Funky Mechanics Concepts

Total Page:16

File Type:pdf, Size:1020Kb

Funky Mechanics Concepts Funky Mechanics Concepts The Anti-Textbook* A work in progress. See elmichelsen.physics.ucsd.edu/ for the latest versions of the Funky Series. Please send me comments. Eric L. Michelsen constant a a (a, +d) (a+da,+d) dr (a,) constant θ (a+da,) ˆ ˆ dr = da a+d “Now in the further development of science, we want more than just a formula. First we have an observation, then we have numbers that we measure, then we have a law which summarizes all the numbers. But the real glory of science is that we can find a way of thinking such that the law is evident.” – Richard Feynman, The Feynman Lectures on Physics, p26-3. * Physical, conceptual, geometric, and pictorial physics that didn’t fit in your textbook. Please do NOT distribute this document. Instead, link to elmichelsen.physics.ucsd.edu/FunkyMechanicsConcepts.pdf. Please cite as: Michelsen, Eric L., Funky Mechanics Concepts, elmichelsen.physics.ucsd.edu/, 10/30/2018. elmichelsen.physics.ucsd.edu/ Funky Mechanics Concepts emichels at physics.ucsd.edu 2006 values from NIST. For more physical constants, see http://physics.nist.gov/cuu/Constants/ . Speed of light in vacuum c = 299 792 458 m s–1 (exact) Gravitational constant G = 6.674 28(67) x 10–11 m3 kg–1 s–2 Relative standard uncertainty ±1.0 x 10–4 Boltzmann constant k = 1.380 6504(24) x 10–23 J K–1 Stefan-Boltzmann constant σ = 5.670 400(40) x 10–8 W m–2 K–4 –6 Relative standard uncertainty ±7.0 x 10 23 –1 Avogadro constant NA, L = 6.022 141 79(30) x 10 mol Relative standard uncertainty ±5.0 x 10–8 Molar gas constant R = 8.314 472(15) J mol-1 K-1 calorie 4.184 J (exact) –31 Electron mass me = 9.109 382 15(45) x 10 kg –27 Proton mass mp = 1.672 621 637(83) x 10 kg Proton/electron mass ratio mp/me = 1836.152 672 47(80) Elementary charge e = 1.602 176 487(40) x 10–19 C Electron g-factor ge = –2.002 319 304 3622(15) Proton g-factor gp = 5.585 694 713(46) Neutron g-factor gN = –3.826 085 45(90) –28 Muon mass mμ = 1.883 531 30(11) x 10 kg Inverse fine structure constant α–1 = 137.035 999 679(94) Planck constant h = 6.626 068 96(33) x 10–34 J s Planck constant over 2π ħ = 1.054 571 628(53) x 10–34 J s –10 Bohr radius a0 = 0.529 177 208 59(36) x 10 m –26 –1 Bohr magneton μB = 927.400 915(23) x 10 J T Other values: 1 inch ≡ 0.0254 m (exact) 10/30/2018 13:29 Copyright 2002 - 2018 Eric L. Michelsen. All rights reserved. 2 of 88 elmichelsen.physics.ucsd.edu/ Funky Mechanics Concepts emichels at physics.ucsd.edu Table of Contents 1 Introduction ........................................................................................................................................... 5 Why Funky? ........................................................................................................................................ 5 How to Use This Document ................................................................................................................. 5 Notation ............................................................................................................................................... 5 Scientists of the Times ..................................................................................................................... 6 The Funky Series ................................................................................................................................. 6 Thank You ........................................................................................................................................ 7 The International System of Units (SI) ................................................................................................ 7 Possible Future Funky Mechanics Concepts .................................................................................... 8 2 Symmetries, Coordinates ...................................................................................................................... 9 Elastic Collisions ................................................................................................................................. 9 Newton’s Laws ...................................................................................................................................13 Newton’s 3rd Law Isn’t ....................................................................................................................13 It’s Got Potential: Workless Forces ....................................................................................................13 3 Rotating Stuff........................................................................................................................................15 Angular Displacements and Angular Velocity Vectors ..................................................................15 Central Forces .....................................................................................................................................15 Reduction To 1-Body ......................................................................................................................16 Effective Potential ...........................................................................................................................18 Orbits ..................................................................................................................................................19 The Easy Way to Remember Orbital Parameters ............................................................................19 Coriolis Acceleration ..........................................................................................................................20 Lagrangian for Coriolis Effect ........................................................................................................24 Mickey Mouse Physics: Parallel Axis ................................................................................................24 Moment of Inertia Tensor: 3D ............................................................................................................25 Rigid Bodies (Rotations) .................................................................................................................26 Rotating Frames ..................................................................................................................................26 Rotating Bodies vs. Rotating Axes .....................................................................................................27 4 Shorts .....................................................................................................................................................28 Friction................................................................................................................................................28 Static Friction ..................................................................................................................................28 Kinetic Friction ...............................................................................................................................28 Mathematical Formula for Static and Kinetic Friction ....................................................................28 Rolling Friction ...............................................................................................................................31 Drag .................................................................................................................................................31 Damped Harmonic Oscillator .............................................................................................................31 Critical Condition ............................................................................................................................32 Pressure ...............................................................................................................................................33 5 Intermediate Mechanics Concepts ......................................................................................................35 Generalized Coordinates .....................................................................................................................35 I Need My Space: Configuration Space, Momentum Space, and Phase Space ...............................35 Choosing Generalized Coordinates, and Finding Kinetic Energy ...................................................35 D’Alembert’s Principle .......................................................................................................................36 Lagrangian Mechanics ........................................................................................................................37 Introduction .....................................................................................................................................37 What is a Lagrangian? .....................................................................................................................38 What Is A Derivative With Respect To A Derivative? ...................................................................39 Hamilton’s Principle: A Motivated Derivation From F = ma .........................................................39 Generalizations of Hamilton’s Principle .........................................................................................41 Hamilton’s Principle of Stationary Action: A Variational Principle ...............................................43 Hamilton’s Principle: Why Isn’t “Stationary Action” an Oxymoron? ............................................44
Recommended publications
  • Vector Mechanics: Statics
    PDHOnline Course G492 (4 PDH) Vector Mechanics: Statics Mark A. Strain, P.E. 2014 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDHonline Course G492 www.PDHonline.org Table of Contents Introduction ..................................................................................................................................... 1 Vectors ............................................................................................................................................ 1 Vector Decomposition ................................................................................................................ 2 Components of a Vector ............................................................................................................. 2 Force ............................................................................................................................................... 4 Equilibrium ..................................................................................................................................... 5 Equilibrium of a Particle ............................................................................................................. 6 Rigid Bodies.............................................................................................................................. 10 Pulleys ......................................................................................................................................
    [Show full text]
  • Knowledge Assessment in Statics: Concepts Versus Skills
    Session 1168 Knowledge Assessment in Statics: Concepts versus skills Scott Danielson Arizona State University Abstract Following the lead of the physics community, engineering faculty have recognized the value of good assessment instruments for evaluating the learning of their students. These assessment instruments can be used to both measure student learning and to evaluate changes in teaching, i.e., did student-learning increase due different ways of teaching. As a result, there are significant efforts underway to develop engineering subject assessment tools. For instance, the Foundation Coalition is supporting assessment tool development efforts in a number of engineering subjects. These efforts have focused on developing “concept” inventories. These concept inventories focus on determining student understanding of the subject’s fundamental concepts. Separately, a NSF-supported effort to develop an assessment tool for statics was begun in the last year by the authors. As a first step, the project team analyzed prior work aimed at delineating important knowledge areas in statics. They quickly recognized that these important knowledge areas contained both conceptual and “skill” components. Both knowledge areas are described and examples of each are provided. Also, a cognitive psychology-based taxonomy of declarative and procedural knowledge is discussed in relation to determining the difference between a concept and a skill. Subsequently, the team decided to focus on development of a concept-based statics assessment tool. The ongoing Delphi process to refine the inventory of important statics concepts and validate the concepts with a broader group of subject matter experts is described. However, the value and need for a skills-based assessment tool is also recognized.
    [Show full text]
  • WUN2K for LECTURE 19 These Are Notes Summarizing the Main Concepts You Need to Understand and Be Able to Apply
    Duke University Department of Physics Physics 361 Spring Term 2020 WUN2K FOR LECTURE 19 These are notes summarizing the main concepts you need to understand and be able to apply. • Newton's Laws are valid only in inertial reference frames. However, it is often possible to treat motion in noninertial reference frames, i.e., accelerating ones. • For a frame with rectilinear acceleration A~ with respect to an inertial one, we can write the equation of motion as m~r¨ = F~ − mA~, where F~ is the force in the inertial frame, and −mA~ is the inertial force. The inertial force is a “fictitious” force: it's a quantity that one adds to the equation of motion to make it look as if Newton's second law is valid in a noninertial reference frame. • For a rotating frame: Euler's theorem says that the most general mo- tion of any body with respect to an origin is rotation about some axis through the origin. We define an axis directionu ^, a rate of rotation dθ about that axis ! = dt , and an instantaneous angular velocity ~! = !u^, with direction given by the right hand rule (fingers curl in the direction of rotation, thumb in the direction of ~!.) We'll generally use ~! to refer to the angular velocity of a body, and Ω~ to refer to the angular velocity of a noninertial, rotating reference frame. • We have for the velocity of a point at ~r on the rotating body, ~v = ~! ×~r. ~ dQ~ dQ~ ~ • Generally, for vectors Q, one can write dt = dt + ~! × Q, for S0 S0 S an inertial reference frame and S a rotating reference frame.
    [Show full text]
  • Classical Mechanics
    Classical Mechanics Hyoungsoon Choi Spring, 2014 Contents 1 Introduction4 1.1 Kinematics and Kinetics . .5 1.2 Kinematics: Watching Wallace and Gromit ............6 1.3 Inertia and Inertial Frame . .8 2 Newton's Laws of Motion 10 2.1 The First Law: The Law of Inertia . 10 2.2 The Second Law: The Equation of Motion . 11 2.3 The Third Law: The Law of Action and Reaction . 12 3 Laws of Conservation 14 3.1 Conservation of Momentum . 14 3.2 Conservation of Angular Momentum . 15 3.3 Conservation of Energy . 17 3.3.1 Kinetic energy . 17 3.3.2 Potential energy . 18 3.3.3 Mechanical energy conservation . 19 4 Solving Equation of Motions 20 4.1 Force-Free Motion . 21 4.2 Constant Force Motion . 22 4.2.1 Constant force motion in one dimension . 22 4.2.2 Constant force motion in two dimensions . 23 4.3 Varying Force Motion . 25 4.3.1 Drag force . 25 4.3.2 Harmonic oscillator . 29 5 Lagrangian Mechanics 30 5.1 Configuration Space . 30 5.2 Lagrangian Equations of Motion . 32 5.3 Generalized Coordinates . 34 5.4 Lagrangian Mechanics . 36 5.5 D'Alembert's Principle . 37 5.6 Conjugate Variables . 39 1 CONTENTS 2 6 Hamiltonian Mechanics 40 6.1 Legendre Transformation: From Lagrangian to Hamiltonian . 40 6.2 Hamilton's Equations . 41 6.3 Configuration Space and Phase Space . 43 6.4 Hamiltonian and Energy . 45 7 Central Force Motion 47 7.1 Conservation Laws in Central Force Field . 47 7.2 The Path Equation .
    [Show full text]
  • Relativistic Dynamics
    Chapter 4 Relativistic dynamics We have seen in the previous lectures that our relativity postulates suggest that the most efficient (lazy but smart) approach to relativistic physics is in terms of 4-vectors, and that velocities never exceed c in magnitude. In this chapter we will see how this 4-vector approach works for dynamics, i.e., for the interplay between motion and forces. A particle subject to forces will undergo non-inertial motion. According to Newton, there is a simple (3-vector) relation between force and acceleration, f~ = m~a; (4.0.1) where acceleration is the second time derivative of position, d~v d2~x ~a = = : (4.0.2) dt dt2 There is just one problem with these relations | they are wrong! Newtonian dynamics is a good approximation when velocities are very small compared to c, but outside of this regime the relation (4.0.1) is simply incorrect. In particular, these relations are inconsistent with our relativity postu- lates. To see this, it is sufficient to note that Newton's equations (4.0.1) and (4.0.2) predict that a particle subject to a constant force (and initially at rest) will acquire a velocity which can become arbitrarily large, Z t ~ d~v 0 f ~v(t) = 0 dt = t ! 1 as t ! 1 . (4.0.3) 0 dt m This flatly contradicts the prediction of special relativity (and causality) that no signal can propagate faster than c. Our task is to understand how to formulate the dynamics of non-inertial particles in a manner which is consistent with our relativity postulates (and then verify that it matches observation, including in the non-relativistic regime).
    [Show full text]
  • OCC D 5 Gen5d Eee 1305 1A E
    this cover and their final version of the extended essay to is are not is chose to write about applications of differential calculus because she found a great interest in it during her IB Math class. She wishes she had time to complete a deeper analysis of her topic; however, her busy schedule made it difficult so she is somewhat disappointed with the outcome of her essay. It was a pleasure meeting with when she was able to and her understanding of her topic was evident during our viva voce. I, too, wish she had more time to complete a more thorough investigation. Overall, however, I believe she did well and am satisfied with her essay. must not use Examiner 1 Examiner 2 Examiner 3 A research 2 2 D B introduction 2 2 c 4 4 D 4 4 E reasoned 4 4 D F and evaluation 4 4 G use of 4 4 D H conclusion 2 2 formal 4 4 abstract 2 2 holistic 4 4 Mathematics Extended Essay An Investigation of the Various Practical Uses of Differential Calculus in Geometry, Biology, Economics, and Physics Candidate Number: 2031 Words 1 Abstract Calculus is a field of math dedicated to analyzing and interpreting behavioral changes in terms of a dependent variable in respect to changes in an independent variable. The versatility of differential calculus and the derivative function is discussed and highlighted in regards to its applications to various other fields such as geometry, biology, economics, and physics. First, a background on derivatives is provided in regards to their origin and evolution, especially as apparent in the transformation of their notations so as to include various individuals and ways of denoting derivative properties.
    [Show full text]
  • Time-Derivative Models of Pavlovian Reinforcement Richard S
    Approximately as appeared in: Learning and Computational Neuroscience: Foundations of Adaptive Networks, M. Gabriel and J. Moore, Eds., pp. 497–537. MIT Press, 1990. Chapter 12 Time-Derivative Models of Pavlovian Reinforcement Richard S. Sutton Andrew G. Barto This chapter presents a model of classical conditioning called the temporal- difference (TD) model. The TD model was originally developed as a neuron- like unit for use in adaptive networks (Sutton and Barto 1987; Sutton 1984; Barto, Sutton and Anderson 1983). In this paper, however, we analyze it from the point of view of animal learning theory. Our intended audience is both animal learning researchers interested in computational theories of behavior and machine learning researchers interested in how their learning algorithms relate to, and may be constrained by, animal learning studies. For an exposition of the TD model from an engineering point of view, see Chapter 13 of this volume. We focus on what we see as the primary theoretical contribution to animal learning theory of the TD and related models: the hypothesis that reinforcement in classical conditioning is the time derivative of a compos- ite association combining innate (US) and acquired (CS) associations. We call models based on some variant of this hypothesis time-derivative mod- els, examples of which are the models by Klopf (1988), Sutton and Barto (1981a), Moore et al (1986), Hawkins and Kandel (1984), Gelperin, Hop- field and Tank (1985), Tesauro (1987), and Kosko (1986); we examine several of these models in relation to the TD model. We also briefly ex- plore relationships with animal learning theories of reinforcement, including Mowrer’s drive-induction theory (Mowrer 1960) and the Rescorla-Wagner model (Rescorla and Wagner 1972).
    [Show full text]
  • Classical Mechanics - Wikipedia, the Free Encyclopedia Page 1 of 13
    Classical mechanics - Wikipedia, the free encyclopedia Page 1 of 13 Classical mechanics From Wikipedia, the free encyclopedia (Redirected from Newtonian mechanics) In physics, classical mechanics is one of the two major Classical mechanics sub-fields of mechanics, which is concerned with the set of physical laws describing the motion of bodies under the Newton's Second Law action of a system of forces. The study of the motion of bodies is an ancient one, making classical mechanics one of History of classical mechanics · the oldest and largest subjects in science, engineering and Timeline of classical mechanics technology. Branches Classical mechanics describes the motion of macroscopic Statics · Dynamics / Kinetics · Kinematics · objects, from projectiles to parts of machinery, as well as Applied mechanics · Celestial mechanics · astronomical objects, such as spacecraft, planets, stars, and Continuum mechanics · galaxies. Besides this, many specializations within the Statistical mechanics subject deal with gases, liquids, solids, and other specific sub-topics. Classical mechanics provides extremely Formulations accurate results as long as the domain of study is restricted Newtonian mechanics (Vectorial to large objects and the speeds involved do not approach mechanics) the speed of light. When the objects being dealt with become sufficiently small, it becomes necessary to Analytical mechanics: introduce the other major sub-field of mechanics, quantum Lagrangian mechanics mechanics, which reconciles the macroscopic laws of Hamiltonian mechanics physics with the atomic nature of matter and handles the Fundamental concepts wave-particle duality of atoms and molecules. In the case of high velocity objects approaching the speed of light, Space · Time · Velocity · Speed · Mass · classical mechanics is enhanced by special relativity.
    [Show full text]
  • Lie Time Derivative £V(F) of a Spatial Field F
    Lie time derivative $v(f) of a spatial field f • A way to obtain an objective rate of a spatial tensor field • Can be used to derive objective Constitutive Equations on rate form D −1 Definition: $v(f) = χ? Dt (χ? (f)) Procedure in 3 steps: 1. Pull-back of the spatial tensor field,f, to the Reference configuration to obtain the corresponding material tensor field, F. 2. Take the material time derivative on the corresponding material tensor field, F, to obtain F_ . _ 3. Push-forward of F to the Current configuration to obtain $v(f). D −1 Important!|Note that the material time derivative, i.e. Dt (χ? (f)) is executed in the Reference configuration (rotation neutralized). Recall that D D χ−1 (f) = (F) = F_ = D F Dt ?(2) Dt v d D F = F(X + v) v d and hence, $v(f) = χ? (DvF) Thus, the Lie time derivative of a spatial tensor field is the push-forward of the directional derivative of the corresponding material tensor field in the direction of v (velocity vector). More comments on the Lie time derivative $v() • Rate constitutive equations must be formulated based on objective rates of stresses and strains to ensure material frame-indifference. • Rates of material tensor fields are by definition objective, since they are associated with a frame in a fixed linear space. • A spatial tensor field is said to transform objectively under superposed rigid body motions if it transforms according to standard rules of tensor analysis, e.g. A+ = QAQT (preserves distances under rigid body rotations).
    [Show full text]
  • Rotating Reference Frame Control of Switched Reluctance
    ROTATING REFERENCE FRAME CONTROL OF SWITCHED RELUCTANCE MACHINES A Thesis Presented to The Graduate Faculty of The University of Akron In Partial Fulfillment of the Requirements for the Degree Master of Science Tausif Husain August, 2013 ROTATING REFERENCE FRAME CONTROL OF SWITCHED RELUCTANCE MACHINES Tausif Husain Thesis Approved: Accepted: _____________________________ _____________________________ Advisor Department Chair Dr. Yilmaz Sozer Dr. J. Alexis De Abreu Garcia _____________________________ _____________________________ Committee Member Dean of the College Dr. Malik E. Elbuluk Dr. George K. Haritos _____________________________ _____________________________ Committee Member Dean of the Graduate School Dr. Tom T. Hartley Dr. George R. Newkome _____________________________ Date ii ABSTRACT A method to control switched reluctance motors (SRM) in the dq rotating frame is proposed in this thesis. The torque per phase is represented as the product of a sinusoidal inductance related term and a sinusoidal current term in the SRM controller. The SRM controller works with variables similar to those of a synchronous machine (SM) controller in dq reference frame, which allows the torque to be shared smoothly among different phases. The proposed controller provides efficient operation over the entire speed range and eliminates the need for computationally intensive sequencing algorithms. The controller achieves low torque ripple at low speeds and can apply phase advancing using a mechanism similar to the flux weakening of SM to operate at high speeds. A method of adaptive flux weakening for ensured operation over a wide speed range is also proposed. This method is developed for use with dq control of SRM but can also work in other controllers where phase advancing is required.
    [Show full text]
  • Principle of Relativity and Inertial Dragging
    ThePrincipleofRelativityandInertialDragging By ØyvindG.Grøn OsloUniversityCollege,Departmentofengineering,St.OlavsPl.4,0130Oslo, Norway Email: [email protected] Mach’s principle and the principle of relativity have been discussed by H. I. HartmanandC.Nissim-Sabatinthisjournal.Severalphenomenaweresaidtoviolate the principle of relativity as applied to rotating motion. These claims have recently been contested. However, in neither of these articles have the general relativistic phenomenonofinertialdraggingbeeninvoked,andnocalculationhavebeenoffered byeithersidetosubstantiatetheirclaims.HereIdiscussthepossiblevalidityofthe principleofrelativityforrotatingmotionwithinthecontextofthegeneraltheoryof relativity, and point out the significance of inertial dragging in this connection. Although my main points are of a qualitative nature, I also provide the necessary calculationstodemonstratehowthesepointscomeoutasconsequencesofthegeneral theoryofrelativity. 1 1.Introduction H. I. Hartman and C. Nissim-Sabat 1 have argued that “one cannot ascribe all pertinentobservationssolelytorelativemotionbetweenasystemandtheuniverse”. They consider an UR-scenario in which a bucket with water is atrest in a rotating universe,andaBR-scenariowherethebucketrotatesinanon-rotatinguniverseand givefiveexamplestoshowthatthesesituationsarenotphysicallyequivalent,i.e.that theprincipleofrelativityisnotvalidforrotationalmotion. When Einstein 2 presented the general theory of relativity he emphasized the importanceofthegeneralprincipleofrelativity.Inasectiontitled“TheNeedforan
    [Show full text]
  • Newtonian Mechanics Is Most Straightforward in Its Formulation and Is Based on Newton’S Second Law
    CLASSICAL MECHANICS D. A. Garanin September 30, 2015 1 Introduction Mechanics is part of physics studying motion of material bodies or conditions of their equilibrium. The latter is the subject of statics that is important in engineering. General properties of motion of bodies regardless of the source of motion (in particular, the role of constraints) belong to kinematics. Finally, motion caused by forces or interactions is the subject of dynamics, the biggest and most important part of mechanics. Concerning systems studied, mechanics can be divided into mechanics of material points, mechanics of rigid bodies, mechanics of elastic bodies, and mechanics of fluids: hydro- and aerodynamics. At the core of each of these areas of mechanics is the equation of motion, Newton's second law. Mechanics of material points is described by ordinary differential equations (ODE). One can distinguish between mechanics of one or few bodies and mechanics of many-body systems. Mechanics of rigid bodies is also described by ordinary differential equations, including positions and velocities of their centers and the angles defining their orientation. Mechanics of elastic bodies and fluids (that is, mechanics of continuum) is more compli- cated and described by partial differential equation. In many cases mechanics of continuum is coupled to thermodynamics, especially in aerodynamics. The subject of this course are systems described by ODE, including particles and rigid bodies. There are two limitations on classical mechanics. First, speeds of the objects should be much smaller than the speed of light, v c, otherwise it becomes relativistic mechanics. Second, the bodies should have a sufficiently large mass and/or kinetic energy.
    [Show full text]