Multiple Interface Management in Smart Grid Networks François Lemercier
Total Page:16
File Type:pdf, Size:1020Kb
Multiple interface management in smart grid networks François Lemercier To cite this version: François Lemercier. Multiple interface management in smart grid networks. Networking and Internet Architecture [cs.NI]. Ecole nationale supérieure Mines-Télécom Atlantique, 2018. English. NNT : 2018IMTA0100. tel-02095994 HAL Id: tel-02095994 https://tel.archives-ouvertes.fr/tel-02095994 Submitted on 11 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. IMT Atlantique Bretagne-Pays de la Loire Ecole´ Mines-Tel´ ecom´ THESE` DE DOCTORAT DE L’ E´ COLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE COMUE UNIVERSITE BRETAGNE LOIRE Ecole Doctorale N°601 Mathematique` et Sciences et Technologies de l’Information et de la Communication (MathSTIC) Specialit´ e´ : Informatique Par Franc¸ois LEMERCIER Multiple Interface Management in Smart Grid Networks Gestion d’interface multiple dans les reseaux´ smart grids. These` present´ ee´ et soutenue a` RENNES , le 20/11/2018 Unite´ de recherche : Institut de recherche en informatique et systemes` aleatoires´ (IRISA) These` N°: 2018IMTA0100 Rapporteurs avant soutenance : Andre-Luc´ BEYLOT – Professeur, ENSEEIHT Engineering School, Universite´ de Toulouse, France Antoine GALLAIS – Maˆıtre de conferences,´ INRIA, Universite´ de Strasbourg, France Composition du jury : Presidente´ : Mireille BATTON-HUBERT – Professeure, Ecole des Mines de Saint Etienne, France Examinateurs : Andre-Luc´ BEYLOT – Professeur, ENSEEIHT Engineering School, Universite´ de Toulouse, France Antoine GALLAIS – Maˆıtre de conferences,´ INRIA, Universite´ de Strasbourg, France Nicolas MONTAVONT – Professeur, IMT Atlantique, IRISA, France – Encadrant de these` Philippe CHIUMMIENTO – R&D Manager, Itron, France Dir. de these` : Laurent TOUTAIN – HDR, IMT Atlantique, IRISA, France – Directeur de these` i DECLARATION I hereby declare that except where specific reference is made to the work of others, the contents of this dissertation are original and have not been submitted in whole or in part for consideration for any other degree or qualification in this, or any other university. This dissertation is my own work and contains nothing which is the outcome of work done in collaboration with others, except as specified in the text and Acknowledgments. Rennes, September 20, 2018 François Lemercier 6lowpan IPv6 over Low power Wireless Personal Area Networks ami Advanced Metering Infrastructure amr Automated Meter Reading aodv Ad Hoc On-Demande Distance Vector Protocol bb Broadband ble Bluetooth Low Energy csma/ca Carrier Sense Multiple Access with Collision Avoidance d8psk Differential Eight Phase Shift Keying dadr Distributed Autonomous Depth-First Routing dag Directed Acyclic Graphs dao Destination Advertisement Object dbpsk Differential Binary Phase Shift Keying dc Data Concentrator ddr Data Delivery Ratio dio DAG Information Object dis DAG Information Solicitation dodag Destination Oriented DAG dqpsk Differential Quaternary Phase Shift Keying dsp Digital Signal Processor ett Expected Transmission Time etx Expected Transmission Count ev Electric Vehicle g2v Grid to Vehicle han Home Area Network hsdpa High Speed Downlink Packet Access hv High Voltage ietf Internet Engineering Task Force iot Internet of Things ip Internet Protocol v lln Low power and Lossy Network load 6LoWPAN Ad Hoc On-Demand Distance Vector Routing loadng Lightweight Ad hoc On-demand Distance-vector Routing Protocol Next Generation lql Link Quality Level lv Low Voltage mdms Meter Data Management Systems mp2p Multipoint-to-Point mptcp Multipath TCP mrhof Minimum Rank with Hysteresis Objective Function mv Medium Voltage nan Neighborhood Area Network nb Narrow Band nbi Narrow-band Interference nsa Node State and Attribute nt Neighbor Table of Objective Function of0 Objective Function Zero ofdm Orthogonal frequency-division multiplexing olsr Optimized Link State Routing Protocol os Operating System p2p Point-to-Point p2mp Point-to-Multipoint pan Premise Area Network pc Personal Computer pdr Packet Delivery Ratio plc Power Line Communication pmu Phasor measurement unit qos Quality of Service vi rrep Route Reply rreq Route Request robo Robust Orthogonal Frequency Division Multiplexing rpl IPv6 Routing Protocol for Low-Power and Lossy Networks rtu Remote Terminal Units scada Supervisory Control and Data Acquisition sm Smart Meter snr Signal Noise Ratio unb Ultra Narrow Band v2g Vehicle to grid wan Wide Area Network wmn Wireless Mesh Network wsn Wireless Sensor Network vii Dedicated to my wonderful wife Gwenaëlle and our fantastic daughter Zoé, you bring so much love into my life! ix ABSTRACT The power grid is undergoing a tremendous evolution, toward what is called the Smart Grid. The necessity of incorporate renewable energy sources in the grid, the decentralized productions, the increasing of consumption, etc. are some of the challenges in an energy network where sustainability, security and affordability are required. The grid is actually evolving from a centralized architecture to a decen- tralized one, taking into account all the unpredictable sources and consumption an energy network should handle in the future. The Advanced Metering Infrastructure is the network dedicated to the Smart Grid that allows two-ways communications between the consumers and the energy providers. Consumers are linked to the AMI with meters having advanced com- munication and computing technologies: the Smart Meter. Today Smart Meters are often equipped with multiple communication interfaces but only one is used for principal Smart Grid communication, the other one having a dedicated function (such as firmware update, etc.). The Smart Meters network is commonly based on Power Line Communications, a technology that is subject to high sensitivity to interference. Despite a dedicated MAC protocol, such as P1901.2, that could face the high variation of the available bandwidth, this technology does not allow to fulfill the requirements of all smart grid applications (i.e. the 99.99% reading rate). Alternative communications tech- nologies exist to tackle the issues of PLC, such as wireless or fiber optic, but using one of those technologies does not appears to be a long term solution. Consequently, mixing multiple heterogeneous technologies allow to cope with all scenarios and interference levels. Most of the technologies considered for smart meters network are short range, nodes cannot reach the concentrator directly. Consequently, nodes must collaborate using a dedicated routing protocol, to reach a destination that is multiple hops away. RPL is the most popular routing protocol in the IoT community, and specifically designed to operate on Low Power and Lossy networks. But it is mostly used in homogeneous networks with single communication devices. The goal of this thesis is to adapt RPL as it could work with multiple interfaces, and study how the heterogeneity of the interfaces could increase the reliability and the performance of smart meter networks. To this end, we propose a new framework to extend RPL by managing multiple heterogeneous interfaces and we introduce three original solutions which are the Parent Oriented, the Interface Oriented and the Multiple Instances. We propose a xi new re-transmission mechanism that benefits from the multiple interfaces as well. Finally, we implemented our solutions in both simulation and hardware environ- ment to validate and compare each one with realistic conditions. xii RÉSUMÉ Le réseau électrique a subi d’importantes évolutions ces dernières décennies, pour devenir ce qu’on appelle le Smart Grid. La nécessité d’intégrer des sources d’énergie renouvelable est un défi dans un réseau d’énergies où l’accessibilité, la maintenabilité et la sécurité sont requis. Le réseau électrique évolue actuellement d’une architecture centralisée vers une architecture décentralisée, tenant compte des consommations et sources d’énergies à caractère imprédictible et irrégulier. L’Advanced Metering Infrastructure est une architecture clé du Smart Grid qui permet des communications bidirectionnelles entre le consommateur et le four- nisseur d’énergie. Cette infrastructure repose sur des compteurs dotés de capacités de communication et de calculs avancés, que nous appelons "compteur intelligent". Les compteurs intelligents d’aujourd’hui sont souvent capables de communiquer avec plusieurs interfaces de communication mais seulement une seule est dédiée aux applications Smart Grid, les autres interfaces étant dédiées à des fonctions spécifiques (comme la mise à jour du firmware, etc.). Les réseaux de compteurs intelligents reposent communément sur des communica- tions à courant porteur, une technologie qui est hautement sensible aux interférences. Malgré l’utilisation de protocoles de niveau 2 spécifiques (tel que P1901.2) qui peu- vent gérer les grandes variations de bande passante, ces technologies ne permettent pas de respecter les exigences de toutes les applications Smart grid. Des technologies de communication alternatives existent pour résoudre