Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2016 Azoniaspiro salts: towards bridging the gap between room-temperature ionic liquids and molten salts Matthew T. Clough,a,b Karolin Geyer,c Patricia A. Hunt,*a Alastair J. S. McIntosh,a Rebecca Rowe,a Tom Welton*a and Andrew J. P. Whitea a Department of Chemistry, Imperial College London, London, UK, SW7 2AZ, United Kingdom b Max-Planck-Institut für Kohlenforschung, 45470 Mülheim-an-der-Ruhr, Germany c BASF SE, Ludwigshafen, Germany * Corresponding Authors:
[email protected] [email protected] Electronic Supplementary Information 1. General laboratory procedures 2 2. Synthesis of ionic compounds 2 3. TGA procedures 8 4. TGA-MS procedures 9 5. TGA-GCMS procedures 9 6. X-Ray Crystallography procedures and data 10 7. Computational methods 12 8. Ion pair conformers and transition state structures 13 1 1. General laboratory procedures All reactions requiring an inert atmosphere were performed under a blanket of nitrogen gas, which was dried through a column of phosphorus pentoxide. All commercially acquired chemicals were obtained from Sigma- Aldrich or Tokyo Chemical Industry, and were used without further purification unless otherwise stated. Anhydrous solvents were dried through an HPLC column on an Innovative Technology Inc. solvent purification system. NMR spectra were recorded on Bruker Avance-400 (1H NMR (400 MHz), 13C (100 MHz), 19F (376 MHz)) NMR spectrometers. Chemical shifts are reported in ppm (relative to the DMSO-d6 residual peak). IR spectra were recorded on a Perkin Elmer spectrum 100 FTIR using an ATR inset with a diamond crystal.