Energy Constraints on Parameterized Models

Total Page:16

File Type:pdf, Size:1020Kb

Energy Constraints on Parameterized Models ~ Computer Graphics, Volume 21, Number 4, July 1987 ] Energy Constraints On Parameterized Models Andrew Witkin~ Kurt Fleischer~ Alan Barr~t ~Schlumberger Palo Alto Research, 3340 Hillview Avenue, Palo Alto, CA 94304 :~California Institute of Technology, Pasadena, CA 91125 Abstract of constraints the properties the model is supposed to have, without the need to manually adjust parameters to give it A simple but general approach to imposing and solving those properties. geometric constraints on parameterized models is intro- In this paper we present a simple but general ap- duced, applicable to animation as well as model construc- proach to expressing and solving constraints on param- tion. Constraints are expressed as energy functions, and eterized model hierarchies. We formulate constraints as the energy gradient followed through the model's parame- "energy" functions on the model's parameter space, non- ter space. Intuitively, energy constraints behave like forces negative functions with zeroes at points satisfying the con- that pull and parametrically deform the parts of the model straints. We then sum the constraints' energy functions to into place. A wide variety of geonmtric constraints are create a single scalar function of the parameters, and move amenable to this formulation, and may be used to influ- through parameter space to minimize the energy. ence arbitrary model parameters. A catalogue of basic We refer to the constraint functions as energy func- constraints is presented, and results are shown. tions not because they always model the energy of ac- tual physical systems, but because they play a role similar Keywords -- Constraints, Modeling, Animation to that of physical energy fimctions during the constraint solving process. For example, an energy constraint attach- I. Introduction ing points on the surfaces of two objects acts much like a A widely-used approach to modeling is to combine geo- spring that pulls the objects together. However, in addi- metric primitives--such as cylinders, blocks, and bicubic tion to translating and rotating, the objects are free to vary patches--with a variety of operators--such as translations, their internal parameters, so, for example, a cylinder may rotations, booleans, and deformatlons--to form a model vary its length or radius to meet the constraint. Although hierarchy. The task of constructing a model within this no fanfiliar physical material deforms in this stylized way framework has two parts: building the hierarchy, and set- in response to applied forces, it is easy enough to imag- ting the internal parameters of the prinfitives and opera- ine an unphysic&l material that does. Since we are using tors. Experience tells us that the second task is usually the energy analogy as a mechanism for building models, by far the more diflqcult and time-consuming, particularly rather than for sinm|ating physical phenomena, this kind when complex operators such as deformations are used. As of non-physical behavior poses no problem. the complexity of the model increases, the number of pa- Our approach provides: rameters becomes large, and they tend to interact in ways • Self.assembling models, whose parts move and deform that make the model difficult to control. parametrically from an ilfitial configuration to one The user knows at the outset what the objects be- that satisfies the specified constraints. ing modeled are supposed to look like--how the pieces are supposed to fit together and move. The difficulty lies in • Animated models that, once assembled, may move in response to time-varying constraints while continuing finding settings of the parameters that achieve the desired effect. The utihty of hierarchic modefing systems would to satisfy static ones. be greatly enhanced if this tedious process could be per- • Oenerality and modularity: we can formulate a wide formed automatically, permitting the user to state in terms range of constraints as energy functions, and use them to influence arbitrary model parameters. To imple- Permission to copy without fee all or part of this material is granted ment a new constraint we need not know the details of provided that the copies are not made or distributed for direct other constraints, nor of the primitives and operators commercial advantage, the ACM copyright notice and the title of the to wtfich they will be applied. Sinfilarly, new parame- publication and its date appear, and notice is given that copying is by terized prinfitives and operators may be implemented permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. without modifying existing constraints. • Additivity: Energy fimctions compose by addition. The solution to a system of constraints is the so- © 1987 ACM-O-89791-227-6/87 /O07/0225 $00.75 225 ~'~~ SIGGRAPH '87, Anaheim, July 27-31, 1987 lution to a single equation, the sum of the energy condition we must satisfy is Pl = P2- A solution is a value terms. This property is particularly valuable in deal- of ~ such that all the imposed conditions are met. ing with overdetermined systems. While conventional Rather than solving the constraint equations alge- algebraic methods return no solution to an overdeter- braically, we formulate constraints as energy fimctions, and nfined system, the energy minimum is a "compronaise" move through parameter space according to the energy that is sometimes acceptable, nearly always informa- gradient. In general, to formulate an energy constraint, tive, and often easily repaired. we must construct a non-negative smooth function E('I') such that E((P) = 0 at all and olrly values of 'I' for which • Interactive control: since we satisfy constraints by the constraint is satisfied. The solutions to a set of n con- moving ttlrough a curve in parameter space, the initial straints are values of • such that constraint solving process can itself be animated, per- nfitting the user to assist the solver in escaping local it energy minima, resolving ambiguities, etc. E(~) y~ E,(~) o, i A significant body of work in constraint-based and dy- uanlics modeling for colnputer graphics is concerned with so to combine constraints, the corresponding energy terms the the specialized problem of animating articulated bod- are simply summed. We are free to express E in terms of ies, particularly hmnan and animal forms. These include position, normal, or implicit functions, or any other quan- Armstrong and Green, [1], Girard and Maciejewski, [6], tities that may be extracted from the model tree. and Wilhehns and Barksy [13]. Nelson's Juno editor em- Intuitively, energy constraints may be viewed as ploys non-linear geometric constraints in the context of a "forces" ttlat pull the parts of the model into the desired 2-D image editor. Dynanffc models of elastic bodies for configuration and hold them there, although they are not computer graphics are treated by Terzopoulos et al. in necessarily intended to be physically realistic forces. For [12]. Closest to ours in approach are Barzel and Barr's dy- instance, a simple attachment constraint nffght be imple- nauric constraints [3], although their current work focuses mented as a spring connecting the points, in which case we on constraining ttle motion of rigid bodies. have E.,,,.;,~,, = ,~ IP~(u~,v~) - ~(~2,w_)l-", II. Energy constraints where ~ is a spring constant, and the "force" vector in parameter space is ~TE.p,.i,,j. A model hierarchy is a tree that defines the model's geom- From an initial condition @0, the energy E is mini- etry through a collection of mathematical functions, three mized by numerically solving the differential equation of wlffch will concern us here. These are a parametric posi- tion function, la(u, v) that returns a 3-space point for each dF(t)/dt- rE, F(0) = ~0, (u,v) pair, a surface normalfunction, N(u,v), that returns a surface normal vector, and an irttplicit or inside-outside for a fixed point of the parameter-space curve F(t), i.e. a point at wtffch VE = 0. The solution is a local mini- function, I(X), that returns a scalar given a 3-space point, mum, Mthough it is not guaranteed to be a zero. Tiffs is such that I = 0 for points on the object's surface, I < 0 for a steepest descent method for solving ~TE - 0. points inside the object, and 1 > 0 for points outside the A variety of standard numerical methods may be used object. One such collection of functions is defined for each to solve the energy equation. The simplest of these, Euler's leaf iu the tree, and represents tile combined effects of the method, has prinfitive at the leaf and of all the operators on the path F(~;~I) - F(t) + h~TE, from that leaf to the root. Defiuitions of these functions are given in Appendix A. with h the step size. More sophisticated methods, such In generM, each primitive or operator possesses some as Gear's method [5] should be used to obtain accurate, real-valued paraineters, for instance the radius of a sphere, reliable results. Any solution method requires evaluation a translation vector, or the bend angle of a parameterized of ~TE. To do so, the suunned energy must be differenti- deformation. The position, normal and implicit functions ated with respect to each model parameter, which may be each depend on these parameters: when they change, ob- done numerically by varying each parameter in turn, re- jects' surfaces move. We refer to the union of all these evaluating E, and taking differences. The structure of the parameters as ~I'. Once the hierarchic structure is fixed, tree may be used to avoid the needless expense of differen- the state of the model is completely determined by the tiating energy terms with respect to parameters on which v.-fiue of ~I'.
Recommended publications
  • Using Particles to Sample and Control Implicit Surfaces
    Using Particles to Sample and Control Implicit Surfaces Andrew P. Witkin Paul S. Heckbert Department of Computer Science Carnegie Mellon University Abstract In this paper, we present a new particle-based approach to sam- We present a new particle-based approach to sampling and con- pling and shape control of implicit surfaces that addresses these trolling implicit surfaces. A simple constraint locks a set of particles problems. At the heart of our approach is a simple constraint that onto a surface while the particles and the surface move. We use the locks a collection of particles onto an implicit surface while both constraint to make surfaces follow particles, and to make particles the particles and the surface move. We can use the constraint to follow surfaces. We implement control points for direct manipula- make the surface follow the particles, or to make the particles follow tion by specifying particle motions, then solving for surface motion the surface. Our formulation is differential: we specify and solve that maintains the constraint. For sampling and rendering, we run the for velocities rather than positions, and the behavior of the system constraint in the other direction, creating floater particles that roam is governed by differential equations that integrate these velocities freely over the surface. Local repulsion is used to make floaters over time. spread evenly across the surface. By varying the radius of repulsion We control surface shape by moving particles interactively, solv- adaptively, and fissioning or killing particles based on the local den- ing for surface motion that keeps the particles on the surface.
    [Show full text]
  • Large Steps in Cloth Simulation David Baraff Andrew Witkin
    SIGGRAPH 98, Orlando, July 19±24 COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1998 Large Steps in Cloth Simulation David Baraff Andrew Witkin Robotics Institute Carnegie Mellon University Abstract tion of xÐyields the cloth's internal energy, and F (a function of x and x) describes other forces (air-drag, contact and constraint forces, The bottle-neck in most cloth simulation systems is that time steps internal˙ damping, etc.) acting on the cloth. must be small to avoid numerical instability. This paper describes In this paper, we describe a cloth simulation system that is much a cloth simulation system that can stably take large time steps. The faster than previously reported simulation systems. Our system's simulation system couples a new technique for enforcing constraints faster performance begins with the choice of an implicit numerical on individual cloth particles with an implicit integration method. integration method to solve equation (1). The reader should note The simulator models cloth as a triangular mesh, with internal cloth that the use of implicit integration methods in cloth simulation is far forces derived using a simple continuum formulation that supports from novel: initial work by Terzopoulos et al. [15, 16, 17] applied modeling operations such as local anisotropic stretch or compres- such methods to the problem.1 Since this time though, research on sion; a uni®ed treatment of damping forces is included as well. The cloth simulation has generally relied on explicit numerical integra- implicit integration method generates a large, unbanded sparse lin- tion (such as Euler's method or Runge-Kutta methods) to advance ear system at each time step which is solved using a modi®ed con- the simulation, or, in the case of of energy minimization, analogous jugate gradient method that simultaneously enforces particles' con- methods such as steepest-descent [3, 10].
    [Show full text]
  • Physically Based Modeling: Principles and Practice
    Physically Based Modeling: Principles and Practice Co-Chairs: David Baraff and Andrew Witkin Carnegie Mellon University In recent years, physically based modeling has emerged as an important new approach to com- puter animation and computer graphics modeling. Although physically based modeling is in- herently a mathematical subject, the math involved needn't be any more difficult nor esoteric than the math that underlies many other areas of computer graphics, such as ray tracing or sur- face modeling. Many papers on the subject have presupposed a specialized mathematical background that many members of the computer graphics community lack. Consequently, many capable computer graphics practitioners, despite their interest in the subject, have simply been put off by the density of the math. This course course addresses the need to make the principles and methods of physically based modeling accessible to a broader computer graphics audience—those who are familiar with mainstream computer graphics and have the usual basic computer graphics math, such as vec- tor/matrix manipulations, but whose first year calculus course may be only dimly remembered. The course is divided into two broad sections: A series of five lectures that together form a systematic exposition of the core technical content; and a pair of lectures that discuss produc- tion experience with physically based modeling techniques. For updates and additional information, see http://www.cs.cmu.edu/~baraff/sigcourse SIGGRAPH ’97 COURSE NOTES A1 PHYSICALLY BASED MODELING Course Schedule 8:30 am Introduction 8:45 am Differential Equation Basics Witkin 9:30 am Particle Dynamics Witkin 10:15 am Break 10:30 pm Rigid Body Dynamics Baraff 11:15 am Implicit Methods Baraff 12:00 pm Lunch 1:30 pm Dynamics in Feature Animation Blum/Thumrogoti 2:30 pm Constrained Dynamcs Witkin/Baraff 3:45 pm Break 4:00 pm Dynamics software Monheit 5:00 pm End SIGGRAPH ’97 COURSE NOTES A2 PHYSICALLY BASED MODELING Course Speakers Andrew Witkin is a Professor of Computer Science and Robotics at Carnegie Mellon Univer- sity.
    [Show full text]
  • Physically Based Modeling: Principles and Practice Particle System Dynamics
    Physically Based Modeling: Principles and Practice Particle System Dynamics Andrew Witkin Robotics Institute Carnegie Mellon University Please note: This document is 1997 by Andrew Witkin. This chapter may be freely duplicated and distributed so long as no consideration is received in return, and this copyright notice remains intact. Particle System Dynamics Andrew Witkin School of Computer Science Carnegie Mellon University 1 Introduction Particles are objects that have mass, position, and velocity, and respond to forces, but that have no spatial extent. Because they are simple, particles are by far the easiest objects to simulate. Despite their simplicity, particles can be made to exhibit a wide range of interesting behavior. For example, a wide variety of nonrigid structures can be built by connecting particles with simple damped springs. In this portion of the course we cover the basics of particle dynamics, with an emphasis on the requirements of interactive simulation. 2 Phase Space The motion of a Newtonian particle is governed by the familiar f = ma, or, as we will write it here, x¨ = f/m. This equation differs from the canonical ODE developed in the last chapter because it involves a second time derivative, making it a second order equation. To handle a second order ODE, we convert it to a first-order one by introducing extra variables. Here we create a variable v to represent velocity, giving us a pair of coupled first-order ODE’s v˙ = f/m, x˙ = v. The position and velocity x and v can be concatenated to form a 6-vector. This position/velocity product space is called phase space.
    [Show full text]
  • Through-The-Lens Camera Control
    Through-the-Lens Camera Control Michael Gleicher and Andrew Witkin School of Computer Science Carnegie Mellon University Pittsburgh, PA g fgleicher|witkin @cs.cmu.edu Abstract a great degree as alternative slicings of the same projective pie. In this paper we introduce through-the-lens camera con- How important is the choice of the camera model's pa- trol, a body of techniques that permit a user to manipulate rameterization? Very important, if the parameters are to a virtual camera by controlling and constraining features serve directly as the controls for interaction and keyframe in the image seen through its lens. Rather than solving interpolation. For example, the popular LOOKAT- for camera parameters directly, constrained optimization /LOOKFROM/VUP parameterization makes it easy to is used to compute their time derivatives based on desired hold a world-space point centered in the image as the changes in user-de®ned controls. This effectively permits camera moves without tilting. To do the same by man- new controls to be de®ned independent of the underlying ually controlling generic translation/rotation parameters parameterization. The controls can also serve as con- would be all but hopeless in practice, although possible in straints, maintaining their values as others are changed. principle. We describe the techniques in general and work through a detailed example of a speci®c camera model. Our im- The dif®culty with using camera parameters directly as controls is that no single parameterization can be ex- plementation demonstrates a gallery of useful controls and constraints and provides some examples of how these may pected to serve all needs.
    [Show full text]
  • Universit`A Degli Studi Di Parma Automatic
    UNIVERSITA` DEGLI STUDI DI PARMA DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE Dottorato di Ricerca in Tecnologie dell’Informazione XXVI Ciclo Pablo Mesejo Santiago AUTOMATIC SEGMENTATION OF ANATOMICAL STRUCTURES USING DEFORMABLE MODELS AND BIO-INSPIRED/SOFT COMPUTING DISSERTAZIONE PRESENTATA PER IL CONSEGUIMENTO DEL TITOLO DI DOTTORE DI RICERCA Gennaio 2014 UNIVERSITA` DEGLI STUDI DI PARMA DOTTORATO DI RICERCA IN TECNOLOGIE DELL’INFORMAZIONE XXVI Ciclo AUTOMATIC SEGMENTATION OF ANATOMICAL STRUCTURES USING DEFORMABLE MODELS AND BIO-INSPIRED/SOFT COMPUTING Coordinatore: Chiar.mo. Prof. Marco Locatelli Relatore: Chiar.mo. Prof. Stefano Cagnoni Autore: Pablo Mesejo Santiago Gennaio 2014 Dedicated to my mother and Sofia, with gratitude, respect and admiration. Contents Abstract 9 1 Introduction 10 Part I: Fundamentals 16 2 Theoretical Background 17 2.1 Medical Image Segmentation . 17 2.2 Deformable Models . 20 Parametric Deformable Models . 21 Geometric Deformable Models . 23 2.3 Medical Image Registration . 27 2.4 Texture and Gray Level Co-Occurrence Matrix . 29 2.5 Soft Computing . 31 Metaheuristics . 34 Classification problems . 44 3 Datasets 47 3.1 Medical Imaging . 47 iii CONTENTS iv 3.2 Microscopy Images . 49 3.3 Computed Tomography Images . 52 3.4 Magnetic Resonance Images . 53 4 Medical Image Segmentation using DMs and SC 62 4.1 Statistical Shape Models . 67 4.2 Level Set Methods . 81 Part II: Proposed Methods 90 5 Hippocampus Segmentation using ASMs and RF 93 5.1 Histological Images and Hippocampus . 93 5.2 DE-based hippocampus localization . 98 Best Reference Slice Selection . 98 Hippocampus Localization . 102 Target Function . 104 Experimental Results . 107 5.3 Segmentation using Iterative Otsu’s Thresholding Method and RF .
    [Show full text]
  • Procedural Representations for Computer Animation
    Encapsulated Models: Procedural Representations for Computer Animation DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Stephen Forrest May, B.S., M.S. ***** The Ohio State University 1998 Dissertation Committee: Approved by Prof. Wayne E. Carlson, Adviser Prof. Richard E. Parent Adviser Prof. Neelam Soundarajan Department of Computer and Prof. Charles A. Csuri Information Science MANY PAGES DISCARDED 1.1.2 Historical Development of Computer Animation Systems Traditionally, animation systems have neatly filed themselves into one of two distinctly different classifications: scripting and interactive. Modern systems still can be classified in this manner, although increasingly the distinction between the two classifications is being blurred. 16 1.1.2.1 Scripting Systems The first computer animations were produced by writing programs to generate the an- imation using general purpose programming languages (e.g., Fortran). General purpose languages are flexible and inherently allow programmers to take advantage of conventional programming mechanisms (e.g., variables, subroutines, conditional statement execution, it- eration) and techniques (e.g., structured programming, object-oriented design, recursion) to produce animation. The main disadvantage of this approach is that many elements needed to generate animations (e.g., specifying geometric shapes, building hierarchies, generating output for renderers, applying transformations to objects) have to be reimplemented for each animation. The amount of work required to provide the underlying framework can easily outweigh the programming needed that is unique to the production of the animation task at hand. In response to the problems of using general purpose programming languages, re- searchers developed specialized programming languages, procedural animation languages, designed for the task of computer animation [30, 47, 60, 64, 65, 80, 104, 111, 113].
    [Show full text]
  • Physically Based Modeling: Principles and Practice Constrained Dynamics
    Physically Based Modeling: Principles and Practice Constrained Dynamics Andrew Witkin Robotics Institute Carnegie Mellon University Please note: This document is 1997 by Andrew Witkin. This chapter may be freely duplicated and distributed so long as no consideration is received in return, and this copyright notice remains intact. Constrained Dynamics Andrew Witkin School of Computer Science Carnegie Mellon University 1 Beyond penalty methods The idea of constrained particle dynamics is that our description of the system includes not only particles and forces, but restrictions on the way the particles are permitted to move. For example, we might constrain a particle to move along a specified curve, or require two particles to remain a specified distance apart. The problem of constrained dynamics is to make the particles obey Newton’s laws, and at the same time obey the geometric constraints. As we learned earlier, energy functions provide a sloppy, approximate constraint mechanism. A spring with rest length r makes the particles it connects “want” to be distance r apart. How- ever, the spring force competes with all other forces acting on the particles—gravity, other springs, forces applied by the user, etc. The constraint can only win this tug-of-war if its spring constant is large enough to overpower all competing influences, so that very small displacements induce large restoring forces. As we saw in the last section, this is really no solution because it gives rise to stiff differential equations which are all but numerically intractible. The use of extra energy terms to impose constraints is known as the penalty method.
    [Show full text]
  • Helping Artists Create Digital Music Videos Using Spacetime Constraints
    HELPING ARTISTS CREATE DIGITAL MUSIC VIDEOS USING SPACETIME CONSTRAINTS A Thesis In TCC 402 Presented to The Faculty of the School of Engineering and Applied Science University of Virginia In Partial Fulfillment of the Requirements for the Degree Bachelor of Science in Computer Science by John Middleton Rhoads March 25, 2002 On my honor as a University student, on this assignment I have neither given nor received unauthorized aid as defined by the Honor Guidelines for Papers in TCC Courses. John Middleton Rhoads Approved __________________________________ Date____________ Technical Advisor—Dave Brogan Approved______________________________________ Date______________ Technical Advisor—Bryan Pfaffenberger Preface As a double major in computer science and music my interest in this project is natural. I am quite interested in using my skills as a computer scientist to aid musicians in any way possible, and this project is an attempt to create a tool that will do just that. My secondary goal in taking on this project was to enable future students to more easily understand how to use spacetime constraints. The literature that currently exists on the subject is either organized poorly, or does not give enough detail to allow a skilled programmer to implement a spacetime constraints system without an extended amount of outside research. It is my goal to make this method accessible to more people in the hope that this powerful tool will be used more frequently. I’d like to take this opportunity to thank some of the people that made this project possible. My TCC advisors, Bryan Pfaffenberger and Helen Benet-Goodman, were of great help with the writing and organization of this paper.
    [Show full text]
  • Physically Based Modeling
    Physically Based Modeling Course Organizer David Baraff Pixar Animation Studios Physically based modeling has become an important new approach to computer animation and computer graphics modeling. Although physically based modeling is inherently a mathematical subject, the math in- volved needn’t be any more difficult nor esoteric than the math that underlies many other areas of computer graphics, such as ray tracing or surface modeling. Many papers on the subject have presupposed a special- ized mathematical background that many members of the computer graphics community lack. Consequently, many capable computer graphics practitioners, despite their interest in the subject, have simply been put off by the density of the math. This course addresses the need to make the principles and methods of physically based modeling accessible to a broader computer graphics audience—those who are familiar with mainstream computer graphics and have the usual basic computer graphics math, such as vector/matrix manipulations, but whose first year cal- culus course may be only dimly remem-bered. Course topics include modeling the dynamics of particle systems and rigid bodies, basic numerical methods for differential equations, simulation of deformable surfaces, collision detection, modeling energy functions and hard constraints, and the dynamics of collision and contact. SIGGRAPH ’99 COURSE NOTES A1 PHYSICALLY BASED MODELING Course Schedule 8:30 am Introduction 8:45 am Differential Equation Basics Witkin Vector fields and integral curves; initial value problems; basic numerical methods; modular implementation of differential equation solvers. 9:30 am Particle Dynamics Witkin F=ma; phase space; basic forces: gravity, drag, springs, etc. Simple particle colli- sions; structured implementation of interactive mass-and-spring systems.
    [Show full text]
  • Lecture-6-SIFT.Pdf
    CAP 5415 Computer Vision Dr. Mubarak Shah Univ. of Central Florida Lecture-6 SIFT: Detector and Descriptor SIFT: David Lowe, UBC Cited by 25688 SIFT - Key Point Extraction Stands for Scale Invariant Feature Transform Patented by university of British Columbia Similar to the one used in primate visual system (human, ape, monkey, etc.) Transforms image data into scale- invariant coordinates D. Lowe. Distinctive image features from scale-invariant key points., International Journal of Computer Vision 2004. Goal Extract distinctive invariant features Correctly matched against a large database of features from many images Invariance to image scale and rotation Robustness to Affine (rotation, scale, shear) distortion, Change in 3D viewpoint, Addition of noise, Change in illumination. Advantages Locality: features are local, so robust to occlusion and clutter Distinctiveness: individual features can be matched to a large database of objects Quantity: many features can be generated for even small objects Efficiency: close to real-time performance Invariant Local Features Steps for Extracting Key Points (SIF Points) Scale space peak selection Potential locations for finding features Key point localization Accurately locating the feature key points Orientation Assignment Assigning orientation to the key points Key point descriptor Describing the key point as a high dimensional vector (128) (SIFT Descriptor) Scales What should be sigma value for Canny and LoG edge detection? If use multiple sigma values (scales), how do you combine multiple edge maps? Marr-Hildreth: Spatial Coincidence assumption: Zerocrossings that coincide over several scales are physically significant. Andrew Witkin (July 22, 1952 – September 12, 2010) Andrew Witkin He did his BS at Columbia University in Psychology Ph.D.
    [Show full text]
  • A Differential Approach to Graphical Interaction
    A Differential Approach to Graphical Interaction Michael L. Gleicher November 18, 1994 gw EgEWREPIU School of Computer Science Carnegie Mellon University 5000 Forbes Avenue Pittsburgh, PA 15213-3891 Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Thesis Committee: Andrew Witkin, Chair Paul Heckbert Brad Myers Robert Sproull, Sun Microsystems c 1994 by Michael L. Gleicher This research was supported in part by Apple Computer, an equipment grant from Silicon Graphics Inc., and a fellowship from the Schlumberger Foundation. The views and conclusions contained in this document are those of the author and should not be interpretted as representing the official policies, either expressed or implied, of these companies. Keywords: Constraints, Direct Manipulation, Interaction Techniques, User Inter- face Toolkits Abstract Direct manipulation has become the preferred interface for controlling graphical ob- jects. Despite its success, the ad hoc manner with which such interfaces have been designed and implemented restricts the types of interactive controls. This dissertation presents a new approach that provides a systematic method for implementing flexible, combinable interactive controls. This differential approach to graphical interaction uses constrained optimization to couple user controls to graphical objects in a manner that permits a variety of controls to be freely combined. The differential approach pro- vides a new set of abstractions that enable new types of interaction techniques and new ways of modularizing applications. The differential approach views graphical object manipulation as an equation solv- ing problem: Given the desired values for the user specified controls, find a configura- tion of the graphical objects that meet these constraints.
    [Show full text]