Axiomatic Analysis of Smoothing Methods in Language Models for Pseudo-Relevance Feedback

Total Page:16

File Type:pdf, Size:1020Kb

Axiomatic Analysis of Smoothing Methods in Language Models for Pseudo-Relevance Feedback View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Illinois Digital Environment for Access to Learning and Scholarship Repository AXIOMATIC ANALYSIS OF SMOOTHING METHODS IN LANGUAGE MODELS FOR PSEUDO-RELEVANCE FEEDBACK BY HUSSEIN HAZIMEH THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Computer Science in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Adviser: Professor ChengXiang Zhai Abstract Pseudo-Relevance Feedback (PRF) is an important general technique for improving retrieval effectiveness without requiring any user effort. Several state-of-the-art PRF models are based on the language modeling approach where a query language model is learned based on feedback documents. In all these models, feedback documents are represented with unigram language models smoothed with a collection language model. While collection lan- guage model-based smoothing has proven both effective and necessary in using language models for retrieval, we use axiomatic analysis to show that this smoothing scheme inherently causes the feedback model to favor fre- quent terms and thus violates the IDF constraint needed to ensure selection of discriminative feedback terms. To address this problem, we propose re- placing collection language model-based smoothing in the feedback stage with additive smoothing, which is analytically shown to select more discrimina- tive terms. Empirical evaluation further confirms that additive smoothing indeed significantly outperforms collection-based smoothing methods in mul- tiple language model-based PRF models. ii To my parents, for their love and support. iii Acknowledgments I owe my gratitude to my adviser ChengXiang Zhai whose dedication and advice made this work possible. iv Table of Contents Chapter 1 Introduction . 1 Chapter 2 Related Work . 6 Chapter 3 Representative PRF Models . 8 3.1 Divergence Minimization Model . 8 3.2 Relevance Model . 9 3.3 Geometric Relevance Model . 9 Chapter 4 Axiomatic Analysis of PRF Models . 11 4.1 Divergence Minimization Model . 12 4.2 Relevance Model . 15 4.3 Geometric Relevance Model . 16 Chapter 5 Additive Smoothing for PRF Models . 17 5.1 Divergence Minimization Model . 17 5.2 Relevance Model . 18 5.3 Geometric Relevance Model . 18 Chapter 6 Measuring PRF Method Discrimination . 19 Chapter 7 Empirical Evaluation . 21 7.1 Datasets and Parameter Setting . 21 7.2 Experimental Results . 22 7.3 Summary of Main Findings . 25 7.4 Tables and Figures . 25 Chapter 8 Conclusion and Future Work . 30 References . 32 v Chapter 1 Introduction Feedback is an essential component in every modern retrieval system as it allows incorporating user preferences. The most reliable type of feedback is relevance feedback where users would label the top documents returned by a retrieval system as relevant or non-relevant. As relevance feedback is a tedious task that requires labeling large numbers of documents in the collec- tion, pseudo relevance feedback (PRF) is commonly used as an alternative. In PRF, the top documents returned by the retrieval system are assumed to be relevant and are used to expand the query. Although PRF is not as reliable as relevance feedback, empirical studies have shown that it is an effec- tive general technique for improving retrieval accuracy [2, 3, 4, 5, 6]. Since it requires no user effort, the technique can be applied in any retrieval system. Several types of PRF models exist in the literature (see Chapter 1 for a detailed review), among which language model (LM) based PRF methods are both theoretically well-grounded and empirically effective [4, 7]. Many PRF models have been proposed, including the divergence minimization model [4], the mixture model [4], the relevance model [3], and the geometric relevance model [8], in addition to many other improved variants [5, 6]. While these models differ in how they are derived, they generally take a set of top-ranked documents from an initial retrieval result as input and attempt to estimate a unigram language model, referred to as the feedback language model, based on these documents to capture their topic. The feedback lan- guage model θF can then be linearly interpolated with the original query language model θQ to form an \expanded" query language model: 0 θQ = (1 − α) θQ + α θF This chapter and the subsequent ones are a joint work with ChengXiang Zhai which has been published in ACM ICTIR15 (see [1] for bibliographic information) 1 where α 2 [0; 1] is the interpolation coefficient that determines the weight assigned to the feedback language model. This is similar to how the Rocchio feedback algorithm works in the vector space model [9]. The effectiveness of a PRF method is thus directly determined by the quality of the estimated feedback language model θF . In all the current LM-based PRF models, the estimated feedback LM is based on the aggregation of all the language models of the feedback docu- ments. The aggregation is achieved using an averaging function (such as the arithmetic or geometric mean), and it may also involve weighting each feed- back document based on how well it matches the query (i.e., retrieval score of each feedback document in the initial retrieval result), though uniform weighting is also often used. The intuition captured in such an aggregation- based estimate is to favor words that have high probabilities according to all the individual LMs of feedback documents (i.e., occur frequently in all the feedback documents). Such an aggregation function alone, however, would not consider the oc- currences of these terms in the global collection, and indeed it would tend to give high probabilities to many non-informative popular words in the collec- tion that are intuitively not useful for expanding a query. Thus, some of these models further rely on the use of a collection language model to penalize the terms that are too common in the collection. As a result, the terms that have high probabilities in the final estimated feedback LM would be those that occur frequently in all feedback documents, but not very frequently in the entire collection; this is the same effect as what the Rocchio algorithm achieves in the vector space retrieval model when TF-IDF weighting is used. Formally, let the feedback set be F = fD1;D2; ::::; Dng, where Di is the ith feedback document. In a language model-based approach to PRF, we consider a unigram language model, θi, estimated based on each feedback document Di, in addition to the collection LM, θC , which is estimated based on the entire collection of documents. The goal of a PRF method is to estimate a feedback LM, denoted by θF , based on all the document LMs, θ1; :::; θn, and the collection LM θC . Let w be any feedback word that appears in at least one of the documents in F , then a state-of-the-art PRF method would, in general, assign w a 2 probability P (wjθF ) defined as follows: ! P (wjθF ) / f A P (wjθ1); :::; P (wjθn) ;P (wjθC ) (1.1) where A : RN ! R is an aggregation function that combines the probabilities of words in each of the feedback documents. For example, A can be the arithmetic or geometric mean. f : R2 ! R is an arbitrary function that is increasing in the first argument (so that words that occur frequently in feedback documents would tend to have a higher value of f) and decreasing in the second (so that words that occur frequently in the collection would tend to have a smaller value of f). This generalized view of the LM-based PRF models is intuitive as we want the final probability of the word to be high for relevant discriminative words, i.e. those that appear in most of the feedback documents and have a low to moderate probability of occurrence in the collection LM. As in all cases of language model estimation, the feedback documents' LMs (θis) have to be smoothed to account for the fact that a document is gener- ally a very small sample for estimating a word distribution over the entire vocabulary. Smoothing is also necessary to avoid assigning zero probabili- ties to (many) unseen words in documents (an inevitable consequence of the commonly used Maximum Likelihood estimator). The general motivation behind smoothing the feedback documents' language models is that a word may not occur in some of the feedback documents, and not smoothing its probability might overpenalize it. For example, if the PRF model has the function A as the geometric mean and the feedback word occurs in all the feedback documents except one, then the probability assigned to the word will be zero if smoothing is not used. So far, in virtually all work on LM-based PRF models, smoothing of P (wjθi) has been based on some form of interpolation of the maximum like- lihood estimate and the probability of the word according to the collection language model, P (wjθC ), which is proportional to the number of occurrences of the word in the whole collection. Dirichlet prior and Jelinek-Mercer are es- pecially popular choices of collection-based smoothing because of their good performance when used in a retrieval function such as Query Likelihood or Kullback-Leibler (KL) divergence [7]. Indeed, smoothing with a collection 3 language model has not only proven to be effective for retrieval, but also essential for achieving the effect of IDF weighting in a retrieval function [7]. However, in this paper, we show that using collection LM-based smoothing, while effectively avoids the assignment of zero probabilities, is not suitable for LM-based PRF models and can lead to the selection of very frequent and non-informative feedback terms, thus making the PRF model unable to select discriminative feedback terms.
Recommended publications
  • Sequence Models
    Sequence Models Noah Smith Computer Science & Engineering University of Washington [email protected] Lecture Outline 1. Markov models 2. Hidden Markov models 3. Viterbi algorithm 4. Other inference algorithms for HMMs 5. Learning algorithms for HMMs Shameless Self-Promotion • Linguistic Structure Prediction (2011) • Links material in this lecture to many related ideas, including some in other LxMLS lectures. • Available in electronic and print form. MARKOV MODELS One View of Text • Sequence of symbols (bytes, letters, characters, morphemes, words, …) – Let Σ denote the set of symbols. • Lots of possible sequences. (Σ* is infinitely large.) • Probability distributions over Σ*? Pop QuiZ • Am I wearing a generative or discriminative hat right now? Pop QuiZ • Generative models tell a • Discriminative models mythical story to focus on tasks (like explain the data. sorting examples). Trivial Distributions over Σ* • Give probability 0 to sequences with length greater than B; uniform over the rest. • Use data: with N examples, give probability N-1 to each observed sequence, 0 to the rest. • What if we want every sequence to get some probability? – Need a probabilistic model family and algorithms for constructing the model from data. A History-Based Model n+1 p(start,w1,w2,...,wn, stop) = γ(wi w1,w2,...,wi 1) | − i=1 • Generate each word from left to right, conditioned on what came before it. Die / Dice one die two dice start one die per history: … … … start I one die per history: … … … history = start start I want one die per history: … … history = start I … start I want a one die per history: … … … history = start I want start I want a flight one die per history: … … … history = start I want a start I want a flight to one die per history: … … … history = start I want a flight start I want a flight to Lisbon one die per history: … … … history = start I want a flight to start I want a flight to Lisbon .
    [Show full text]
  • Introduction to Machine Learning Lecture 3
    Introduction to Machine Learning Lecture 3 Mehryar Mohri Courant Institute and Google Research [email protected] Bayesian Learning Bayes’ Formula/Rule Terminology: likelihood prior Pr[X Y ]Pr[Y ] Pr[Y X]= | . posterior| Pr[X] probability evidence Mehryar Mohri - Introduction to Machine Learning page 3 Loss Function Definition: function L : R + indicating the penalty for an incorrectY prediction.×Y→ • L ( y,y ) : loss for prediction of y instead of y . Examples: • zero-one loss: standard loss function in classification; L ( y,y )=1 y = y for y,y . ∈Y • non-symmetric losses: e.g., for spam classification; L ( ham , spam) L ( spam , ham) . ≤ squared loss: standard loss function in • 2 regression; L ( y,y )=( y y ) . − Mehryar Mohri - Introduction to Machine Learning page 4 Classification Problem Input space : e.g., set of documents. X N feature vector Φ ( x ) R associated to x . • ∈ ∈X N notation: feature vector x R . • ∈ • example: vector of word counts in document. Output or target space : set of classes; e.g., sport, Y business, art. Problem: given x , predict the correct class y ∈Y associated to x . Mehryar Mohri - Introduction to Machine Learning page 5 Bayesian Prediction Definition: the expected conditional loss of predicting y is ∈Y [y x]= L(y,y)Pr[y x]. L | | y ∈Y Bayesian decision : predict class minimizing expected conditional loss, that is y∗ =argmin [y x]=argmin L(y,y)Pr[y x]. L | | y y y ∈Y zero-oneb loss: y∗ =argmaxb Pr[y x]. • y | Maximum a Posteriori (MAP) principle. b Mehryar Mohri - Introduction to Machine Learning page 6 Binary Classification - Illustration 1 Pr[y x] 1 | Pr[y x] 2 | 0 x Mehryar Mohri - Introduction to Machine Learning page 7 Maximum a Posteriori (MAP) Definition: the MAP principle consists of predicting according to the rule y =argmaxPr[y x].
    [Show full text]
  • Additive Smoothing for Relevance-Based Language Modelling of Recommender Systems
    Additive Smoothing for Relevance-Based Language Modelling of Recommender Systems Daniel Valcarce, Javier Parapar, Álvaro Barreiro Information Retrieval Lab Department of Computer Science University of A Coruña, Spain {daniel.valcarce, javierparapar, barreiro}@udc.es ABSTRACT the users' past behaviour. Continuous developments in this The use of Relevance-Based Language Models for top-N rec- field have been made to meet these high expectations. ommendation has become a promising line of research. Pre- We can distinguish multiple approaches to recommenda- vious works have used collection-based smoothing methods tion [24]. They are often classified in three main categories: for this task. However, a recent analysis on RM1 (an estima- content-based, collaborative filtering and hybrid techniques. tion of Relevance-Based Language Models) in document re- Content-based approaches generate recommendations based trieval showed that this type of smoothing methods demote on the item and user descriptions: they suggest items simi- the IDF effect in pseudo-relevance feedback. In this paper, lar to those liked by the target user [9]. In contrast, collab- we claim that the IDF effect from retrieval is closely related orative filtering methods rely on the interactions (typically to the concept of novelty in recommendation. We perform ratings) between users and items in the system [21]. Finally, an axiomatic analysis of the IDF effect on RM2 conclud- there exist hybrid algorithms that combine both collabora- ing that this kind of smoothing methods also demotes the tive filtering and content-based approaches. IDF effect in recommendation. By axiomatic analysis, we Traditionally, Information Retrieval (IR) has focused on find that a collection-agnostic method, Additive smoothing, delivering the information that users demand [1].
    [Show full text]
  • Smoothing Parameter and Model Selection for General Smooth Models
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION , VOL. , NO. , –, Theory and Methods http://dx.doi.org/./.. Smoothing Parameter and Model Selection for General Smooth Models Simon N. Wooda,NatalyaPyab, and Benjamin Säfkenc aSchool of Mathematics, University of Bristol, Bristol, UK; bSchool of Science and Technology, Nazarbayev University, Astana, Kazakhstan, and KIMEP University, Almaty, Kazakhstan; cChairs of Statistics and Econometrics, Georg-August-Universität Göttingen, Germany ABSTRACT ARTICLE HISTORY This article discusses a general framework for smoothing parameter estimation for models with regular like- Received October lihoods constructed in terms of unknown smooth functions of covariates. Gaussian random effects and Revised March parametric terms may also be present. By construction the method is numerically stable and convergent, KEYWORDS and enables smoothing parameter uncertainty to be quantified. The latter enables us to fix a well known Additive model; AIC; problem with AIC for such models, thereby improving the range of model selection tools available. The Distributional regression; smooth functions are represented by reduced rank spline like smoothers, with associated quadratic penal- GAM; Location scale and ties measuring function smoothness. Model estimation is by penalized likelihood maximization, where shape model; Ordered the smoothing parameters controlling the extent of penalization are estimated by Laplace approximate categorical regression; marginal likelihood. The methods cover, for example, generalized additive models for nonexponential fam- Penalized regression spline; ily responses (e.g., beta, ordered categorical, scaled t distribution, negative binomial and Tweedie distribu- REML; Smooth Cox model; tions), generalized additive models for location scale and shape (e.g., two stage zero inflation models, and Smoothing parameter uncertainty; Statistical Gaussian location-scale models), Cox proportional hazards models and multivariate additive models.
    [Show full text]
  • Introduction to Naivebayes Package
    Introduction to naivebayes package Michal Majka March 8, 2020 1 Introduction The naivebayes package provides an efficient implementation of the popular Naïve Bayes classifier. It was developed and is now maintained based on three principles: it should be efficient, user friendly and written in Base R. The last implies no dependencies, however, it neither denies nor interferes with the first as many functions from the Base R distribution use highly efficient routines programmed in lower level languages, such as C or FORTRAN. In fact, the naivebayes package utilizes only such functions for resource-intensive calculations. This vignette should make the implementation of the general naive_bayes() function more transparent and give an overview over its functionalities. 2 Installation Just like many other R packages, the naivebayes can be installed from the CRAN repository by simply typing into the console the following line: install.packages("naivebayes") An alternative way of obtaining the package is first downloading the package source from https://CRAN.R-project.org/package=naivebayes, specifying the location of the file and running in the console: # path_to_tar.gz file <- " " install.packages(path_to_tar.gz, repos= NULL, type= "source") The full source code can be viewed either on the official GitHub CRAN repository: https: //github.com/cran/naivebayes or on the development repository: https://github.com/ majkamichal/naivebayes. After successful installation, the package can be used with: library(naivebayes) 3 Main functions The general function
    [Show full text]
  • Adding Improvements to Multinomial Naive Bayes for Increasing the Accuracy of Aggressive Tweets Classification
    ISSN (Online) 2278-1021 IJARCCE ISSN (Print) 2319-5940 International Journal of Advanced Research in Computer and Communication Engineering Vol. 8, Issue 11, November 2019 Adding Improvements to Multinomial Naive Bayes for Increasing the Accuracy of Aggressive Tweets Classification Divisha Bisht1, Sanjay Joshi2 Student, Department of Information Technology, College of Technology, GBPUA&T, Pantnagar, India1 Assistant Professor, Department of Information Technology, College of Technology, GBPUA&T, Pantnagar, India2 Abstract: Naïve Bayes is a popular supervised learning method widely used for text classification and sentiment analysis. There has been a rise of aggressive troll comments in the social networking sites which leads to online harassment and causes distressful online experiences. This paper uses Naïve Bayes classifier using Bag of Words on ‘Tweets dataset for Detection of Cyber-Trolls’ (dataset taken from Kaggle) and aims to improve baseline model by adding cumulative changes and studying their impact on the performance of the model. Keywords: Naïve Bayes, Classification, Improvements, Accuracy I. INTRODUCTION The prevalence, ease of access and anonymity in the social media communities supported by the all dominating web of internet has led to a rise of online negative behaviour in the form of trolling. A regular influx of a large number of troll comments can be observed in most Social Networking Sites (SNS) like Twitter, Facebook, Reddit. The Collins English Dictionary defines troll as “someone who posts unkind or offensive messages
    [Show full text]
  • Efficient Learning of Smooth Probability Functions from Bernoulli Tests With
    Efficient learning of smooth probability functions from Bernoulli tests with guarantees Paul Rolland 1 Ali Kavis 1 Alex Immer 1 Adish Singla 2 Volkan Cevher 1 Abstract grows cubicly with the number of tests, and can thus be inapplicable when the amount of data becomes large. There We study the fundamental problem of learning an has been extensive work to resolve this cubic complexity unknown, smooth probability function via point- associated with GP computations (Rasmussen, 2004). How- wise Bernoulli tests. We provide a scalable algo- ever, these methods require additional approximations on rithm for efficiently solving this problem with rig- the posterior distribution, which impacts the efficiency and orous guarantees. In particular, we prove the con- make the overall algorithm even more complicated, leading vergence rate of our posterior update rule to the to further difficulties in establishing theoretical convergence true probability function in L2-norm. Moreover, guarantees. we allow the Bernoulli tests to depend on con- Recently, Goetschalckx et al.(2011) tackled the issues en- textual features and provide a modified inference countered by LGP, and proposed a scalable inference engine engine with provable guarantees for this novel based on Beta Processes called Continuous Correlated Beta setting. Numerical results show that the empirical Process (CCBP) for approximating the probability function. convergence rates match the theory, and illustrate By scalable, we mean the algorithm complexity scales lin- the superiority of our approach in handling con- early with the number of tests. However, no theoretical anal- textual features over the state-of-the-art. ysis is provided, and the approximation error saturates as the number of tests becomes large (cf., section 5.1).
    [Show full text]
  • Bias/Variance Tradeoff
    Behavioral Data Mining Lecture 2 Outline Review of Statistical Learning • Linear Regression, Nearest Neighbor Estimator, Loss • Bias-Variance Tradeoff • Naïve Bayes Classifier Statistical Learning We will follow the exposition in Hastie et al., “Statistical Learning” Variables: Qualitative (discrete): {True, False}, {Red, Green, Blue}, {1, 2, 3, 4, 5}, or latent (anonymous) factors like {F1, F2, F3, F4, F5} Quantitative (continuous): Real values ∈ ℝ, or values in an interval. e.g. height, weight, frequency,… Statistical Learning Variables will often be vectors (uppercase italic) X = (X1,…, Xn) 푋11 ⋯ 푋1푛 or m x n matrices (uppercase bold) 퐗 = ⋮ ⋱ ⋮ 푋푚1 ⋯ 푋푚푛 Observations will be written as matching lowercase, e.g. a series of observations of X would be 푥1, … , 푥푝 Estimates will be written as symbols with a hat: 푌 for a variable 푌 or 훽 for a parameter 훽. Linear Regression The predicted value of Y is given by: 푝 푌 = 훽0 + 푋푗훽푗 푗=1 and the vector of coefficients 훽 comprise the regression model. In the general case, we can have a vector output and a matrix of coefficients and write 푌 = 훽퐗 (assume 푋0 = 1). (thinking of observations as columns rather than rows will work better for matrix algorithms, i.e. 퐗 is transposed rel. to book). Statistical Learning 푋11 ⋯ 푋1푛 i.e. columns of 퐗 = ⋮ ⋱ ⋮ 푋푚1 ⋯ 푋푚푛 are distinct observations, rows of X are input features. Same for output features. Residual Sum-of-Squares To determine the model parameters 훽 from some data, we need to define an error function, like Residual Sum of Squares: 푁 2 RSS 훽 = 푦푖 − 훽푥푖 푖=1 or symbolically RSS 훽 = 퐲 − 훽퐗 푇 퐲 − 훽퐗 .
    [Show full text]
  • Package 'Naivebayes'
    Package ‘naivebayes’ March 8, 2020 Type Package Title High Performance Implementation of the Naive Bayes Algorithm Version 0.9.7 Author Michal Majka Maintainer Michal Majka <[email protected]> Description In this implementation of the Naive Bayes classifier following class conditional distribu- tions are available: Bernoulli, Categorical, Gaussian, Poisson and non-parametric representa- tion of the class conditional density estimated via Kernel Density Estimation. Implemented clas- sifiers handle missing data and can take advantage of sparse data. URL https://github.com/majkamichal/naivebayes, https://majkamichal.github.io/naivebayes/ BugReports https://github.com/majkamichal/naivebayes/issues License GPL-2 Encoding UTF-8 NeedsCompilation no VignetteBuilder knitr Suggests knitr, Matrix RoxygenNote 6.1.1 Repository CRAN Date/Publication 2020-03-08 18:20:05 UTC R topics documented: bernoulli_naive_bayes . .2 coef .............................................5 gaussian_naive_bayes . .6 get_cond_dist . .8 Infix operators . .9 multinomial_naive_bayes . 10 naivebayes . 12 1 2 bernoulli_naive_bayes naive_bayes . 13 nonparametric_naive_bayes . 18 plot.bernoulli_naive_bayes . 20 plot.gaussian_naive_bayes . 21 plot.naive_bayes . 22 plot.nonparametric_naive_bayes . 24 plot.poisson_naive_bayes . 26 poisson_naive_bayes . 27 predict.bernoulli_naive_bayes . 30 predict.gaussian_naive_bayes . 31 predict.multinomial_naive_bayes . 33 predict.naive_bayes . 34 predict.nonparametric_naive_bayes . 36 predict.poisson_naive_bayes . 38 tables . 39 Index 41
    [Show full text]
  • Language Modeling and Probability
    Chapter 1 Language modeling and probability 1.1 Introduction Which of the following is a reasonable English sentence: `I bought a rose' or `I bought arose'1? Of course the question is rhetorical. Anyone reading this text must have sufficient mastery of English to recognize that the first is good English while the second is not. Even so, when spoken the two sound the same, so a computer dictation system or speech-recognition system would have a hard time distinguishing them by sound alone. Consequently such systems employ a language model, which distinguishes the fluent (i.e., what a native English speaker would say) phrases and sentences of a particular natural language such as English from the multitude of possible sequences of words. Virtually all methods for language modeling are probabilistic in nature. That is, instead of making a categorical (yes-or-no) judgment about the fluency of a sequence of words, they return (an estimate of) the probabil- ity of the sequence. The probability of a sequence is a real number be- tween 0 and 1, and high-probability sequences are more likely to occur than low-probability ones. Thus a model that estimates the probability that a sequence of words is a phrase or sentence permits us to rank different se- quences in terms of their fluency; it can answer the question with which we started this chapter. In fact, probabilistic methods are pervasive in modern computational linguistics, and all the major topics discussed in this book involve proba- 1 c Eugene Charniak, Mark Johnson 2013 7 8 CHAPTER 1.
    [Show full text]
  • How to Count Thumb-Ups and Thumb-Downs: User-Rating Based Ranking of Items from an Axiomatic Perspective
    How to Count Thumb-Ups and Thumb-Downs: User-Rating based Ranking of Items from an Axiomatic Perspective Dell Zhang1, Robert Mao2, Haitao Li3, and Joanne Mao4 1 Birkbeck, University of London Malet Street, London WC1E 7HX, UK [email protected] 2 Microsoft Research 1 Microsoft Way, Redmond, WA 98052, USA [email protected] 3 Microsoft Corporation 1 Microsoft Way, Redmond, WA 98052, USA [email protected] 4 MNX Consulting 9833 Wilden Lane, Potomac, MD 20854, USA [email protected] Abstract. It is a common practice among Web 2.0 services to allow users to rate items on their sites. In this paper, we first point out the flaws of the popular methods for user-rating based ranking of items, and then argue that two well-known Information Retrieval (IR) tech- niques, namely the Probability Ranking Principle and Statistical Lan- guage Modelling, provide simple but effective solutions to this problem. Furthermore, we examine the existing and proposed methods in an ax- iomatic framework, and prove that only the score functions given by the Dirichlet Prior smoothing method as well as its special cases can satisfy both of the two axioms borrowed from economics. 1 Introduction Suppose that you are building a Web 2.0 service which allows users to rate items (such as commercial-products, photos, videos, songs, news-reports, and answers- to-questions) on your site, you probably want to sort items according to their user-ratings so that stuff \liked" by users would be ranked higher than those \disliked". How should you do that? What is the best way to count such thumb- ups and thumb-downs? Although this problem | user-rating based ranking of items | looks easy and occurs in numerous applications, the right solution to it is actually not very obvious.
    [Show full text]
  • Language Models
    Language Models Natural Language Processing CS 6120—Spring 2014 Northeastern University ! David Smith Predicting Language Predicting Language Predicting Language A SMALL OBLONG READING LAMP ON THE DESK Predicting Language A SMALL OBLONG READING LAMP ON THE DESK --SM----OBL----REA----------O------D--- Predicting Language A SMALL OBLONG READING LAMP ON THE DESK --SM----OBL----REA----------O------D--- What informs this prediction? Predicting Language • Optical character recognition • Automatic speech recognition • Machine translation • Spelling/grammar correction • Restoring redacted texts Scoring Language • Language identification • Text categorization • Grading essays (!) • Information retrieval Larger Contexts text1.concordance("match") Displaying 9 of 9 matches: t in the seventh heavens . Elsewhere match that bloom of theirs , ye cannot , s ey all stand before me ; and I their match . Oh , hard ! that to fire others , h , hard ! that to fire others , the match itself must needs be wasting ! What so sweet on earth -- heaven may not match it !-- as those swift glances of war end ; but hardly had he ignited his match across the rough sandpaper of his ha utting the lashing of the waterproof match keg , after many failures Starbuck c asks heaped up in him and the slow - match silently burning along towards them followed by Stubb ' s producing his match and igniting his pipe , for now a re aspect , Pip and Dough - Boy made a match , like a black pony and a white one text2.concordance("match") Displaying 15 of 15 matches: isregarded her disapprobation of the match . Mr . John Dashwood told his mother ced of it . It would be an excellent match , for HE was rich , and SHE was hand you have any reason to expect such a match ." " Don ' t pretend to deny it , be ry much .
    [Show full text]