How to Count Thumb-Ups and Thumb-Downs: User-Rating based Ranking of Items from an Axiomatic Perspective Dell Zhang1, Robert Mao2, Haitao Li3, and Joanne Mao4 1 Birkbeck, University of London Malet Street, London WC1E 7HX, UK
[email protected] 2 Microsoft Research 1 Microsoft Way, Redmond, WA 98052, USA
[email protected] 3 Microsoft Corporation 1 Microsoft Way, Redmond, WA 98052, USA
[email protected] 4 MNX Consulting 9833 Wilden Lane, Potomac, MD 20854, USA
[email protected] Abstract. It is a common practice among Web 2.0 services to allow users to rate items on their sites. In this paper, we first point out the flaws of the popular methods for user-rating based ranking of items, and then argue that two well-known Information Retrieval (IR) tech- niques, namely the Probability Ranking Principle and Statistical Lan- guage Modelling, provide simple but effective solutions to this problem. Furthermore, we examine the existing and proposed methods in an ax- iomatic framework, and prove that only the score functions given by the Dirichlet Prior smoothing method as well as its special cases can satisfy both of the two axioms borrowed from economics. 1 Introduction Suppose that you are building a Web 2.0 service which allows users to rate items (such as commercial-products, photos, videos, songs, news-reports, and answers- to-questions) on your site, you probably want to sort items according to their user-ratings so that stuff \liked" by users would be ranked higher than those \disliked". How should you do that? What is the best way to count such thumb- ups and thumb-downs? Although this problem | user-rating based ranking of items | looks easy and occurs in numerous applications, the right solution to it is actually not very obvious.