # bytes associated with 1 tag • usually the # bytes transferred on a memory request Set: the blocks that can be accessed with the same index bits Associativity: the number of blocks in a set • direct mapped • set associative • fully associative Size: # bytes of data How do you calculate this? Autumn 2006 CSE P548 - Memory Hierarchy 3 Logical Diagram of a Cache Autumn 2006 CSE P548 - Memory Hierarchy 4 2 Logical Diagram of a Set-associative Cache Autumn 2006 CSE P548 - Memory Hierarchy 5 Accessing a Cache General formulas • number of index bits = log2(cache size / block size) (for a direct mapped cache) • number of index bits = log2(cache size /( block size * associativity)) (for a set-associative cache) Autumn 2006 CSE P548 - Memory Hierarchy 6 3 Design Tradeoffs Cache size the bigger the cache, + the higher the hit ratio -
45-Year CPU Evolution: One Law and Two Equations
45-year CPU evolution: one law and two equations Daniel Etiemble LRI-CNRS University Paris Sud Orsay, France [email protected] Abstract— Moore’s law and two equations allow to explain the a) IC is the instruction count. main trends of CPU evolution since MOS technologies have been b) CPI is the clock cycles per instruction and IPC = 1/CPI is the used to implement microprocessors. Instruction count per clock cycle. c) Tc is the clock cycle time and F=1/Tc is the clock frequency. Keywords—Moore’s law, execution time, CM0S power dissipation. The Power dissipation of CMOS circuits is the second I. INTRODUCTION equation (2). CMOS power dissipation is decomposed into static and dynamic powers. For dynamic power, Vdd is the power A new era started when MOS technologies were used to supply, F is the clock frequency, ΣCi is the sum of gate and build microprocessors. After pMOS (Intel 4004 in 1971) and interconnection capacitances and α is the average percentage of nMOS (Intel 8080 in 1974), CMOS became quickly the leading switching capacitances: α is the activity factor of the overall technology, used by Intel since 1985 with 80386 CPU. circuit MOS technologies obey an empirical law, stated in 1965 and 2 Pd = Pdstatic + α x ΣCi x Vdd x F (2) known as Moore’s law: the number of transistors integrated on a chip doubles every N months. Fig. 1 presents the evolution for II. CONSEQUENCES OF MOORE LAW DRAM memories, processors (MPU) and three types of read- only memories [1]. The growth rate decreases with years, from A. -
Hierarchical Roofline Analysis for Gpus: Accelerating Performance
Hierarchical Roofline Analysis for GPUs: Accelerating Performance Optimization for the NERSC-9 Perlmutter System Charlene Yang, Thorsten Kurth Samuel Williams National Energy Research Scientific Computing Center Computational Research Division Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA Berkeley, CA 94720, USA fcjyang, [email protected] [email protected] Abstract—The Roofline performance model provides an Performance (GFLOP/s) is bound by: intuitive and insightful approach to identifying performance bottlenecks and guiding performance optimization. In prepa- Peak GFLOP/s GFLOP/s ≤ min (1) ration for the next-generation supercomputer Perlmutter at Peak GB/s × Arithmetic Intensity NERSC, this paper presents a methodology to construct a hi- erarchical Roofline on NVIDIA GPUs and extend it to support which produces the traditional Roofline formulation when reduced precision and Tensor Cores. The hierarchical Roofline incorporates L1, L2, device memory and system memory plotted on a log-log plot. bandwidths into one single figure, and it offers more profound Previously, the Roofline model was expanded to support insights into performance analysis than the traditional DRAM- the full memory hierarchy [2], [3] by adding additional band- only Roofline. We use our Roofline methodology to analyze width “ceilings”. Similarly, additional ceilings beneath the three proxy applications: GPP from BerkeleyGW, HPGMG Roofline can be added to represent performance bottlenecks from AMReX, and conv2d from TensorFlow. In so doing, we demonstrate the ability of our methodology to readily arising from lack of vectorization or the failure to exploit understand various aspects of performance and performance fused multiply-add (FMA) instructions. bottlenecks on NVIDIA GPUs and motivate code optimizations. -
2.2 Adaptive Routing Algorithms and Router Design 20
https://theses.gla.ac.uk/ Theses Digitisation: https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/ This is a digitised version of the original print thesis. Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten: Theses https://theses.gla.ac.uk/ [email protected] Performance Evaluation of Distributed Crossbar Switch Hypermesh Sarnia Loucif Dissertation Submitted for the Degree of Doctor of Philosophy to the Faculty of Science, Glasgow University. ©Sarnia Loucif, May 1999. ProQuest Number: 10391444 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 10391444 Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLO. ProQuest LLO. -
An Algorithmic Theory of Caches by Sridhar Ramachandran
An algorithmic theory of caches by Sridhar Ramachandran Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY. December 1999 Massachusetts Institute of Technology 1999. All rights reserved. Author Department of Electrical Engineering and Computer Science Jan 31, 1999 Certified by / -f Charles E. Leiserson Professor of Computer Science and Engineering Thesis Supervisor Accepted by Arthur C. Smith Chairman, Departmental Committee on Graduate Students MSSACHUSVTS INSTITUT OF TECHNOLOGY MAR 0 4 2000 LIBRARIES 2 An algorithmic theory of caches by Sridhar Ramachandran Submitted to the Department of Electrical Engineeringand Computer Science on Jan 31, 1999 in partialfulfillment of the requirementsfor the degree of Master of Science. Abstract The ideal-cache model, an extension of the RAM model, evaluates the referential locality exhibited by algorithms. The ideal-cache model is characterized by two parameters-the cache size Z, and line length L. As suggested by its name, the ideal-cache model practices automatic, optimal, omniscient replacement algorithm. The performance of an algorithm on the ideal-cache model consists of two measures-the RAM running time, called work complexity, and the number of misses on the ideal cache, called cache complexity. This thesis proposes the ideal-cache model as a "bridging" model for caches in the sense proposed by Valiant [49]. A bridging model for caches serves two purposes. It can be viewed as a hardware "ideal" that influences cache design. On the other hand, it can be used as a powerful tool to design cache-efficient algorithms. -
Adaptive Parallelism for Coupled, Multithreaded Message-Passing Programs Samuel K
University of New Mexico UNM Digital Repository Computer Science ETDs Engineering ETDs Fall 12-1-2018 Adaptive Parallelism for Coupled, Multithreaded Message-Passing Programs Samuel K. Gutiérrez Follow this and additional works at: https://digitalrepository.unm.edu/cs_etds Part of the Numerical Analysis and Scientific omputC ing Commons, OS and Networks Commons, Software Engineering Commons, and the Systems Architecture Commons Recommended Citation Gutiérrez, Samuel K.. "Adaptive Parallelism for Coupled, Multithreaded Message-Passing Programs." (2018). https://digitalrepository.unm.edu/cs_etds/95 This Dissertation is brought to you for free and open access by the Engineering ETDs at UNM Digital Repository. It has been accepted for inclusion in Computer Science ETDs by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. Samuel Keith Guti´errez Candidate Computer Science Department This dissertation is approved, and it is acceptable in quality and form for publication: Approved by the Dissertation Committee: Professor Dorian C. Arnold, Chair Professor Patrick G. Bridges Professor Darko Stefanovic Professor Alexander S. Aiken Patrick S. McCormick Adaptive Parallelism for Coupled, Multithreaded Message-Passing Programs by Samuel Keith Guti´errez B.S., Computer Science, New Mexico Highlands University, 2006 M.S., Computer Science, University of New Mexico, 2009 DISSERTATION Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Computer Science The University of New Mexico Albuquerque, New Mexico December 2018 ii ©2018, Samuel Keith Guti´errez iii Dedication To my beloved family iv \A Dios rogando y con el martillo dando." Unknown v Acknowledgments Words cannot adequately express my feelings of gratitude for the people that made this possible. -
Detecting False Sharing Efficiently and Effectively
W&M ScholarWorks Arts & Sciences Articles Arts and Sciences 2016 Cheetah: Detecting False Sharing Efficiently andff E ectively Tongping Liu Univ Texas San Antonio, Dept Comp Sci, San Antonio, TX 78249 USA; Xu Liu Coll William & Mary, Dept Comp Sci, Williamsburg, VA 23185 USA Follow this and additional works at: https://scholarworks.wm.edu/aspubs Recommended Citation Liu, T., & Liu, X. (2016, March). Cheetah: Detecting false sharing efficiently and effectively. In 2016 IEEE/ ACM International Symposium on Code Generation and Optimization (CGO) (pp. 1-11). IEEE. This Article is brought to you for free and open access by the Arts and Sciences at W&M ScholarWorks. It has been accepted for inclusion in Arts & Sciences Articles by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. Cheetah: Detecting False Sharing Efficiently and Effectively Tongping Liu ∗ Xu Liu ∗ Department of Computer Science Department of Computer Science University of Texas at San Antonio College of William and Mary San Antonio, TX 78249 USA Williamsburg, VA 23185 USA [email protected] [email protected] Abstract 1. Introduction False sharing is a notorious performance problem that may Multicore processors are ubiquitous in the computing spec- occur in multithreaded programs when they are running on trum: from smart phones, personal desktops, to high-end ubiquitous multicore hardware. It can dramatically degrade servers. Multithreading is the de-facto programming model the performance by up to an order of magnitude, significantly to exploit the massive parallelism of modern multicore archi- hurting the scalability. Identifying false sharing in complex tectures. -
Generalized Methods for Application Specific Hardware Specialization
Generalized methods for application specific hardware specialization by Snehasish Kumar M. Sc., Simon Fraser University, 2013 B. Tech., Biju Patnaik University of Technology, 2010 Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the School of Computing Science Faculty of Applied Sciences c Snehasish Kumar 2017 SIMON FRASER UNIVERSITY Spring 2017 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced without authorization under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, education, satire, parody, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Approval Name: Snehasish Kumar Degree: Doctor of Philosophy (Computing Science) Title: Generalized methods for application specific hardware specialization Examining Committee: Chair: Binay Bhattacharyya Professor Arrvindh Shriraman Senior Supervisor Associate Professor Simon Fraser University William Sumner Supervisor Assistant Professor Simon Fraser University Vijayalakshmi Srinivasan Supervisor Research Staff Member, IBM Research Alexandra Fedorova Supervisor Associate Professor University of British Columbia Richard Vaughan Internal Examiner Associate Professor Simon Fraser University Andreas Moshovos External Examiner Professor University of Toronto Date Defended: November 21, 2016 ii Abstract Since the invention of the microprocessor in 1971, the computational capacity of the microprocessor has scaled over 1000× with Moore and Dennard scaling. Dennard scaling ended with a rapid increase in leakage power 30 years after it was proposed. This ushered in the era of multiprocessing where additional transistors afforded by Moore’s scaling were put to use. With the scaling of computational capacity no longer guaranteed every generation, application specific hardware specialization is an attractive alternative to sustain scaling trends. -
OS and Compiler Considerations in the Design of the IA-64 Architecture
OS and Compiler Considerations in the Design of the IA-64 Architecture Rumi Zahir (Intel Corporation) Dale Morris, Jonathan Ross (Hewlett-Packard Company) Drew Hess (Lucasfilm Ltd.) This is an electronic reproduction of “OS and Compiler Considerations in the Design of the IA-64 Architecture” originally published in ASPLOS-IX (the Ninth International Conference on Architectural Support for Programming Languages and Operating Systems) held in Cambridge, MA in November 2000. Copyright © A.C.M. 2000 1-58113-317-0/00/0011...$5.00 Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full cita- tion on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permis- sion and/or a fee. Request permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or [email protected]. ASPLOS 2000 Cambridge, MA Nov. 12-15 , 2000 212 OS and Compiler Considerations in the Design of the IA-64 Architecture Rumi Zahir Jonathan Ross Dale Morris Drew Hess Intel Corporation Hewlett-Packard Company Lucas Digital Ltd. 2200 Mission College Blvd. 19447 Pruneridge Ave. P.O. Box 2459 Santa Clara, CA 95054 Cupertino, CA 95014 San Rafael, CA 94912 [email protected] [email protected] [email protected] [email protected] ABSTRACT system collaborate to deliver higher-performance systems. -
14. Caching and Cache-Efficient Algorithms
MITOCW | 14. Caching and Cache-Efficient Algorithms The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free. To make a donation or to view additional materials from hundreds of MIT courses, visit MIT OpenCourseWare at ocw.mit.edu. JULIAN SHUN: All right. So we've talked a little bit about caching before, but today we're going to talk in much more detail about caching and how to design cache-efficient algorithms. So first, let's look at the caching hardware on modern machines today. So here's what the cache hierarchy looks like for a multicore chip. We have a whole bunch of processors. They all have their own private L1 caches for both the data, as well as the instruction. They also have a private L2 cache. And then they share a last level cache, or L3 cache, which is also called LLC. They're all connected to a memory controller that can access DRAM. And then, oftentimes, you'll have multiple chips on the same server, and these chips would be connected through a network. So here we have a bunch of multicore chips that are connected together. So we can see that there are different levels of memory here. And the sizes of each one of these levels of memory is different. So the sizes tend to go up as you move up the memory hierarchy. The L1 caches tend to be about 32 kilobytes. In fact, these are the specifications for the machines that you're using in this class. -
Selective Eager Execution on the Polypath Architecture
Selective Eager Execution on the PolyPath Architecture Artur Klauser, Abhijit Paithankar, Dirk Grunwald [klauser,pvega,grunwald]@cs.colorado.edu University of Colorado, Department of Computer Science Boulder, CO 80309-0430 Abstract average misprediction latency is the sum of the architected latency (pipeline depth) and a variable latency, which depends on data de- Control-flow misprediction penalties are a major impediment pendencies of the branch instruction. The overall cycles lost due to high performance in wide-issue superscalar processors. In this to branch mispredictions are the product of the total number of paper we present Selective Eager Execution (SEE), an execution mispredictions incurred during program execution and the average model to overcome mis-speculation penalties by executing both misprediction latency. Thus, reduction of either component helps paths after diffident branches. We present the micro-architecture decrease performance loss due to control mis-speculation. of the PolyPath processor, which is an extension of an aggressive In this paper we propose Selective Eager Execution (SEE) and superscalar, out-of-order architecture. The PolyPath architecture the PolyPath architecture model, which help to overcome branch uses a novel instruction tagging and register renaming mechanism misprediction latency. SEE recognizes the fact that some branches to execute instructions from multiple paths simultaneously in the are predicted more accurately than others, where it draws from re- same processor pipeline, while retaining maximum resource avail- search in branch confidence estimation [4, 6]. SEE behaves like ability for single-path code sequences. a normal monopath speculative execution architecture for highly Results of our execution-driven, pipeline-level simulations predictable branches; it predicts the most likely successor path of a show that SEE can improve performance by as much as 36% for branch, and evaluates instructions only along this path.