Stephen E. Fienberg and Judith M

Total Page:16

File Type:pdf, Size:1020Kb

Stephen E. Fienberg and Judith M Reconsidering the Fundamental Contributions of Fisher and Neyman on Experimentation and Sampling Author(s): Stephen E. Fienberg and Judith M. Tanur Source: International Statistical Review / Revue Internationale de Statistique, Vol. 64, No. 3 (Dec., 1996), pp. 237-253 Published by: International Statistical Institute (ISI) Stable URL: http://www.jstor.org/stable/1403784 Accessed: 19/10/2008 12:47 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=isi. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. International Statistical Institute (ISI) is collaborating with JSTOR to digitize, preserve and extend access to International Statistical Review / Revue Internationale de Statistique. http://www.jstor.org InternationalStatistical Review (3), 1966, 64, 237-253, Printedin Mexico ? InternationalStatistical Institute Reconsideringthe Fundamental Contributions of Fisher and Neyman on Experimentation and Sampling Stephen E. Fienberg1 and Judith M. Tanur2 1Departmentof Statistics, CarnegieMellon University,Pittsburgh, PA 15213-3890, USA 2Departmentof Sociology, State University of New Yorkat Stony Brook,Stony Brook,NY 11794-4356, USA Summary R.A. Fisher and Jerzy Neyman are commonly acknowledged as the statisticians who provided the basic ideas that underpin the design of experiments and the design of sample surveys, respectively. In this paper, we reconsider the key contributions of these great men to the two areas of research. We also explain how the controversy surrounding Neyman's 1935 paper on agricultural experimentation in effect led to a split in research on experiments and on sample surveys. Key words:Clustering; Design of experiments;Design of samplesurveys; Randomization; Stratification. 1 Introduction The 1920s and 1930s marka critical period in the developmentof statistics. Much of the modern theory of estimationand statisticaltesting emergedfrom paperspublished during this period by two of the most importantstatisticians of the century,Ronald Aylmer Fisher and Jerzy Neyman. In many ways, the theoreticalwork of these two greatmen was stimulatedby practicalproblems they encoun- tered in their day-to-day statisticalwork of agriculturalexperimentation and, later for Neyman, the sampling of human populations.Moreover many believe that their greatest accomplishmentswere not in the realm of theoriesof inferencebut rather in theirarticulation of theoryand principlesunder- pinning the two key modernmethods for the scientific collection of data-randomized experiments and randomsampling. In connection with a largerproject on experimentsand sample surveys, and in part stimulatedby the recent occasion of the 100th anniversaryof Neyman's birth, we have rereadmuch of the work of both Fisher and Neyman in the areas of sampling and experimentation.Our story for both Fisher and Neyman begins with the work that led to their 1923 paperson agriculturalexperimentation. For Neyman, this work continuedlargely in the directionof samplingand culminatedin his now famous 1934 paper on the topic. Despite the many contributionsof others to the technical development of sampling in the period from 1900 to 1925, Neyman's 1934 paper played a pivotal role in turning the dry mathematics of expectations into real sampling plans for actual randomly selected large scale surveys. For Fisher, his 1923 paperled to furtherpioneering work in experimentaldesign that culminatedin the publicationof his 1935 book, The Design of Experiments.Fisher's book played a catalytic role in the actual use of randomizationin controlled experimentsthat is similar to the role Neyman's 1934 paperplayed in the use of methods for randomsampling. The year 1935 was a 238 S.E. FIENBERGand J.M. TANUR critical one in the developmentsin the fields of experimentationand sampling,not simply because of the publicationof Fisher'sbook but also because of a majorcontroversy between Fisher and Neyman engendered by Neyman's (1935) paper on agriculturalexperimentation. Because of the bitterness that grew out of this dispute (and a related one between Fisher on the one hand and Neyman and Pearson on the other, over tests of hypotheses and then later over confidence intervals),Fisher and Neyman were never able to bring their ideas together and benefit from the fruitful interactionthat would likely have occurredhad they done so. And in the aftermath,Neyman staked out intellectual responsibilityfor sampling while Fisher did the same for experimentation.It was in partbecause of this rift between Fisher and Neyman that the fields of sample surveys and experimentationdrifted apart. In the next section, we begin with Neyman'simportant 1923 paperon agriculturalexperimentation, and we remind the reader of the interrelatednature of fundamentalideas on experiments and surveys and the pivotal role that randomizationplayed in both areas. Then our narrativeproceeds by interweaving accounts of the work by Fisher and Neyman on experimentationand sampling, and controversiesthat surroundedthem. Our account culminateswith the clash between Fisher and Neyman over ideas in Neyman's 1935 paper.Throughout we include relevantbiographical material assembled from a varietyof sources includingBox (1978, 1980), Lehmann& Reid (1982) and Reid (1982). 2 Parallels between Surveys and Experiments: Innovations in Neyman's 1923 Work on Agri- cultural Experimentation JerzyNeyman was bornof Polish parentsin 1894, in Bendery,which has been variouslylabeled as Rumania,Ukraine, and Moldavia because of the vicissitudes of border-drawingin EasternEurope. In 1912 he enteredthe Universityof Kharkov(which laterbecame Maxim GorkiUniversity) to study mathematics.Finishing his undergraduatestudies in 1917, Neyman remained at the University of Kharkovto begin to preparefor an academic career;he also received an appointmentas a lecturer at the KharkovInstitute of Technology.In the fall of 1920 he passed the examinationfor a Masters degree and became a lecturerat the University.Thus until afterhis 27th birthdayNeyman was doubly isolated-both by living in a provincial city and by being part of an ethnic minority in that city. In the spring of 1921, learning that he was to be arrested,Neyman fled to the country home of a relative,where he supportedhimself by teachingthe childrenof peasants.In the summerhe returned to Kharkovand thence to Bydgoszcz in northernPoland, as partof an exchangeof nationalsbetween Russia and Poland agreed to at the end of the Russian-Polish War.In Bydgoszcz, Neyman went to work as "senior statistical assistant"at the National AgriculturalInstitute and it was there that he wrote two long papers on agriculturalexperimentation that were published in 1923 in Polish (Splawa-Neyman, 1990 [1923a], 1925 [1923b]). In this section we focus primarilyon the first of these papers, and we returnto the second in Section 4, discussing its 1925 republicationin English. An excerpt of the 1923 paper(Splawa-Neyman, 1990 [1923a]) on experimentationwas recently translatedfrom the Polish originaland publishedin StatisticalScience, and in it we were especially struckby the importancethat repeatedrandom sampling played in Neyman's thinking.This seemed to us to foreshadow,at the very least, the use of randomizationin experimentation.Reid (1982, p. 44) quotes Neyman considerablylater as denying his priorityhere: ". .. I treatedtheoretically an unrestrictedlyrandomized agricultural experiment and the randomizationwas consideredas a prerequisiteto probabilistictreatment of the results. This is not the same as the recognition that without randomizationan experimenthas little value irrespectiveof the subsequenttreatment. The latterpoint is due to Fisher and I consider it as one of the most valuableof Fisher'sachievements." The FundamentalContributions of Fisher and Neymanon Experimentationand Sampling 239 Since we see one of the major purposes of experimentalrandomization as the necessary precon- dition for probabilisticinference from the results, we wouldjoin Rubin (1990, p. 477) in saying that had Neyman later claimed priorityrather than denying it, we would have had no reason to quarrel with that claim. Rubin (1990) also reminds us that the use of randomizationwas "in the air" in the early 1920s, citing Student(1923, pp. 281-282) and Fisher & MacKenzie (1923, p. 473). There is, however, anotherimportant feature of Neyman's first paper on the topic of agricultural experimentationwe think especially worthy of note. For a numberof years, we have pursued the parallels and linkages between surveys and experiments(e.g., see Fienberg & Tanur,1987,
Recommended publications
  • F:\RSS\Me\Society's Mathemarica
    School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK Discussion Papers in Economics and Econometrics Mathematics in the Statistical Society 1883-1933 John Aldrich No. 0919 This paper is available on our website http://www.southampton.ac.uk/socsci/economics/research/papers ISSN 0966-4246 Mathematics in the Statistical Society 1883-1933* John Aldrich Economics Division School of Social Sciences University of Southampton Southampton SO17 1BJ UK e-mail: [email protected] Abstract This paper considers the place of mathematical methods based on probability in the work of the London (later Royal) Statistical Society in the half-century 1883-1933. The end-points are chosen because mathematical work started to appear regularly in 1883 and 1933 saw the formation of the Industrial and Agricultural Research Section– to promote these particular applications was to encourage mathematical methods. In the period three movements are distinguished, associated with major figures in the history of mathematical statistics–F. Y. Edgeworth, Karl Pearson and R. A. Fisher. The first two movements were based on the conviction that the use of mathematical methods could transform the way the Society did its traditional work in economic/social statistics while the third movement was associated with an enlargement in the scope of statistics. The study tries to synthesise research based on the Society’s archives with research on the wider history of statistics. Key names : Arthur Bowley, F. Y. Edgeworth, R. A. Fisher, Egon Pearson, Karl Pearson, Ernest Snow, John Wishart, G. Udny Yule. Keywords : History of Statistics, Royal Statistical Society, mathematical methods.
    [Show full text]
  • Two Principles of Evidence and Their Implications for the Philosophy of Scientific Method
    TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD by Gregory Stephen Gandenberger BA, Philosophy, Washington University in St. Louis, 2009 MA, Statistics, University of Pittsburgh, 2014 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Gregory Stephen Gandenberger It was defended on April 14, 2015 and approved by Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences Satish Iyengar, Pittsburgh, Dietrich School of Arts and Sciences John Norton, Pittsburgh, Dietrich School of Arts and Sciences Teddy Seidenfeld, Carnegie Mellon University, Dietrich College of Humanities & Social Sciences James Woodward, Pittsburgh, Dietrich School of Arts and Sciences Dissertation Director: Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences ii Copyright © by Gregory Stephen Gandenberger 2015 iii TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD Gregory Stephen Gandenberger, PhD University of Pittsburgh, 2015 The notion of evidence is of great importance, but there are substantial disagreements about how it should be understood. One major locus of disagreement is the Likelihood Principle, which says roughly that an observation supports a hypothesis to the extent that the hy- pothesis predicts it. The Likelihood Principle is supported by axiomatic arguments, but the frequentist methods that are most commonly used in science violate it. This dissertation advances debates about the Likelihood Principle, its near-corollary the Law of Likelihood, and related questions about statistical practice.
    [Show full text]
  • John Ashworth Nelder: 8 October 1924 – 7 August 2010
    John Ashworth Nelder: 8 October 1924 – 7 August 2010. John Nelder died on Saturday 7th August 2010 in Luton & Dunstable Hospital UK, where he was recovering from a fall. John was very active even at the age of 85, and retained the strong interest in our work – and statistics generally – that we will all remember with deep affection. However, he was becoming increasingly frail and it was a shock but perhaps, in retrospect, not a surprise to hear that he had died peacefully in his sleep. John was born on 8th October 1924 in Dulverton, Somerset, UK. He was educated at Blundell's School and at Sidney Sussex College, Cambridge where he read Mathematics (interrupted by war service in the RAF) from 1942-8, and then took the Diploma in Mathematical Statistics. Most of John’s formal career was spent as a statistician in the UK Agricultural Research Service. His first job, from October 1949, was at the newly set-up Vegetable Research Station, Wellesbourne UK (NVRS). Then, in 1968, he became Head of the Statistics Department at Rothamsted, and continued there until his first retirement in 1984. The role of statistician there was very conducive for John, not only because of his strong interests in biology (and especially ornithology), but also because it allowed him to display his outstanding skill of developing new statistical theory to solve real biological problems. At NVRS, John developed the theory of general balance to provide a unifying framework for the wide range of designs that are needed in agricultural research (see Nelder, 1965, Proceedings of the Royal Society, Series A).
    [Show full text]
  • The Likelihood Principle
    1 01/28/99 ãMarc Nerlove 1999 Chapter 1: The Likelihood Principle "What has now appeared is that the mathematical concept of probability is ... inadequate to express our mental confidence or diffidence in making ... inferences, and that the mathematical quantity which usually appears to be appropriate for measuring our order of preference among different possible populations does not in fact obey the laws of probability. To distinguish it from probability, I have used the term 'Likelihood' to designate this quantity; since both the words 'likelihood' and 'probability' are loosely used in common speech to cover both kinds of relationship." R. A. Fisher, Statistical Methods for Research Workers, 1925. "What we can find from a sample is the likelihood of any particular value of r [a parameter], if we define the likelihood as a quantity proportional to the probability that, from a particular population having that particular value of r, a sample having the observed value r [a statistic] should be obtained. So defined, probability and likelihood are quantities of an entirely different nature." R. A. Fisher, "On the 'Probable Error' of a Coefficient of Correlation Deduced from a Small Sample," Metron, 1:3-32, 1921. Introduction The likelihood principle as stated by Edwards (1972, p. 30) is that Within the framework of a statistical model, all the information which the data provide concerning the relative merits of two hypotheses is contained in the likelihood ratio of those hypotheses on the data. ...For a continuum of hypotheses, this principle
    [Show full text]
  • Strength in Numbers: the Rising of Academic Statistics Departments In
    Agresti · Meng Agresti Eds. Alan Agresti · Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics DepartmentsStatistics in the U.S. Rising of Academic The in Numbers: Strength Statistics Departments in the U.S. Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. Alan Agresti • Xiao-Li Meng Editors Strength in Numbers: The Rising of Academic Statistics Departments in the U.S. 123 Editors Alan Agresti Xiao-Li Meng Department of Statistics Department of Statistics University of Florida Harvard University Gainesville, FL Cambridge, MA USA USA ISBN 978-1-4614-3648-5 ISBN 978-1-4614-3649-2 (eBook) DOI 10.1007/978-1-4614-3649-2 Springer New York Heidelberg Dordrecht London Library of Congress Control Number: 2012942702 Ó Springer Science+Business Media New York 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • WILLIAM GEMMELL COCHRAN July 15, 1909-March29, 1980
    NATIONAL ACADEMY OF SCIENCES WILLIAM GEMMELL C OCHRAN 1909—1980 A Biographical Memoir by MORRIS HANSEN AND FREDERICK MOSTELLER Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1987 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. WILLIAM GEMMELL COCHRAN July 15, 1909-March29, 1980 BY MORRIS HANSEN AND FREDERICK MOSTELLER ILLIAM GEMMELL COCHRAN was born into modest Wcircumstances on July 15, 1909, in Rutherglen, Scot- land. His father, Thomas, the eldest of seven children, had begun his lifetime employment with the railroad at the age of thirteen. The family, consisting of Thomas, his wife Jean- nie, and sons Oliver and William, moved to Gourock, a hol- iday resort town on the Firth of Clyde, when William was six, and to Glasgow ten years later. Oliver has colorful recollections of their childhood. At age five, Willie (pronounced Wully), as he was known to family and friends, was hospitalized for a burst appendix, and his life hung in the balance for a day. But soon he was home, wearying his family with snatches of German taught him by a German patient in his nursing-home ward. Willie had a knack for hearing or reading something and remembering it. Oliver recalls that throughout his life, Willie would walk or sit around reciting poems, speeches, advertisements, mu- sic hall songs, and in later life oratorios and choral works he was learning. Until Willie was sixteen, the family lived in an apartment known in Scotland as a "two room and kitchen"—a parlor- cum-dining room (used on posh occasions, about twelve times a year), a bedroom used by the parents, and a kitchen.
    [Show full text]
  • The Development of Statistical Design and Analysis Concepts at Rothamsted
    The Development of Statistical Design and Analysis Concepts at Rothamsted Roger Payne, VSN International,Hemel Hempstead, Herts, UK (and Rothamsted Research, Harpenden, Herts UK). email: [email protected] DEMA 2011 1/9/11 Rothamsted 100 years ago •significance test (Arbuthnot 1710) •Bayes theorem (Bayes 1763) •least squares (Gauss 1809, Legendre 1805) •central limit theorem (Laplace 1812) • distributions of large-samples tend to become Normal •"Biometric School" Karl Pearson, University College • correlation, chi-square, method of moments •t-test (Gosset 1908) •Fisher in Stats Methods for Research Workers • "..traditional machinery of statistical processes is wholly unsuited to the needs of practical research. Not only does it take a cannon to shoot a sparrow, but it misses the sparrow!" .. Rothamsted • Broadbalk – set up by Sir John Lawes in 1843 to study the effects of inorganic fertilisers on crop yields • had some traces of factorial structure, but no replication, no randomization and no blocking • and not analysed statistically until 1919.. Broadbalk •treatments on the strips 01 (Fym) N4 11 N4 P Mg 21 Fym N3 12 N1+3+1 (P) K2 Mg2 22 Fym 13 N4 P K 03 Nil 14 N4 P K* (Mg*) 05 (P) K Mg 15 N5 (P) K Mg 06 N1 (P) K Mg 16 N6 (P) K Mg 07 N2 (P) K Mg 17 N1+4+1 P K Mg 08 N3 (P) K Mg 18 N1+2+1 P K Mg 09 N4 (P) K Mg 19 N1+1+1 K Mg 10 N4 20 N4 K Mg •hints of factorial structure (e.g.
    [Show full text]
  • Orme) Wilberforce (Albert) Raymond Blackburn (Alexander Bell
    Copyrights sought (Albert) Basil (Orme) Wilberforce (Albert) Raymond Blackburn (Alexander Bell) Filson Young (Alexander) Forbes Hendry (Alexander) Frederick Whyte (Alfred Hubert) Roy Fedden (Alfred) Alistair Cooke (Alfred) Guy Garrod (Alfred) James Hawkey (Archibald) Berkeley Milne (Archibald) David Stirling (Archibald) Havergal Downes-Shaw (Arthur) Berriedale Keith (Arthur) Beverley Baxter (Arthur) Cecil Tyrrell Beck (Arthur) Clive Morrison-Bell (Arthur) Hugh (Elsdale) Molson (Arthur) Mervyn Stockwood (Arthur) Paul Boissier, Harrow Heraldry Committee & Harrow School (Arthur) Trevor Dawson (Arwyn) Lynn Ungoed-Thomas (Basil Arthur) John Peto (Basil) Kingsley Martin (Basil) Kingsley Martin (Basil) Kingsley Martin & New Statesman (Borlasse Elward) Wyndham Childs (Cecil Frederick) Nevil Macready (Cecil George) Graham Hayman (Charles Edward) Howard Vincent (Charles Henry) Collins Baker (Charles) Alexander Harris (Charles) Cyril Clarke (Charles) Edgar Wood (Charles) Edward Troup (Charles) Frederick (Howard) Gough (Charles) Michael Duff (Charles) Philip Fothergill (Charles) Philip Fothergill, Liberal National Organisation, N-E Warwickshire Liberal Association & Rt Hon Charles Albert McCurdy (Charles) Vernon (Oldfield) Bartlett (Charles) Vernon (Oldfield) Bartlett & World Review of Reviews (Claude) Nigel (Byam) Davies (Claude) Nigel (Byam) Davies (Colin) Mark Patrick (Crwfurd) Wilfrid Griffin Eady (Cyril) Berkeley Ormerod (Cyril) Desmond Keeling (Cyril) George Toogood (Cyril) Kenneth Bird (David) Euan Wallace (Davies) Evan Bedford (Denis Duncan)
    [Show full text]
  • Statistics Making an Impact
    John Pullinger J. R. Statist. Soc. A (2013) 176, Part 4, pp. 819–839 Statistics making an impact John Pullinger House of Commons Library, London, UK [The address of the President, delivered to The Royal Statistical Society on Wednesday, June 26th, 2013] Summary. Statistics provides a special kind of understanding that enables well-informed deci- sions. As citizens and consumers we are faced with an array of choices. Statistics can help us to choose well. Our statistical brains need to be nurtured: we can all learn and practise some simple rules of statistical thinking. To understand how statistics can play a bigger part in our lives today we can draw inspiration from the founders of the Royal Statistical Society. Although in today’s world the information landscape is confused, there is an opportunity for statistics that is there to be seized.This calls for us to celebrate the discipline of statistics, to show confidence in our profession, to use statistics in the public interest and to champion statistical education. The Royal Statistical Society has a vital role to play. Keywords: Chartered Statistician; Citizenship; Economic growth; Evidence; ‘getstats’; Justice; Open data; Public good; The state; Wise choices 1. Introduction Dictionaries trace the source of the word statistics from the Latin ‘status’, the state, to the Italian ‘statista’, one skilled in statecraft, and on to the German ‘Statistik’, the science dealing with data about the condition of a state or community. The Oxford English Dictionary brings ‘statistics’ into English in 1787. Florence Nightingale held that ‘the thoughts and purpose of the Deity are only to be discovered by the statistical study of natural phenomena:::the application of the results of such study [is] the religious duty of man’ (Pearson, 1924).
    [Show full text]
  • IMS Bulletin 33(5)
    Volume 33 Issue 5 IMS Bulletin September/October 2004 Barcelona: Annual Meeting reports CONTENTS 2-3 Members’ News; Bulletin News; Contacting the IMS 4-7 Annual Meeting Report 8 Obituary: Leopold Schmetterer; Tweedie Travel Award 9 More News; Meeting report 10 Letter to the Editor 11 AoS News 13 Profi le: Julian Besag 15 Meet the Members 16 IMS Fellows 18 IMS Meetings 24 Other Meetings and Announcements 28 Employment Opportunities 45 International Calendar of Statistical Events 47 Information for Advertisers JOB VACANCIES IN THIS ISSUE! The 67th IMS Annual Meeting was held in Barcelona, Spain, at the end of July. Inside this issue there are reports and photos from that meeting, together with news articles, meeting announcements, and a stack of employment advertise- ments. Read on… IMS 2 . IMS Bulletin Volume 33 . Issue 5 Bulletin Volume 33, Issue 5 September/October 2004 ISSN 1544-1881 Member News In April 2004, Jeff Steif at Chalmers University of Stephen E. Technology in Sweden has been awarded Contact Fienberg, the the Goran Gustafsson Prize in mathematics Information Maurice Falk for his work in “probability theory and University Professor ergodic theory and their applications” by Bulletin Editor Bernard Silverman of Statistics at the Royal Swedish Academy of Sciences. Assistant Editor Tati Howell Carnegie Mellon The award, given out every year in each University in of mathematics, To contact the IMS Bulletin: Pittsburgh, was named the Thorsten physics, chemistry, Send by email: [email protected] Sellin Fellow of the American Academy of molecular biology or mail to: Political and Social Science. The academy and medicine to a IMS Bulletin designates a small number of fellows each Swedish university 20 Shadwell Uley, Dursley year to recognize and honor individual scientist, consists of GL11 5BW social scientists for their scholarship, efforts a personal prize and UK and activities to promote the progress of a substantial grant.
    [Show full text]
  • School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK
    School of Social Sciences Economics Division University of Southampton Southampton SO17 1BJ, UK Discussion Papers in Economics and Econometrics Professor A L Bowley’s Theory of the Representative Method John Aldrich No. 0801 This paper is available on our website http://www.socsci.soton.ac.uk/economics/Research/Discussion_Papers ISSN 0966-4246 Key names: Arthur L. Bowley, F. Y. Edgeworth, , R. A. Fisher, Adolph Jensen, J. M. Keynes, Jerzy Neyman, Karl Pearson, G. U. Yule. Keywords: History of Statistics, Sampling theory, Bayesian inference. Professor A. L. Bowley’s Theory of the Representative Method * John Aldrich Economics Division School of Social Sciences University of Southampton Southampton SO17 1BJ UK e-mail: [email protected] Abstract Arthur. L. Bowley (1869-1957) first advocated the use of surveys–the “representative method”–in 1906 and started to conduct surveys of economic and social conditions in 1912. Bowley’s 1926 memorandum for the International Statistical Institute on the “Measurement of the precision attained in sampling” was the first large-scale theoretical treatment of sample surveys as he conducted them. This paper examines Bowley’s arguments in the context of the statistical inference theory of the time. The great influence on Bowley’s conception of statistical inference was F. Y. Edgeworth but by 1926 R. A. Fisher was on the scene and was attacking Bayesian methods and promoting a replacement of his own. Bowley defended his Bayesian method against Fisher and against Jerzy Neyman when the latter put forward his concept of a confidence interval and applied it to the representative method. * Based on a talk given at the Sample Surveys and Bayesian Statistics Conference, Southampton, August 2008.
    [Show full text]
  • Frequentist and Bayesian Statistics
    Faculty of Life Sciences Frequentist and Bayesian statistics Claus Ekstrøm E-mail: [email protected] Outline 1 Frequentists and Bayesians • What is a probability? • Interpretation of results / inference 2 Comparisons 3 Markov chain Monte Carlo Slide 2— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics What is a probability? Two schools in statistics: frequentists and Bayesians. Slide 3— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics Frequentist school School of Jerzy Neyman, Egon Pearson and Ronald Fischer. Slide 4— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics Bayesian school “School” of Thomas Bayes P(D|H) · P(H) P(H|D)= P(D|H) · P(H)dH Slide 5— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics Frequentists Frequentists talk about probabilities in relation to experiments with a random component. Relative frequency of an event, A,isdefinedas number of outcomes consistent with A P(A)= number of experiments The probability of event A is the limiting relative frequency. Relative frequency 0.0 0.2 0.4 0.6 0.8 1.0 020406080100 n Slide 6— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics Frequentists — 2 The definition restricts the things we can add probabilities to: What is the probability of there being life on Mars 100 billion years ago? We assume that there is an unknown but fixed underlying parameter, θ, for a population (i.e., the mean height on Danish men). Random variation (environmental factors, measurement errors, ...) means that each observation does not result in the true value. Slide 7— PhD (Aug 23rd 2011) — Frequentist and Bayesian statistics The meta-experiment idea Frequentists think of meta-experiments and consider the current dataset as a single realization from all possible datasets.
    [Show full text]