Thesis

Enantioselective CpRu-catalyzed decarboxylative C-C bond forming reactions

LINDER, David

Abstract

La combinaison du précatalyseur stable à l'air [CpRu(η⁶-C₁₀H₈)] [PF₆] avec des ligands de type pyridine-monooxazoline a permis de développer une nouvelle stratégie pour effectuer des réactions de substitution allyliques avec des conditions expérimentales simples. Cette famille de ligands est apparue particulièrement appropriée pour effectuer l'étude de réactions du type réarrangement de Carroll. Le mécanisme de cette réaction a été étudié et un cycle catalytique raisonnable en a découlé. Une stratégie de double activation par co-catalyse a donc été développée: l'utilisation synergique de sels de magnésium a permis d'effectuer ces réactions à température ambiante et donc de manière plus sélective.

Reference

LINDER, David. Enantioselective CpRu-catalyzed decarboxylative C-C bond forming reactions. Thèse de doctorat : Univ. Genève, 2008, no. Sc. 4033

URN : urn:nbn:ch:unige-14791 DOI : 10.13097/archive-ouverte/unige:1479

Available at: http://archive-ouverte.unige.ch/unige:1479

Disclaimer: layout of this document may differ from the published version.

1 / 1 UNIVERSITÉ DE GENÈVE FACULTÉ DES SCIENCES Section de Chimie et Biochimie Département de chimie organique Professeur J. Lacour

Enantioselective CpRu-Catalyzed Decarboxylative C-C Bond Forming Reactions

THÈSE

présentée à la Faculté des sciences de l'Université de Genève

pour obtenir le grade de Docteur ès sciences, mention chimie

par

David LINDER

de

Copenhague (Danemark)

Thèse N° 4033

GENÈVE

Atelier d'impression ReproMail

2008

Dedicated to Dr. Pierre Mangeney. On the occasion of his retirement.

We want the observed facts to follow logically from our concept of reality. Without the belief that it is possible to grasp the reality with our theoretical constructions, without the belief in the inner harmony of our world, there could be no science. This belief is and always will remain the fundamental motive for all scientific creation. Throughout all our efforts, in every dramatic struggle between old and new views, we recognize the eternal longing for understanding, […] continually strengthened by the increasing obstacles to comprehension. Albert Einstein (1879-1955), Leopold Infeld (1898-1968) The Evolution of Physics, 1938 , Cambridge University Press

Remerciements

You can get much farther with a kind word and a gun than you can with a kind word alone. Al Capone (1899-1947)

Les résultats rapportés dans ce manuscrit ont été obtenus dans le cadre d’un travail de thèse réalisé au sein du laboratoire du Professeur Jérôme Lacour, dans le département de chimie organique de l’Université de Genève, du 01 octobre 2004 au 31 octobre 2008.

Je voudrais d’abord exprimer toute ma gratitude au Professeur Jérôme Lacour, pour m’avoir donné l’opportunité de réaliser ce travail de thèse dans son laboratoire, pour la confiance et l’autonomie qu’il m’a accordées ainsi que pour sa patience pendant toutes ces années.

Je désire ensuite remercier le Professeur Antonio Togni (Eidgenössische Technische Hochschule Zürich) et le Docteur Clément Mazet (Université de Genève) pour avoir eu l’amabilité de bien vouloir juger les travaux de thèse rapportés ci-après.

J’exprime aussi toute ma gratitude aux équipes de service d’analyse : RMN (Dr. Damien Jeannerat, André Pinto and Bruno Vitorge), SM (Philippe Perottet and Eliane Sandmeier) et SM-HR (Prof. Gérard Hopfgardner and Nathalie Oudry) pour leur indispensable contribution.

Je voudrais chaleureusement saluer mes collègues, passés et présents, et de tout le département participation active et leur alcophilie partagée. Dans un ordre parfaitement chaotique, j’exprime ma gratitude à Richard, Sam-arche, Benoit, Jej and Simone pour de si nombreuses raisons que je ne peux les détailler ici. Un grand merci à Cédric (a.k.a. Boubou) et à Michael pour leur participation efficace à ces travaux. Le « réfugié politique » remercie Reno, Chloé, Stéphane (x2), Fran et les autres pour leur accueil. Un grand, grand merci à Phan (je suis pas encore devenu comme Niko Brevic…) et à la bande de gros lourds pour les gaming-sessions interminables et les sessions pizza sponsorisées par Feldschlösschen. “Gracie mille ” pour “little V” et à l’autre petite terroriste pour tout et plus encore.

Il me reste à remercier Ankit Sharma, Andrei Badoiù et le Dr. Chloé Bournaud pour leur participation active à la correction de ce manuscrit.

Finalement je tiens à remercier chaleureusement Pierre et Manu qui m’ont tout deux transmis leur enthousiasme pour la recherche et leur saine vision du milieu…

- i - Abbreviations, Symbols and Units

Abbreviations Cp*: pentamethyl cyclopentadienyl br(s): broad (singlet) Cp’: substituted cyclopentadienyl s: singlet phen: 2,2’-phenantroline d: doublet bpy: 2,2’-bipyridine dd: doublet of doublet cod: 1,4-cyclooctadiene t: triplet BSA: N,O-bis(trimethylsilyl)amide dt: doublet of triplet Tol.: toluene q: quartet TMS: trimethyl silyl sept: septet TBDMS: tert -butyl dimethyl silyl m: multiplet TIPS: triisopropyl silyl TLC: Thin layer chromatography n-Pr: propyl Rf: retardation factor i-Pr: iso -propyl cat.: catalytic amount t-Bu: tert -butyl equiv.: equivalent BDU: Diaza(1,3)bicyclo[5.4.0]undecane conv.: conversion Ts: Tosyl C: concentration Symbols litt.: literature δ: chemical shift ref.: reference λ: wave length maj.: major J: coupling constant min.: minor l: length

M.p.: melting point tR: retention time ppm: part per million T: temperature rac : racemic Units ent : opposite enantiomer of °C: degree Celsius Y.: yield K: Kelvin ee : enantiomeric excess g: gram dr.: diastereomeric ratio mg: miligram R.T.: room temperature l: microliter b: branched regioisomer mL: milliliter l: linear regioisomer mmol: millimole Ar: aryl M: molarity napht: naphthalene min: minute Cp: cyclopentadienyl h: hour

- ii - Résumé en français

Formation énantiosélective de liaisons C-C par décarboxylation catalysée par des complexes CpRu

L’objectif des travaux de cette thèse est de développer une version asymétrique du réarrangement de Carroll, une réaction qui peut être catalysé par des complexes de ruthénium (Schéma 1 ) comme décrit par Tunge 1 puis par Lacour. 2 Bien que le domaine de la substitution allylique soit extrêmement étendu, ce type de réactions catalysées par des complexes de ruthénium est globalement peu décrit dans la littérature.

O O O O 6 [CpRu(η -C10H8)][PF6] (10 mol%) N O L18f (10 mol%) N

THF, 60 °C O b l L18f R R R b:l jusqu'à 99:1 ee jusqu'à 87 % Schéma 1: Réarrangement de Carroll catalysé par un complexe du type CpRu.

Les expériences décrites dans ce manuscrit montrent que la famille des pyridine- monooxazolines est une classe de ligand appropriée pour l’étude du réarrangement de Carroll catalysé par des complexes de type Cp-ruthenium. En particulier le ligand L18f a permis d’obtenir de bonnes réactivités (jusqu’à 20 fois supérieure qu’avec les pyridine-imines), de bonnes régiosélectivités (jusqu’à > 99:1) et de bonnes énantiosélectivités (jusqu’à > 80 %).

O O Le mécanisme de la réaction a été O O R O étudié en détail. Même s’il n’a été R O

Ar [Ru*] possible de caractériser précisément les

Ar espèces intermédiaires, les nombreuses

[Ru*] expériences ont permis de rassembler CO2 O suffisamment d’indices non équivoques

R pour pouvoir proposer un cycle O O [Ru*] catalytique raisonnable très proche de R R Ar celui décrit dans la littérature dans le Ar Ar b l cas des réactions catalysées au Schéma 2: Cycle catalytique postulé. palladium ( Schéma 2 ).

1 Burger, E. C.; Tunge, J. A. Org. Lett. 2004 , 6, 2603-2605. Burger, E. C.; Tunge, J. A. Chem. Commun. 2005 , 2835-2837. 2 Constant, S.; Tortoioli, S.; Muller, J.; Lacour, J. Angew. Chem. Int. Ed. 2007 , 46 , 2082-2085. Constant, S.; Tortoioli, S.; Muller, J.; Linder, D.; Buron, F.; Lacour, J. Angew. Chem. Int. Ed. 2007 , 46 , 8979-8982.

- iii - Résumé en français

Ces résultats mécanistiques ont par ailleurs permis de développer une stratégie de co-catalyse basée sur l’utilisation synergique de sels de magnésium. De meilleures réactivités ont ainsi été obtenues ; permettant de réaliser la réaction à température ambiante et par conséquent d’améliorer sensiblement les sélectivités.

Dans un second temps, le système catalytique développé a été testé dans le cadre de réactions de substitutions allyliques classiques (Schéma 3 ). Il est apparu dans ces cas que l’utilisation de sels de lithium donne de bons résultats en termes de régiosélectivité (généralement 9:1) pour des réactions de substitutions allyliques sans ajout de base avec une grande variété de prénucléophiles activés. L’ensemble de ces expériences souffre malheureusement du fait que la diastéréosélectivité obtenue pour les produits branchés est médiocre (généralement 1:1) et aucune piste prometteuse ne peut être proposée à ce jour pour contourner ce problème.

O Z X Z X 6 O R' [CpRu(η -Napht)][PF6] (2 mol%) O O L18f (2.4 mol%) Z R'' O LiOMe (1 mol%)

X THF, 60 °C b l R R R b:l jusqu'à 92:8 r d. de 45:55 à 56:44 Schéma 3: Réactions de substitution allylique dîtes classiques .

Il a aussi été montré que la même stratégie pouvait être appliquée au réarrangement décarboxylatif de carbonates et carbamates dérivés de l’alcool cinnamique. Le cas des nucléophiles azotés demeure relativement problématique puisque ni la chimiosélectivité (réactions de double alkylation) ni la régiosélectivité n’ont pu être contrôlées de manière satisfaisante. Au contraire, le cas de nucléophiles oxygénés est apparu comme bien plus prometteur puisque de bonnes sélectivités ont pu être obtenues.

6 La combinaison du précatalyseur stable à l’air [CpRu( η -C10 H8)][PF 6] avec le ligand L18f a permis de développer une nouvelle stratégie pour effectuer des réactions de substitutions allyliques avec des conditions expérimentales relativement simples. Le ligand L18f est par ailleurs apparu comme particulièrement intéressant non seulement à cause de sa synthèse extrêmement directe, mais aussi du fait que les deux énantiomères de l’aminoalcool dont il est issu sont commerciaux sous forme énantiopure pour un prix relativement modéré ((+)- or (–)- aminoindanol 5g ~ 200 CHF).

De nombreux développements sont actuellement en cours au laboratoire pour évaluer la généralité de ce type de catalyseurs dans le cadre de la substitution allylique.

- iv - Table of Contents

Enantioselective CpRu-Catalyzed Decarboxylative C-C Bond Forming Reactions

1. GENERAL INTRODUCTION - 1 -

1.1. PREAMBLE - 1 -

1.2. ASYMMETRIC - 4 - 1.2.1. Birth of the Catalytic Concept - 4 - 1.2.2. Industrial Developments - 4 -

1.3. MODERN APPLICATIONS OF ASYMMETRIC CATALYSIS - 5 - 1.3.1. Asymmetric Organocatalysis - 5 - 1.3.2. Asymmetric Organometallic Catalysis - 6 -

2. METAL CATALYZED ALLYLIC SUBSTITUTIONS - 7 -

2.1. PREAMBLE - 7 -

2.2. PALLADIUM CATALYZED ALLYLIC SUBSTITUTIONS - 8 - 2.2.1. General Mechanism - 8 - 2.2.2. Structure of Metal-Allyl Complexes - 9 - 2.2.3. Enantiodiscriminating Steps - 11 -

2.3. OTHER METAL -CATALYZED ALLYLIC SUBSTITUTIONS - 18 - 2.3.1. Copper - 18 - 2.3.2. Molybdenum - 19 - 2.3.3. Tungsten - 19 - 2.3.4. Rhodium - 20 - 2.3.5. Iridium - 20 -

2.4. RUTHENIUM -CATALYZED ALLYLIC SUBSTITUTIONS - 23 - 2.4.1. Early-Stage Developments - 23 - 2.4.2. Ru-Catalysts for Regioselective Allylation of Nucleophiles - 24 - 2.4.3. Asymmetric Allylation of Nucleophiles - 27 - 2.4.4. Ru-catalyzed “Carroll rearrangement” - 28 -

2.5. AIM AND SCOPE OF THE WORK - 30 -

- v - Table of Contents

3. CATALYTIC SYSTEM OPTIMIZATION - 31 -

3.1. PREAMBLE - 31 -

3.2. OPTIMIZATION OF THE LIGAND - 33 - 3.2.1. Use and Synthesis of Pymox Ligands - 33 - 3.2.2. Ligand Structure Screening - 34 -

3.3. OPTIMIZATION OF THE REACTION CONDITIONS - 36 - 3.3.1. Reaction Conditions Screening - 36 - 3.3.2. Synthesis of the Substrates - 37 - 3.3.3. Scope of the Reaction - 38 - 3.3.4. Metal Source Optimization - 40 -

3.4. CONCLUSION - 44 -

4. MECHANISTIC INSIGHT - 45 -

4.1. PREAMBLE - 45 - 3 4.2. MO ANALYSIS OF [C PRUL2(η -ALLYL )] COMPLEXES - 45 -

4.3. REGIOSELECTIVITY OF THE REACTION IN THE CASE OF UNSYMMETRICALLY

SUBSTITUTED SUBSTRATES - 48 - 4.7.1. Analysis in Terms of Molecular Orbitals - 48 - 4.7.2. Substituent effect: linear free-energy relations - 50 -

4.4. ENANTIOSELECTIVITY OF THE REACTION - 51 - 4.7.1. Stereoselectivity at the Ru-centre - 51 - 4.7.2. Rationalization of the enantioselectivity - 55 -

4.5. NATURE OF THE NUCLEOPHILE - 59 -

4.6. APPROACHES TO CO-CATALYSIS / DUAL -ACTIVATION - 65 -

4.7. MECHANISTIC RATIONAL - 71 - 4.7.1. Kinetic Isotope Effects - 71 -

4.7.2. Effect of CO 2 - 73 - 4.8. CONCLUSION - 74 -

5. APPLICATIONS TO “ CLASSICAL ” ALLYLIC SUBSTITUTION - 76 -

5.1. PREAMBLE - 76 -

5.2. ACTIVATED C-NUCLEOPHILES - 76 - 5.2.1. 1,3-Dicarbonyl Prenucleophiles - 76 -

vi Table of Contents

5.2.2. Application of Co-Catalysis - 79 -

5.3. PREFORMED C-NUCLEOPHILES - 84 -

5.4. UNSTABILIZED NUCLEOPHILES - 85 - 5.4.1. Unstabilized - 85 - 5.4.2. Unstabilized Alkynes - 86 -

5.5. HETEROATOMIC NUCLEOPHILES - 88 - 5.5.1. N-Nucleophiles - 88 - 5.5.2. O-Nucleophiles - 89 -

5.6. CONCLUSION - 91 -

6. GENERAL CONCLUSION & OUTLOOK - 92 -

6.1. CONCLUSION - 92 -

6.2. OUTLOOK - 93 -

7. EXPERIMENTAL PART - 97 -

7.1. GENERALITIES - 97 -

7.2. SYNTHESIS OF SUBSTRATES OF TYPE 1. - 98 -

7.3. SYNTHESIS OF PRODUCTS OF TYPE 2. - 100 -

7.4. CSP-SEPARATION OF PRODUCTS OF TYPE 2. - 106 -

7.5. GC-SEPARATION OF PRODUCTS OF TYPE 2 AND 3. - 107 -

7.6. SYNTHESIS OF METAL PRECATALYSTS OF TYPE 4. - 107 -

7.7. SYNTHESIS OF LIGANDS OF TYPE L18. - 108 -

7.8. SYNTHESIS OF PRODUCTS OF TYPE 15. - 110 -

7.9. GC-SEPARATION OF REGIOISOMERS OF 15. - 111 -

7.10. SYNTHESIS OF CARBAMATES OF TYPE 23. - 111 -

7.11. SYNTHESIS AND REACTIVITY OF SUBSTRATE 25. - 111 -

7.12. SYNTHESIS AND REACTIVITY OF CARBONATES 27. - 112 -

- vii - Chap. 1: General Introduction

1. General Introduction

How would you like to live in Looking-glass House, Kitty? I wonder if they'd give you milk in there? Perhaps Looking-glass milk isn't good to drink. LewisCarroll, Through the Looking-Glass (1871)

1.1. Preamble

The concept of "chirality" is known in chemistry since the 1870's although it took nearly a hundred years before chemists began using this term. In fact, in the first edition of Eliel's "Stereochemistry of Carbon Compounds" in 1962, 1 the word chiral was not even mentioned, it became prominent in later editions. 2 In extremely simple terms, chirality corresponds to "handedness" - that is, the existence of a left / right opposition. For example, left and right hands are mirror images of each other which cannot be superposed and therefore are "chiral". The term chiral is derived from the Greek name kheir meaning "hand" (Scheme 11) and apparently was coined by Lord Kelvin in 1904 when he stated: "I call any geometrical figure, or group of points, chiral, and say it has chirality, if its image in a plane mirror, ideally realized, cannot be brought to coincide with itself". In more modern phrasing, any object or molecule which has no improper axis of symmetry (Sn, n > 0) is thus defined as chiral.

Scheme11: Illustration of chirality with the hands.

The first observation of the macroscopic effects of chirality was made by the French physicist Jean-Baptiste Biot in 1835. He noticed that the plane of polarization of a beam of planar polarized light could be rotated by passing through sugar solutions. In 1848 the French chemist Louis Pasteur provided a new milestone by solving the problems concerning the

1 (a) Eliel, E. L. Stereochemistry of carbon compounds ; McGraw-Hill: New York, 1962 . (b) Eliel, E. L. Stereochemistry of Carbon Compounds , 1962 2 Eliel, E. L.; Wilen, S. H.; Mander, L. N. Stereochemistry of Organic Compounds , 1994 .

- 1 - Chap. 1: General Introduction nature of tartaric acid. Contrary to samples of the synthetic molecule, which exhibited no optical activity, “natural” tartaric acid, obtained from wine lees, were deviating the plane of polarization of light in one specific direction. By crystallizing sodium ammonium tartrate in the right conditions, Pasteur discovered that some of the obtained crystals were non- superimposable mirror images and that solutions of these exhibited opposite rotations of the plane of polarization. Pasteur correctly deduced that the molecule in question was chiral and could “exist in two different forms that resemble one another as would left- and right-hand gloves”, and the biological source of the compound provided only one type. 3

Following Kekule's 1858 postulate that carbon has a valence of four,4 van’t Hoff 5 and Le Bel 6 independently recognized that four different groups attached to the same carbon atom, arrayed at the corners of a tetrahedron, lead to two different configurations A and Ā called enantiomers ( Scheme12).

a a CO2H CO2H (S) (R) d d H H NH2 H2N c b b c H3C CH3 mirror plane mirror plane Scheme12: Models of asymmetric molecules made by van’t Hoff (left), schematic representation of two enantiomeric tetrahedrons (middle) and representation of the two enantiomers of alanine (right).

Many building blocks (amino acids, sugars …), constituting the important families of biologically active molecules (proteins, nucleic acids …), are usually found in nature as a single enantiomer and transfer their properties of chirality to the whole superstructure. These matrices thus have complex three-dimensional structures which are liable to interact differently with the two enantiomers of a molecule. The different interactions can subsequently induce different physiological activities which are particularly important for pharmacologically active molecules ( Scheme13).

Due to the constantly growing demand for non-racemic compounds as drugs, agrochemicals, flavours, fragrances and synthetic materials, many efforts have been devoted to developing efficient methods to yield the desired enantioenriched / enantiopure synthetic intermediates. 7

3 L. Pasteur, Two lectures delivered to the Société Chimique de Paris , Jan. 20 th & Feb. 3 rd , 1860 . 4 Kekule, A. Ann. 1858 , 154. 5 van't Hoff, J. H. Bull. Soc. Chim. Fr. 1875 , 295. 6 Le Bel, J. A. Bull. Soc. Chim. Fr. 1874 , 337. 7 (a) Halpern, J.; Trost, B. M. Proc. Nat. Acad. Sci. U.S.A. 2004 , 101 , 5347-5347. (b) Trost, B. M. Proc. Nat. Acad. Sci. U.S.A. 2004 , 101 , 5348-5355.

- 2 - Chap. 1: General Introduction

O OH H effective against (S) N N (S) O N (S) treats tuberculosis morning sickness NH H OH O O O O OH NH H N (R) teratogenic N (R) O (R) N causes blindness H OH O Thalidomide Ethambutol

OH OH H (S) N O treats arthritis pain (R) local anesthetic O MeO MeO O causes liver poisoning (S) (R) N O adrenoceptor antagonist OH H OH local anesthetic Naproxen Propanolol

Scheme13: Both enantiomers of selected drugs and their respective physiological effects.

Historically, enantioenriched compounds were synthesized by manipulating, through successive chemical transformations, an optically active precursor often generated from nature’s chiral pool or by separating the two enantiomers of a racemic mixture by the use of an enantiopure agent. Both these approaches suffer from potentially severe drawbacks: the former requires stoichiometric amounts of a suitable precursor and often leads to tortuous synthetic routes to overcome nature’s rather specific structural scaffold, while the yield of the desired enantiomer for the latter is limited to a maximum of 50 %, unless a suitable epimerization reaction is simultaneously at play.

The strategy consisting in using a chiral auxiliary (generally derived from the chiral pool) as asymmetry inducing agent also suffers from the same drawbacks. However, one must notice the importance of this strategy in total synthesis, since certain functions, with already established configurations, can act as intramolecular asymmetry inducers (diastereoselective synthesis). On the other hand, asymmetric catalysis, in which each molecule of chiral catalyst, by virtue of being continually regenerated, can yield many molecules of chiral product, has significant potential advantages over these older procedures. Nature is the biggest user of asymmetric catalysis: living systems use enzymes to perform the stereoselective synthesis of their building blocks with very high fidelity. Enzymes exploit hydrogen bonding between the active site and substrate, together with non-bonding dipole-dipole, electrostatic, and steric interactions, to orient the substrate and stabilize the transition state, leading to high levels of stereoselectivity.

- 3 - Chap. 1: General Introduction

1.2. Asymmetric Catalysis

Catalysis is the process by which the rate of a chemical reaction is increased by the action of a substance (catalyst) which remains unchanged in nature at the end of the reaction.

1.2.1. Birth of the Catalytic Concept

It is the Swedish chemist Jöns Jacob Berzelius who first described the concept of “ catalytic power ” in 1835. 8 This he defined as follows: “The catalytic force actually appears to consist in the ability of substances to arouse the affinities dormant at this temperature by their mere presence and not by their affinity and so as a result in a compound substance [where] the elements become arranged in another way such that a greater electrochemical neutralization is brought about ”. Though he was not the first to use the word catalysis , as it was already in use in Andreas Livbavius’s Alchemy in 1597, he was the first to crystallize the concept with help of the separate experiments of Kirchhoff, Thénard, Davy, Döbereiner and Mitscherlich (1811-1834). Most of these early catalytic experiments dealt with the reaction of gaseous reagents at the surface of noble metal wires. In 1909 Ostwald received a Nobel Prize in recognition of his work on catalysis and for his investigations into the fundamental principles governing chemical equilibria and rates of reaction leading to a new definition: “ catalysts are substances which change the velocity of a reaction without modification of the energy factors of the reaction ”. 9 This year, Ertl recived the Nobel Prize “ for his studies of chemical processes on solid surfaces ” showing the on-going validity of the concept.

1.2.2. Industrial Developments

Prior to the Second World War the chemical industry was mainly coal-based with a strong emphasis on production of ammonia, nitric acid, hardened fat and methanol synthesis. In the 50s the rapid expansion of the petrochemical industry (based on oil and natural gas) resulted in the production of new fuels and synthetic materials and to the growing significance of catalyzed processes as selective oxidations and hydroformylations. Major advances have been made among which one can focus on the Ziegler-Natta catalysis, steam reforming with

NiK 2Al 2O3, catalytic cracking with zeolites, low pressure methanol synthesis and metallocene catalysis among many others. 10 Today some 80 % of chemical processes use catalysts whose whole sell price corresponds to less than 1 % of their generated revenue. However, despite the

8 Roberts, M.W. Catalysis Lett. 2000, 67 , 1-4. 9 Nobel Lectures, Chemistry 1901-1921 , Elsevier Publishing Company, Amsterdam, 1966 . 10 Roberts, M.W. Catalysis Lett .2000, 67 , 67-72.

- 4 - Chap. 1: General Introduction wide investments by both governments and industry, catalytic enantioselective industrial processes remain quite rare compared to other processes yielding achiral or racemic products.

1.3. Modern Applications of Asymmetric Catalysis

In this section only selected examples of applications for asymmetric catalysis will be briefly discussed in an attempt to show the width of the scope of synthetic catalytic methodologies.

1.3.1. Asymmetric Organocatalysis

The first example of an asymmetric organocatalyzed reaction 11 dates back to 1912 with the report of Bredig of the effect of alkaloids on the addition of HCN onto benzaldehyde. 12 The yield was modest but the product was optically active and its optical activity of opposite sign when using quinine or quinidine as catalyst.

O OH

H O OH O NHAr H Intermolecular cross-aldol reaction H C OBn OBn up to 97% ee 3 OH α-oxyaldehyde NO dimerization 2 up to 99 % ee Mannich reaction up to > 99 % ee

As catalyst N CO2H H

O CO2Bn N CO2Bn O Ph H N H H NO2 O O NHPh 1 2 α-amination Intermolecular R R up to 96 % ee Michael reaction up to 23 % ee α-aminooxylation up to > 99 % ee Scheme14: Selected ( S)-proline catalyzed reactions.

However the field did not really develop until the 70s and the Hajos-Parrish-Eder-Sauer- Weichert reaction: a proline catalyzed intramolecular aldol reaction. 13 Since that time, proline (and its derivatives) has become a versatile and widely used catalyst providing the desired products with high selectivity ( Scheme14). 14

11 For recent reviews on organocatalysis see : (a) Shi, Y . Acc. Chem. Res. 2004 , 37, 488-496 . (b) Chem. Rev 2007 , 107 , (whole issue 12). (c) Enantioselective Organocatalysis, Dalko, P.I. Ed.; Wiley-VCH: Weinheim Germany, 2007 . 12 (a) Bredig Ber. 1908 , 41 , 752. (b) Bredig Biochem. Zeit. 1913 , 46 , 7. 13 (a) Eder Angew. Chem. Int. Ed. Engl. 1971, 10 , 496-497. (b) Hajos J. Org. Chem. 1974 , 39 , 1615-1621. 14 (a) Mannich reaction: List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. J. Am. Chem. Soc. 2002 , 124 , 827-833. (b) α- Amination: List, B. J. Am. Chem. Soc. 2002 , 124 , 5656-5657. (c) α-Aminoxylation: Zhong, G. Angew. Chem. Int. Ed. 2003 , 42 , 4247-4250; Brown, S. P.; Brochu, M. P.; Sinz, C. J.; MacMillan, D. W. C . J. Am. Chem. Soc. 2003 , 125 , 10808-10809; Bøgevig, A.; Sunden, H.; Córdova. A. Angew. Chem. Int. Ed. 2004 , 43 , 1109-1112. (d) Michael addition: List, B.; Pojarliev, P.; Martin, H. J. Org. Lett. 2001 , 3, 2423-2425. (e) α-Oxyaldehyde dimerization: Northrup, A. B.; Mangion, I. K.; Hettche,

- 5 - Chap. 1: General Introduction

1.3.2. Asymmetric Organometallic Catalysis

The major advantage of asymmetric organometallic catalysis resides in the use of the reactivity of organometallic species in order to obtain reactions that are sometimes not accessible via classical organic chemistry. In addition, in the case of homogeneous catalysis, the use of soluble catalysts, by their easier synthesis, opens up perspectives for “ rational ” structural modifications of both ligand and metal to reach improved activity and selectivity.

The first example of an enantioselective reaction catalyzed by an organometallic complex was reported by Nozaki and Noyori for styrene cyclopropanation with a phenol-imine/copper complex.15 In the last 40 years tremendous advances in this field have been made and which can be emphasized by the Nobel prizes in 2001 of Knowles and Noyori 16 “ for their work on chirally catalyzed hydrogenation reactions ” and of Sharpless 17 “ for his work on chirally catalyzed oxidation reactions ”. Asymmetric homogeneous catalysis has now become a versatile tool for the modern chemist as exemplified by the synthesis of (–)-salicylihamlamide by Fürstner which is strongly based on organometallic catalysis for several key steps. 18 The field has also expanded to industrial applications ( Scheme15).19 For instance, Novartis has developed the synthesis of ( S)-metolachlor by an asymmetric iridium catalyzed hydrogenation process (herbicide, 10000 tons/year) 20 and Takasago uses an enantioselective rhodium catalyzed allylic amine isomerization for the synthesis of (–)-menthol (2000 tons/year). 21

O O H [Pd] cat. N H2, [Ir-xyliphos] N acid, I [Cu] cat. 2

[Cr] HN 80% ee, ton >1000000, tof 180000 h-1 O Ciba-Geigy/Novartis (S)-metolachlor synthesis OH [Ru] cat. OH O NEt2 + [Ru] cat. [Rh-(S)-BINAP]

NEt2 OH [Pd] cat.

[Ru] cat. 97.6% ee (-)-menthol Fürstner's synthesys of (-)-salicylihalamide ton 400000 tof 1300 h-1 Takasago (-)-menthol synthesis Scheme15: Fürstner’s synthesis of ( –)-salicylihamlamide and selected industrial catalytic processes.

F.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2004 , 43 , 2152-2154. (f) Cross-aldol reaction: Northrup, A. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002 , 124 , 6798-6799. 15 (a) H. Nosaki, H. Takaya, S. Moriuti, R. Noyori, Tetrahedron 1968 , 24 , 3655-3669. (b) H. Nosaki, S. Moriuti, H. Takaya, R. Noyori, Tetrahedron Lett. 1966 , 22 , 5239-5243. 16 (a) Knowles, W. S. Angew. Chem. Int. Ed. 2002, 41, 1998-2007. (b) Noyori, R. Angew. Chem. Int. Ed. 2002, 41, 2008- 2022. 17 Sharpless, K. B., Angew. Chem. Int. Ed. 2002, 41, 2024-2032. 18 A. Fürstner, T. Dierkes, O. R. Thiel, G. Blanda, Chem. Eur. J. 2001 , 7, 5286-5298. 19 Blaser, H. U.; Studer, M. Chirality 1999 , 11 , 459-464. Blaser, H. U. Chem. Commun. 2003 , 293-296. 20 (a) Spindler, F.; Pugin, B. (Ciba-Geigy A.-G., Switzerland). (b) Pat. 87-810435256982, 1988 . Spindler, F.; Pugin, B.; Jalett, H.-P.; Buser, H.-P.; Pittelkow, U.; Blaser, H.-U. Chemical Industries (Dekker) 1996, 68, 153. 21 (a) Noyori, R.; Takaya, H., Acc. Chem. Res. 1990, 23, 345-350. (b) Noyori, R. Science 1990, 248, 1194-1199.

- 6 - Chap. 2: Metal-Catalyzed Allylic Substitutions

2. Metal Catalyzed Allylic Substitutions

If knowledge can create problems, it is not through ignorance that we can solve them. Isaac Asimov (1920-1992)

Enantioselectivemetalcatalyzedallylicsubstitutionandrearrangementreactionsconstitute too wide a field to be exhaustively described in this chapter. This introduction will thus mainlyfocusonenantioselectivemetalcatalyzedreactionsofnonsymmetricallysubstituted substrates with an emphasis on palladium and ruthenium as metal sources. It will only highlightafewselectedhistoricalresultsorimportantbreakthroughs.Theadditionofcarbon nucleophileswillbeprimarilystressedbutcannotbeexclusivelytreatedinthisoverview. However,manymoredetailedreviewshavebeenpublishedintherecentyearswithamuch broaderscopeofsubstrates,metalsourcesandnucleophiles.1,2,3

2.1. Preamble

Transitionmetalcatalyzedallylicsubstitutionsarewidelyusedinorganicsynthesis. 4Indeed, theallylicmoietycombinedwithastereogeniccenterisanimportantintermediateinmany organic syntheses as the remaining carboncarbon double bond allows a large variety of functionalisations. 5Startingeitherfrombranchedorlinearsubstrates,acommon πallyl(or σ,π )metalcomplexisformed(Scheme 2-1)ontowhichanucleophileisliabletoaddinthe 1Theenantioselectiveallylicsubstitutionshavebeenwidelystudied.Forreviews,see:(a)Frost,C.G.;Howarth, J.;Williams,J.M.J. Tetrahedron: Asymmetry 1992 , 3,10891122.(b)Trost,B.M.;VanVranken,D.L. Chem. Rev. 1996 , 96 ,395422.(c)Johannsen,M.;Jørgensen,K.A. Chem. Rev. 1998 , 98 ,16891708.(d)Pfaltz,A.; Lautens,M.In Comprehensive Asymmetric Catalysis ,Vol2;Jacobsen,E.N.;Pfaltz,A.;Yamamoto,H.,Eds.; Springer:BerlinGermany, 1999 ,833–884.(e)Trost,B.M.;Lee,C.B.In Catalytic Asymmetric Synthesis II ; Ojima,I.,Ed.;WileyVCH:WeinheimGermany, 2000 ,593650.(f)Trost,B.M. Chem. Pharm. Bull. 2002 , 50 , 1.(g)Trost,B.M.;Crawley,M.L. Chem. Rev. 2003 , 103 ,29212944.(h)Lu,Z.;Ma,S.M. Angew. Chem. Int. Ed. 2008 , 47 ,258297. 2Forreviewsonligandssee:(a)Dai,L.X.;Tu,T.;You,S.L.;Deng,W.P.;Hou,X.L. Acc. Chem. Res. 2003 , 36 ,659667.Hayashi,T. Acc. Chem. Res. 2000 , 33 ,354362.Helmchen,G.;Pfaltz,A. Acc. Chem. Res. 2000 , 33 , 336345. McManus, H. A.; Guiry, P. J. Chem. Rev. 2004 , 104 , 41514202. Desimoni, G.; Faita, G.; Jorgensen,K.A. Chem. Rev. 2006 , 106 ,35613651.Trost,B.M.;Machacek,M.R.;Aponick,A. Acc. Chem. Res. 2006 , 39 ,747760. 3 For reviews on applications see: (a) Braun, M.; Meier, T. Angew. Chem. Int. Ed. 2006 , 45 , 69526955. Graening,T.;Bette,V.;Neudorfl,J.;Lex,J.;Schmalz,H.G. Org. Lett. 2005 , 7,43174320.Trost,B.M. J. Org. Chem. 2004 , 69 ,58135837.Tunge,J.A.;Burger,E.C. Eur. J. Org. Chem. 2005 ,17151726. 4(a)B.M.TrostandC.Lee,in Catalytic Asymmetric Synthesis ,ed.I.Ojima,WileyVCH,NewYork,2ndEd, 2000 ,593–649;(b)A.PfaltzandM.Lautens,in Comprehensive Asymmetric Catalysis I-III ,ed.E.N.Jacobsen, A.PfaltzandH.Yamamoto,Springer,Berlin, 1999 ,833–884. 5(a) Söll, H.In Houben-Weyl ,4thed.Vol.V,1b;Thieme:Stuttgart, 1972 ,946.(b) Comprehensive Organic Synthesis, Vol. 4 ;Trost,B.M.;Fleming,I.,Eds.;Pergamon:Oxford, 1991 ,Chap.4.(c) Comprehensive Organic Synthesis, Vol. 7 ;Trost,B.M.;Fleming,I.,Eds.;Pergamon:Oxford, 1991 ,Chap.3.

7 Chap. 2: Metal-Catalyzed Allylic Substitutions least substituted position, yielding in the linear regioisomer ( l), or the more substituted position,givingthebranchedregioisomer( b).Monosubstitutedallylicsubstrateshavedrawn attentionthelastyearsbecausethecontroloftheregioselectivityofthereactioninfavorof the branched chiral product remained challenging. Recent developments have provided methodologieswherethesubstitutionofthesubstrate,thenatureofthemetalanditsligands playacrucialrole:thefactthatonlycatalyticamountsofthetransitionmetalarerequiredand thepossibilityoftuningthereactivitybymeansofsuitableligandshavedefinitelycontributed tothesuccessofthismethodology.

LG Nu Nu- b b [M] R [M] R LG R Nu l l R LG- R π-allyl intermediate Scheme 2-1: Generalschemefortransitionmetalcatalyzedallylicsubstitutions.

2.2. Palladium catalyzed allylic substitutions

Oneofthemostdocumented,1,6andhistoricallythefirst,metalusedforallylicsubstitutionsis palladium.ThisreactivitywasdiscoveredbyTsuji 7andthoroughlydevelopedbythegroupof Trost since the seventies. 8 This paragraph will thus set the basis for the analysis of mechanisticissueswhicharecommontomostofthemetalcatalyzedallylicsubstitutions.

2.2.1. General Mechanism

Thereaction,whichgeneralcourseisoutlinedin Scheme 2-2,startswiththe complexation of theallylicsubstrateontoanunsaturatedPd(0)species.Allylicacetatesandcarbonatesarethe mostwidelyusedsubstratesduetotheeaseoftheionisationthatallowstheformationofa π allylcomplexthrough oxidative addition .ThesePd(II) πallylcomplexescanthen isomerize via a π−σ−π rearrangementbeforethe addition of the nucleophile andfinallydecomplexation oftheproducttoregeneratetheactivePd(0)species.ThegeneralcatalyticcycleofthePd catalyzed asymmetric allylic substitution thus offers at least four opportunities for

6(a)Tenaglia,A.;Heumann,A. Angew. Chem. Int. Ed. 1999 , 38 ,21802184.Agrofoglio,L.A.;Gillaizeau,I.; Saito,Y. Chem. Rev. 2003 , 103 ,18751916. 7(a)Tsuji,J.;Shimizu,I.;Minami,I.;Ohashi,Y.;Sugiura,T.;Takahashi,K. J. Org. Chem. 1985 , 50 ,1523 1529.Tsuji,J.;Takahashi,H.;Morikawa,M. Tetrahedron Lett. 1965 ,4387. 8(a)Trost,B.M. Tetrahedron 1977 , 33 ,26152649.Trost,B.M. Acc. Chem. Res. 1980 , 13 ,385393.Trost,B. M.;Murphy,D.J. Organometallics 1985 , 4,11431145.Trost,B.M.;Strege,P.E. J. Am. Chem. Soc. 1977 , 99 , 16491651.Trost,B.M.;Verhoeven,T.R. J. Am. Chem. Soc. 1980 , 102 ,47304743.

8 Chap. 2: Metal-Catalyzed Allylic Substitutions enantiodiscrimination (see section 2.2.3). In some instances, the stereochemistry of the incomingnucleophilecanalsobesetinthesamestepprovidingafifthpossibility.

R ∗ R' R ∗ R' R LG or L L' Nu Nu R' Pd

Decoordination Coordination

[Pd] [Pd] [Pd] R ∗ R' or R ∗ R' R LG

Nu Nu R'

[Pd+] R Nucleophilic Oxidative Addition R' Addition LG- Nu- [Pd+] R R'

Isomerization Scheme 2-2: Generalschemefortransitionmetalcatalyzedallylicsubstitutions.

2.2.2. Structure of Metal-Allyl Complexes

Furthermore, to gain insight into the nature of the stereodetermining event, one needs to determinethestructureofthelowestenergydiastereomerictransitionstates.However,thisis notexperimentallyeasysinceonlythegroundstatemetalolefinormetalπallylcomplexes can,insomecases,convenientlybeobservedbyXraycrystallography 9,massspectrometry 10 or NMR spectroscopy.11 Though information concerning the structure of olefin complexes remains scarce, 12 many Xray structures of metalπallyl complexes have been studied. 9 Howevertheinfluenceoftheligandsontheenvironmentofthemetalandmoreimportantly itschangesduringthecourseofthereactionremaindifficulttopredictwithcertainty.Thus thecrucialinformationabouttheexactstructureofthelowestenergytransitionstateismost

9(a)Allured,V.S.;Kelly,C.M.;Landis,C.R. J. Am. Chem. Soc. 1991 , 113 ,112.Chan,A.S.C.;Pluth,J.J.; Halpern,J. J. Am. Chem. Soc. 1980 , 102 ,59525954.Fiaud,J.C.;Aribizouioueche,L. J. Chem. Soc. Chem. Commun. 1986 ,390392.Hayashi,T.;Yamamoto,A.;Ito,Y.;Nishioka,E.;Miura,H.;Yanagi,K. J. Am. Chem. Soc. 1989 , 111 ,63016311.LloydJones,G.C.;Pfaltz,A. Zeit. Naturforsch. 1995 , 50b ,361367.Rappe,A.K.; Casewit,C.J.;Colwell,K.S.;Goddard,W.A.;Skiff,W.M. J. Am. Chem. Soc. 1992 , 114 ,1002410035.Togni, A.;Rihs,G.;Pregosin,P.S.;Ammann,C. Helv. Chim. Acta 1990 , 73 ,723732.Trost,B.M.;Breit,B.;Peukert, S.;Zambrano,J.;Ziller,J.W. Angew. Chem. Int. Ed. Engl. 1995 , 34 ,23862388.VonMatt,P.;LloydJones,G. C.;Minidis,A.B.E.;Pfaltz,A.;Macko,L.;Neuburger,M.;Zehnder,M.;Ruegger,H.;Pregosin,P.S. Helv. Chim. Acta 1995 , 78 ,265284. 10 Muller,C.A.;Pfaltz,A. Angew. Chem. Int. Ed. 2008 , 47 ,33633366. 11 Zalubovskis, R.; Bouet, A.; Fjellander, E.; Constant, S.; Linder, D.; Fischer, A.; Lacour,J.; Privalov, T.; Moberg,C. J. Am. Chem. Soc. 2008 , 130 ,18451855. 12 Hodgson,M.;Parker,D.;Taylor,R.J.;Ferguson,G. J. Chem. Soc. Chem. Commun. 1987 ,13091311.

9 Chap. 2: Metal-Catalyzed Allylic Substitutions often only postulated. Still, much information can be gathered to rationalize the different mechanistictheories.

2.2.2.1. ηηη3-ηηη1-ηηη3 isomerization One crucial aspect of palladium catalyzed allylic substitution reactions is that, during the course of the reaction, ligands may dissociate, reassociate, exchange and/or change in conformation and geometry. This state of dynamic equilibrium is key to the selectivities observed.

syn syn A B A B R' H H 3 R H A B η3-η1 C-C rotation η3-η1 A B R R' R' R R 1 3 1 3 1 3 1 H H R' path a anti H H H H H H syn syn,syn-endo anti,syn-exo Pd-C rotation path b

A B H H η3-η1 A B : Metal H H R' 3 1 R A,B : ligands H R' 3 1 R H syn,syn-exo Scheme 2-3: η3η1η3isomerizationandnomenclatureofa πallylcomplex.

Animportantnomenclatureneedstobeintroducedatthispoint:(i)thesubstituentsofa π allyl are named anti and syn according to their position respective to the central allylic substituent ( Scheme 2-3), (ii) the πallyl is named exo or endo when the central allylic substituent is pointing respectively opposite or towards the concave face of the metal complex.Onthetimescaleofatypicalalkylationreaction,the syn and anti substituentsina palladium πallylcomplexcanexchangehundredsoftimesfasterthanthealkylation.

Twopossibleisomerizationpathwayshavebeenshown.Inthefirstcase(patha)theligands of the palladium and the substituents of the πallyl fragment keep the same relative configuration(boldsubstituentsremainonthesame side). This has two consequences: the bold Rgroupexchangespositionfrom syn to anti andtheconformationofthe πallylchanges from endo to exo butC1andC3globallyremainatthesameposition.Thestereospecificityof this isomerization was shown by Togni and collaborators in the case ofan allylpalladium Josiphos complex. 13 On the time scale of the nOe experiments, the carbon trans to the dicyclohexylphosphinogroup(C 1)alwaysremainsinthesameposition( Scheme 2-4).

13 Breutel,C.;Pregosin,P.S.;Salzmann,R.;Togni,A. J. Am. Chem. Soc. 1994 , 116 ,40674068.

10 Chap. 2: Metal-Catalyzed Allylic Substitutions

PCy 2 ηηη3-ηηη1 PCy2 ηηη1-ηηη3 PCy Fe P 2 Pd Fe P 3 P Ph 1 Pd Fe Pd 2 3 Ph2 Ph2 3 1 nOe 1 Rotation around C-C bond nOe Scheme 2-4: DynamicsofaJosiphospalladiumπallylcomplex.

Anothertypeofisomerizationisanapparentrotationofthe πallylwhichinvolvesarotation around the metalcarbon single bond in the η1 complex. In this case there is no anti /syn isomerizationoftheallylsubstituentsbutanoverallrotationoftheallylfragmentoccurs(bold substituents on opposite sides – Scheme 2-2, path b). Helmchen has shown that this mechanism takes place in the isomerization of (phosphinoaryl)oxazoline (Phox) palladium diphenylallylcomplexes( Scheme 2-5). 14

ηηη3-ηηη1 1 3 O PPh2 O PPh2 ηηη -ηηη O PPh2 N N N Pd Ph Pd Ph Pd 1 Ph 3 Ph 3 Ph 3 1 1 Ph Rotation around Pd-C bond Scheme 2-5: DynamicsPhoxpalladium πallylcomplex.

Thisisomerizationcanalsooccurthroughpseudorotationoftheligandswiththeparticipation ofacoordinatingcounterion 15 orbydecoordinationofoneoftheotherligandsofthemetal. 16

2.2.3. Enantiodiscriminating Steps

M M M M M M

LG LG Nu- LG -O Coordination on Oxidative addition Isomerization to Addition of nucleophile Allylation enantiotopic faces on enantiotopic enantiotopic faces on enantiotopic termini on enantiotopic faces of the olefin leaving groups of the π-allyl of the π-allyl of the nucleophile I II III IV V Scheme 2-6: SourcesforEnantiodiscriminationinmetalcatalyzedallylicsubstitutions.

2.2.3.1. Enantiofacial Complexation and Ionization (I) The complexation of the olefin to the metal is the first potential source of stereoselection. Indeed,unlesstheolefinissymmetricallysubstituted,thecomplexationoftheolefintothe 14 Sprinz,J.;Kiefer,M.;Helmchen,G.;Huttner,G.; Walter, O.; Zsolnai, L.; Reggelin, M. Tetrahedron Lett. 1994 , 35 ,15231526. 15 (a)Andersson,P.G.;Harden,A.;Tanner,D.;Norrby,P.O. Chem. Eur. J. 1995 , 1,1216.(b)Gogoll,A.; Ornebro,J.;Grennberg,H.;Bäckvall,J.E. J. Am. Chem. Soc. 1994 , 116 ,36313632.(c)Hansson,S.;Norrby,P. O.;Sjogren,M.P.T.;Akermark,B.;Cucciolito,M.E.;Giordano,F.;Vitagliano,A. Organometallics 1993 , 12 , 49404948. 16 (a)Albinati,A.;Kunz,R.W.;Ammann, C.J.;Pregosin, P. S. Organometallics 1991 , 10 , 18001806. (b) Churchil,M.R.;O'Brien,T.A. J. Chem. Soc. A 1970 ,206.

11 Chap. 2: Metal-Catalyzed Allylic Substitutions metalwillyieldaplanarchiralcomplex.Thestabilityofsuchmetalcomplexesisverymuch depending on the electronic and steric properties of the olefin. 17 For example electron withdrawinggroupsontheolefinwillenhancethestabilityofthecomplex(duetobetter π backbonding from the metal into the lower LUMO of the allylic ligand) whereas bulky groupswilldestabilizethecomplex via unfavorablestericinteractions.

MeO2C CO2Me R % ee σ CO2Me OR CO2Me 4O2NPhCO 22 0.78 NaCH(CO2Me)2

4 mol% Pd(dba)2 4CNPhCO 60 0.63 4 mol% (R)-BINAP dioxane, RT PhCO 76 0.00 t-Bu t-Bu t-Bu 4H3CPhCO 80 0.17 major minor 4H3COPhCO 90 0.27

Table 2-1:Examplesofenantioselectivecomplexationandionization.

ThisquestionwasinvestigatedbyFiaud et al. (Table 2-1)forthepalladiumcatalyzedallylic alkylationofusingBINAPaschiralligand. 18 Theselectivityoftheprocesswasfound tobeverysensitivetothereactionconditionsandthenatureoftheleavinggroupinparticular: enantioselectivities in this system were found to approximately linearly correlate with the electronic properties of the leaving benzoate group (Hammett σ value). There is no direct evidence for selective complexation as direct source ofenantioselection in metal catalyzed allylicsubstitutions;butsincetheolefincomplexservesasprecursortotheionizationstep, thesetwosourcesofselectivitycannotbeconsideredseparately.

2.2.3.2. Ionisation of Enantiotopic Leaving Groups (II) Type II asymmetricinductiondependsontheabilityofthecatalysttopromotedifferential ionization of enantiotopic leaving groups. As shown in Scheme 2-6 (II), the metal coordinatestothefaceoftheolefinoppositetotheleavinggroupsandtheoxidativeaddition canthenoccurwithdepartureofoneofthetwoenantiotopicleavinggroups.Manyligands have been used but the most successful family is based on a combination of 2 (diphenylphosphino)benzoicacid(DPPBA) 19 andenantiopurediolsordiaminespossessinga

C2symmetry;thisallowsmanystraightforwardvariations( Scheme 2-7).Twocasescanbe

17 (a)Tolman,C.A. J. Am. Chem. Soc. 1974 , 96 ,27802789.(b)White,D.;Coville,N.J. Adv. Organomet. Chem. 1994 , 36, 95. 18 (a)Fiaud,J.C.;Legros,J.Y. J. Org. Chem. 1990 , 55 ,48404846.(b)Legros,J.Y.;Fiaud,J.C.Tetrahedron 1994 , 50 ,465474. 19 (a) Hoots, J. E.; Rauchfuss, T. B.; Wrobleski, D. A. Inorg. Synth. 1982 , 21 , 175179. (b) Jeffery, J. C.; Rauchfuss,T.B.;Tucker,P.A. Inorg. Chem. 1980 , 19 ,33063316.(c)Rauchfuss,T.B. J. Organomet. Chem. 1978 , 162 ,C19C22.

12 Chap. 2: Metal-Catalyzed Allylic Substitutions distinguished:(a)asymmetricinductionontosymmetrically1,3disubstitutedolefins(Table 2-2)20 or(b)asymmetricinductionontosymmetrically1,1disubstitutedolefins( Table 2-3).21

O O X X X O O O O Ph Ph Ph Ph = P P H2N NH2 NH Ph Ph H2N NH2 2 X O O H2N L* L1 L2 L3 L4 Scheme 2-7:DPPBAbasedchiralligandsforPdcatalyzedasymmetricallylicsubstitutions.

n Ligand %yield %ee

1 L1 100 (+)64 2.5 mol% (dba)3Pd2 CHCl3 O O 7.5 mol% L* n O O n O 1 L2 97 (+)78 THF R.T. O TsHN NHTs N 1 L3 91 (–)79 Ts 1 L4 94 (–)88 2 L1 82 97 3 L1 82 95

Table 2-2:Examplesofintramolecularasymmetricinductionontosymmetrically1,3disubstitutedolefins.

R R’ NaNu %yield %ee

2.5 mol% (dba)3Pd2 CHCl3 Ph CH 3 NaCH 3C(CO 2CH 3)2 92 95 H 7.5 mol% 2 H NaNu Nu iPr CH 3 NaCH 3C(CO 2CH 3)2 93 95 R OCOR' R OCOR' THF R.T. OCOR' CH 3 CH 3 NaCH 3C(CO 2CH 3)2 99 92

CH 3 C2H5 NaCH 3C(CO 2CH 3)2 99 92

CH 3 CH 3 NaCH 3C(SO 2Ph) 2 99 67

Table 2-3: Examplesofasymmetricinductionontosymmetrically1,1disubstitutedolefins.

20 (a)Trost,B.M.;Sudhakar,A.R. J. Am. Chem. Soc. 1987 , 109 ,37923794.(b)Trost,B.M.;Sudhakar,A.R. J. Am. Chem. Soc. 1988 , 110 ,79337935.(c)Trost,B.M.;Vanvranken,D.L. J. Am. Chem. Soc. 1990 , 112 , 12611263. 21 (a) Trost, B. M.; Lee, C. B.; Weiss, J. M. J. Am. Chem. Soc. 1995 , 117 , 72477248. (b) Trost, B. M.; Vercauteren,J. Tetrahedron Lett. 1985 , 26 ,131134.

13 Chap. 2: Metal-Catalyzed Allylic Substitutions

2.2.3.3. Enantiofacial Isomerization of πππ-Allyl Complexes (III)

LG LG B A or

C1-symmetric

Nu A B A B Nu A B Nu endo H H H H H H

Nu A B Nu A B Nu A B

Nu B A B A Nu B A Nu

exo H H H H H H

Nu B A Nu B A Nu B A syn,syn syn,syn anti,syn anti,syn anti,anti anti,anti Scheme 2-8:Someofthepossiblecomplexesofunsymmetrical πallylsystemsandnucleophileattacks.

Ifbothterminalpositionsoftheallylfragmentaredisymmetricallysubstitutedandtheligands 22 are not C2symmetric,acomplexsituation with upto16equilibrating πallyl complexes occurs( Fig 2-8).Inadditionforeachcase,twodifferenttrajectoriesofthenucleophilecanbe envisageddependingontheterminusofattackasshownin Scheme 2-9.23

O O

MeO OMe MeO OAc OH MeO N NaCH(CO2Me)2 56 % yield; 80 % ee 3 Fe PPh2 [{η -C3H5Pd(dba)}2] L10 O O THF 40°C PPh2 OH MeO OMe MeO L10

44 % yield; 95 % ee Scheme 2-9:Exampleofdissymmetricallysubstituteddiarylallylicacetate.

Inthiscase,theresultimpliesthateachenantiomerofthestartingmaterialistheprecursorof oneoftheregioisomericproductsandthatracemizationofneitherstartingmaterialnorthe reactiveintermediateisoccurring.Thisexampleishowevermisleadingsincetheregiocontrol remainsageneralproblemforPdcatalyzedallylicsubstitutionwithdissymmetricalsubstrates sincethemorehinderedpositionisgenerallyinaccessiblefornucleophilicattackasshownin

22 With C2symmetricligandsorsymmetricallysubstitutedallylicsubtratesthesituationbecomesmuchsimpler. 23 Hayashi,T.;Yamamoto,A.;Hagihara,T.;Ito,Y. Tetrahedron Lett. 1986 , 27 ,191194.

14 Chap. 2: Metal-Catalyzed Allylic Substitutions the two following examples ( Scheme 2-10 ). 24 This issue is still difficult to overcome with Pd 25 butsomeligandshavebeendevelopedtocircumventthisproblem. 26

TMS OAc TMS CH(CO2Me)2 NaCH(CO2Me)2 TMS 3 [{η -C3H5PdCl}2] TMS L2

69 % yield; 86 % ee

Ph OAc

NaCH(CO2Me)2 Ph CH(CO2Me)2 Ph 3 [{η -C3H5PdCl}2] L2 Ph

74 % yield; 96 % ee Scheme 2-10:Regioselectivityfordissymmetricallysubstitutedallylicacetate.

2.2.3.4. Attack at Diastereotopic Termini of the πππ-Allyl Complex (IV) The1,3diphenylallylfragmentwasintroducedasamodelsubstrateforthemetalcatalyzed allylicalkylationsbecauseofthetransientformationofa meso πallylcomplex( Scheme 2- 11)andhasbecomeastandardforcomparingtheactivityofnewligands. 27 Numerousligands havebeendevelopedforthistransformation;afewexamplesareshownin Scheme 2-12.28 In thiscasethenucleophileisdirectlyinvolvedinthestereodeterminingstep;itsnaturethushas acrucialroleontheenantioselectivity( Table 2-4).

24 (a)R=TMS:Romero,D.L.;Fritzen,E.L. Tetrahedron Lett. 1997 , 38 ,86598662.(b)R=Ph:Martin,C.J.; Rawson,D.J.;Williams,J.M.J. Tetrahedron: Asymmetry 1998 , 9,37233730. 25 (a)Bernardinelli,G.H.;Kündig,E.P.;Meier,P.;Pfaltz,A.;Radkowski,K.;Zimmermann,N.;Neuburger Zehnder,M. Helv. Chim. Acta 2001 , 84 ,32333246.(b)Cozzi,P.G.;Zimmermann,N.;Hilgraf,R.;Schaffner, S.;Pfaltz,A. Adv. Synth. Cat. 2001 , 343 ,450454.(c)Fernandez,F.;Gomez,M.;Jansat,S.;Muller,G.;Martin, E.; FloresSantos, L.; Garcia, P. X.; Acosta, A.; Aghmiz, A.; GimenezPedros, M.; MasdeuBulto, A. M.; Dieguez,M.;Claver,C.;Maestro,M.A. Organometallics 2005 , 24 ,39463956.(d)Polosukhin,A.I.;Bondarev, O.G.;Korostylev,A.V.;Hilgraf,R.;Davankov,V.A.;Gavrilov,K.N. Inorg. Chim. Acta 2001 , 323 ,5561.(e) Powell,M.T.;Porte,A.M.;Reibenspies,J.;Burgess,K. Tetrahedron 2001 , 57 ,50275038. 26 (a)Hayashi,T.;Kawatsura,M.;Uozumi,Y. Chem. Commun. 1997 ,561562.(b)Hayashi,T.;Kawatsura,M.; Uozumi,Y. J. Am. Chem. Soc. 1998 , 120 ,16811687.(c)Hilgraf,R.;Pfaltz,A. Synlett 1999 ,18141816.(d) Pretot,R.;Pfaltz,A. Angew. Chem. Int. Ed. 1998 , 37 ,323325.(e)You,S.L.;Zhu,X.Z.;Luo,Y.M.;Hou,X. L.;Dai,L.X. J. Am. Chem. Soc. 2001 , 123 ,74717472. 27 Trost,B.M.;Murphy,D.J. Organometallics 1985 , 4,11431145. 28 (a)Evans,D.A.;Woerpel,K.A.;Hinman,M.M.;Faul,M.M. J. Am. Chem. Soc. 1991 , 113 ,726728.(b) Dawson,G.J.;Frost,C.G.;Williams,J.M.J. Tetrahedron Lett. 1993 , 34 ,31493150.(c)Sprinz,J.;Helmchen, G. Tetrahedron Lett. 1993 , 34 ,17691772.Vonmatt,P.;Pfaltz,A. Angew. Chem. Int. Ed. Engl. 1993 , 32 ,566 568.(d)Allen,J.V.;Coote,S.J.;Dawson,G.J.;Frost,C.G.;Martin,C.J.;Williams,J.M.J. J. Chem. Soc.- Perkin Trans. 1 1994 ,20652072.(e)Sprinz,J.;Kiefer,M.;Helmchen,G.;Huttner,G.;Walter,O.;Zsolnai,L.; Reggelin, M. Tetrahedron Lett. 1994 , 35 ,15231526.(f)Abbenhuis,H.C.L.;Burckhardt,U.;Gramlich,V.; Kollner,C.;Pregosin,P.S.;Salzmann,R.;Togni,A. Organometallics 1995 , 14 ,759766.(g)Pregosin,P.S.; Ruegger,H.;Salzmann,R.;Albinati,A.;Lianza,F.;Kunz,R.W. Organometallics 1994 , 13 ,8390.(h)Trost,B. M.;Murphy,D.J. Organometallics 1985 , 4,11431145.Formorerecentreportsseereferencescitedin1h.

15 Chap. 2: Metal-Catalyzed Allylic Substitutions

Formal plane of symmetry Nu

R R LG

R R R R Nu - - Nu Nu R R Scheme 2-11:Desymmetrizationofmeso πallylcomplexes.

Thecaseofcyclicsubstrateswillnotbediscussedheresincetheirselectivityresemblesthe one detailed above to the exception of their impossibility to isomerize via a π−σ−π mechanism.Thesubstratesremainhoweverimportantintheassessmentofthescopeofnew catalyticsystems.29

O O O O PCy2 PPh2 Fe PPh N N 2 PPh2 N PPh2 N XPh R R R t-Bu L5a R = t-Bu L6a R = i-Pr L7a X = S Josiphos (S)-BINAP L5b R = Bn L6b R = Ph L7b X = SO L8 L6c R = t-Bu L7c X = P-Np L9 L7d X = P-2-Biphenylyl L7e X = Se Scheme 2-12:Classicalligands.

29 (a)Bergner,E.J.;Helmchen,G. Eur. J. Org. Chem. 2000 ,419423.(b)Evans,D.A.;Campos,K.R.;Tedrow, J. S.; Michael, F. E.; Gagne, M. R. J. Am. Chem. Soc. 2000 , 122 , 79057920. (c) Kudis, S.; Helmchen, G. Angew. Chem. Int. Ed. 1998 , 37 ,30473050.(d)Mori,K.;Watanabe,H.;Fujiwhara,M.;Kuwahara,S. Liebigs Ann. Chem. 1990 ,12571259.(e)Sennhenn,P.;Gabler,B.;Helmchen,G. Tetrahedron Lett. 1994 , 35 ,8595 8598.(f)Trost,B.M.;Bunt,R.C. J. Am. Chem. Soc. 1994 , 116 ,40894090.(g)Trost,B.M.;Dudash,J.;Dirat, O. Chem. Eur. J. 2002 , 8,259268.(h)Trost,B.M.;Kondo,Y. Tetrahedron Lett. 1991 , 32 , 16131616. (i) Trost,B.M.;Organ,M.G. J. Am. Chem. Soc. 1994 , 116 ,1032010321.(j)Trost,B.M.;Schroeder,G.M. J. Org. Chem. 2000 , 65 ,15691573.

16 Chap. 2: Metal-Catalyzed Allylic Substitutions

Ligand Nu Pdsource %yield % ee Ref(s)

L9 a [C 3H5PdCl] 2 80 34 30 OAc Nu L* cat. Pd(0), L6b b [C 3H5PdCl] 2 99 99 28b Nu, Solvent L6a b [C 3H5PdCl] 2 98 98 28b,28d

L7a b [C 3H5PdCl] 2 92 96 28c,31 Nucleophile: L7e b [C 3H5PdCl] 2 5084 95 28d Na O O O OH (a) (b) + BSA L8 b [C 3H5PdOTf] nd 93 28e,32 MeO OMe MeO OMe L7b b [C 3H5PdCl] 2 100 92 31 Na O OH O (c)+ BSA (d) O L9 b [C 3H5PdCl] 2 85 90 33

L5b b [C 3H5PdCl] 2 97 88 34 O L7c b [C 3H5PdCl] 2 98 78 28d (f) (PhSO2)2CH2 + BSA (e) + BSA L6b d [C H PdCl] 98 97 28b (g) (PhSO2)2CHNa 3 5 2

O L9 d [C 3H5PdCl] 2 92 95 30

L5a e [C 3H5PdCl] 2 87 88 28c

L5a f [C 3H5PdCl] 2 78 93 28c

Table 2-4:Examplesofallylicalkylationof1,3diphenylprop2enylacetate.

2.2.3.5. Allylation of Enantiotopic Faces of the Nucleophile (V)

N OMe H AcO OAc 5 steps N OMe N O O Pd(0), L O CO2Me NH2 CO2Me ee up to 90 % (_)-Hupersine A

O H O N OAc CO2Et CO Et 4 steps 2 3 0.5 mol% [{η -C3H5PdCl}2] OH 1.5 mol% L2 TNG, Toluene, 0 °C 81 % yield,86 % ee (_)-Nitramine Scheme 2-13:Allylationofprochiralnucleophiles. 35

Twomethodologieshavebeendevelopedtoefficientlyoverrunthisregioselectivityproblem ofPd( Scheme 2-13):(i)intramolecularreactions(formationofa5or6memberedcycleis

30 Yamaguchi,M.;Shima,T.;Yamagishi,T.;Hida,M.Tetrahedron Lett. 1990 , 31 ,50495052. 31 Allen,J.V.;Bower,J.F.;Williams,J.M.J. Tetrahedron: Asymmetry 1994 , 5,18951898. 32 Pregosin,P.S.;Salzmann,R.;Togni,A. Organometallics 1995 , 14 ,842847. 33 Brown,J.M.;Hulmes,D.I.;Guiry,P.J. Tetrahedron 1994 , 50 ,44934506. 34 Pfaltz,A. Acc. Chem. Res. 1993 , 26 ,339345. 35 HurpersineA: (a)He,X.C.;Wang,B.;Bai,D.L. Tetrahedron Lett. 1998 , 39 ,411414.(b)He,X.C.;Wang, B.;Yu,G.L.;Bai,D.L. Tetrahedron: Asymmetry 2001 , 12 ,32133216.(c)Kaneko,S.;Yoshino,T.;Katoh,T.; Terashima,S. Tetrahedron: Asymmetry 1997 , 8,829832.(d)Kaneko,S.;Yoshino,T.;Katoh,T.;Terashima,S. Tetrahedron 1998 , 54 ,54715484.Nitramine: (e)Trost,B.M.;Radinov,R.;Grenzer,E.M. J. Am. Chem. Soc. 1997 , 119 ,78797880.

17 Chap. 2: Metal-Catalyzed Allylic Substitutions thedrivingforce), 36 (ii)theuseofaprochiralnucleophile(thefacialattackbeingcontrolled bytheligand).Thelattercasehasreceivedalotofinterest.37,1b,1g,1hIndeedenantioselection canoccurwhenthe πallylcomplexdifferentiatesthetwoprochiralfacesofthenucleophile andcanthus,despitetheintrinsiclinearselectivityofpalladium,yieldachiralproductwith highenantioselectivity.Tobettercircumventthisdrawback,othermetalshavebeenusedand willbedetailedinthenextparagraphs.

2.3. Other Metal-Catalyzed Allylic Substitutions

2.3.1. Copper

Copper tolerates the use of non stabilized hard nucleophiles such as nondelocalized carbanions.Thisreactionhasbeenthoroughlystudiedandmanyreviewsaredealingwiththis 38 subject. Ingeneral,coppercatalyzedallylicsubstitutionsproceedthoughaS N2’mechanism (Scheme 2-14 ), which, contrary to palladium, makes the reaction regiospecific. 39 Both Grignard and organozinc reagents have been successfully used in this transformation in conjunctionwithamongothersenantiopureaminoacids, 40 diaminocarbenes, 41 diphosphines 42 andphosphoramidites43 asligands.

LG R RMgX or R2Zn SN2' mechanism R1 R2 Cu(I), L R1 R2 Scheme 2-14:Cucatalyzedallylation.

36 (a)Bandini,M.;Melloni,A.;Piccinelli,F.;Sinisi,R.;Tommasi,S.;UmaniRonchi,A. J. Am. Chem. Soc. 2006 , 128 ,14241425.(b)Bandini,M.;Melloni,A.;Tommasi,S.;UmaniRonchi,A. Synlett 2005 ,11991222. (c)Bian,J.W.;VanWingerden,M.;Ready,J.M. J. Am. Chem. Soc. 2006 , 128 ,74287429.(d)Koch,G.;Pfaltz, A. Tetrahedron: Asymmetry 1996 , 7,22132216.(e)Trost,B.M.;Sacchi,K.L.;Schroeder,G.M.;Asakawa,N. Org. Lett. 2002 , 4,34273430. 37 For reviews on the addition of preformed enolates onto πallyl complexes see: (a) Braun, M.; Meier, T. Angew. Chem. Int. Ed. 2006 , 45 ,69526955.(b)Braun,M.;Meier,T. Synlett 2006 ,661676. 38 Forrecentreviewssee:(a)Yorimitsu,H.;Oshima,K. Angew. Chem. Int. Ed. 2005 , 44 ,44354439.(b)Kar, A.;Argade,N.P. Synthesis 2005 ,29953022.(c)Alexakis,A.;Malan,C.;Lea,L.;TissotCroset,K.;Polet,D.; Falciola,C. Chimia 2006 , 60 ,124130.(d)Falciola,C.;Alexakis,A. Eur. J. Org. Chem. 2008 , 2008 ,3755.(e) Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. Chem. Rev. 2008 , 108 , 27962823. (f) Harutyunyan,S.R.;denHartog,T.;Geurts,K.;Minnaard,A.J.;Feringa,B.L. Chem. Rev. 2008 , 108 ,2824 2852. 39 Theterm regiospecificity isnotdefinedinthe1996IUPACrecommendations. 40 Murphy,K.E.;Hoveyda,A.H. Org. Lett. 2005 , 7,12551258. 41 VanVeldhuizen,J.J.;Campbell,J.E.;Giudici,R.E.;Hoveyda,A.H. J. Am. Chem. Soc. 2005 , 127 ,6877 6882. 42 Geurts,K.;Fletcher,S.P.;Feringa,B.L. J. Am. Chem. Soc. 2006 , 128 ,1557215573. 43 Falciola,C.A.;TissotCroset,K.;Alexakis,A. Angew. Chem. Int. Ed. 2006 , 45 ,59955998.

18 Chap. 2: Metal-Catalyzed Allylic Substitutions

2.3.2. Molybdenum

Molybdenumcatalyzedallylic substitutionsarevery similar to Pdcatalyzed reaction to the keydifferencethat,withoutanyelectronicbias,thenucleophilepreferentiallyattacksontothe more substituted terminus of the πallyl. 44 Mechanistic studies have provided conclusive evidence that the Mocatalyzed allylic alkylations proceeds with an overall retention of configuration through a mechanism involving an oxidative addition and subsequent nucleophilicattackontotheresulting πallylcomplex. 44 Manyexampleshavebeendetailedin thelitterature 1b,1g,1handcanbeexemplifiedbythefollowingreaction(Scheme 2-15)inwhich twostereocentresareintroducedinasinglestep.45

Ph OCO2Me 10 mol% [Mo(C7H8)(CO)3] N 15 mol% L9 O 70-89 % yield, LiHMDS O Ph R b:l 5.5:1-24:1 O O N d.r. 7.4:1-24:1 up to >99 % ee NH HN O O N L9 N R R = Me, n-Bu, s-Bu, Allyl, i-Pr, c-Hex, Ph Ar = Ph, 2-thienyl, 2-Br-Ph, 2,4-(MeO)2-Ph Scheme 2-15:Mocatalyzedallylicsubstitution.

2.3.3. Tungsten

ThecaseoftungstenisverysimilarintermsofselectivitytotheoneofMo;notablyinthis casethetungstenπallylcomplexesarenotsubjectto anti / syn isomerizationandapparent rotationprocessescontrarytothecaseforPdcatalyzed reactions. Mechanistic insight into this reaction has been provided by Kočovský. 46 One example is given below ( Scheme 2- 16).47,1b,1g

O O 10 mol% [W*] 89 % yield OPO(OEt) NaHC(CO2Me)2 MeO OMe 2 b:l 3:1 O PPh2 96 % ee N W(CO)2(NCMe) [W*] Scheme 2-16: Mocatalyzedallylicsubstitution.

44 Belda,O.;Moberg,C. Acc. Chem. Res. 2004 , 37 ,159167. 45 Trost,B.M.;Dogra,K.;Franzini,M. J. Am. Chem. Soc. 2004 , 126 ,19441945. 46 Malkov,A.V.;Baxendale,I.R.;Dvorak,D.;Mansfield,D.J.;Kočovský,P. J. Org. Chem. 1999 , 64 ,2737 2750. 47 (a)LloydJones,G.C.;Pfaltz,A. Angew. Chem. Int. Ed. Engl. 1995 , 34 ,462464.(b)LloydJones,G.C.; Pfaltz,A. Zeit. Naturforsch. 1995 , 50b ,361367.

19 Chap. 2: Metal-Catalyzed Allylic Substitutions

2.3.4. Rhodium

Rhodium is even less prone to isomerization than tungsten, leading to the possibility to develop regio and stereospecific reactions.48,1h As shown by A. Evans, the Rhcatalyzed allylic substitution of cinnamyl carbonates with Cuenolates can be fully regio and stereospecific ( Scheme 2-17 ). 49 Enantioselective versions of this reaction 50 have also been developedasshownin Scheme 2-18 .51 O i. n-BuLi, ClCO2Me OH ii. 4-MeOC6H4COMe LiHMDS, CuI 4-MeO-Ph 80 % yield b:l > 99:1

iii. 5 mol% RhCl(PPh3)3 99 % cee MeO 20 mol% P(OEt)3 MeO Scheme 2-17: Regioandstereospecific Rhcatalyzedallylicsubstitution.

O O H2C(CO2Me)2 O OAc Cs2CO3 MeO OMe 93-97 % yield b:l 88:12-99:1 Ar 5 mol% [Rh(dpm)(C2H4)2] N 5 mol% L10 94-97 % ee Ar Ph2P Toluene, 40 °C

Ar = Ph, 4-Me-Ph, 4-CF3-Ph, 4-Cl-Ph (S,S)-L10 Scheme 2-18: Enantioselective Rhcatalyzedallylicsubstitution.

2.3.5. Iridium

IrcatalystswerefirstprobedforallylicsubstitutionbyTakeuchi 52 andhavereceivedthemost attentioninthecontextofallylicsubstitutioninthelatestyears. 1g,1h,53 Thefocuswillonlybe madeoncarboncarbonbondformingreactions,forheteroatomicnucleophilesseetheabove 1g,1h,52,53 mentioned reviews. Using [Ir(cod)Cl]2, as precatalyst, fine tuning with ligands and comparison of isomeric substrates uncovered the following trends: (i) reaction rate and regioselectivityareincreasedbyelectronpoorligandsanddecreasedbyelectronrichligands; (ii)aligandtoIrratioof1givesoptimalresults;additionalligandleadstodecreaseinratebut notinregioselectivity;(iii)thereactionrateissignificantlyhigherforthebranchedthanfor thelinearsubstrates;(iv)therearedistinctmemoryeffectsconcerningtheallylicsubstratein 48 Leahy,D.K.;Evans,P.A.In Modern Rhodium-Catalyzed Organic Reactions ;edEvans,P.A.,WileyVCH: Weinheim,Germany, 2005 ,191214andreferencestherein. 49 Evans,P.A.;Leahy,D.K. J. Am. Chem. Soc. 2003 , 125 ,89748975andreferencestherein. 50 Menard,F.;Chapman,T.M.;Dockendorff,C.;Lautens,M. Org. Lett. 2006 , 8,45694572. 51 Hayashi,T.;Okada,A.;Suzuka,T.;Kawatsura,M.Org. Lett. 2003 , 5,17131715. 52 (a)Takeuchi,R.;Akiyama,Y. J. Organomet. Chem. 2002 , 651 ,137145.(b)Takeuchi,R.;Kashio,M. Angew. Chem. Int. Ed. Engl. 1997 , 36 ,263265.(c)Takeuchi,R.;Kezuka,S. Synthesis 2006 ,33493366.. 53 (a)Helmchen,G.;Dahnz,A.;Dubon,P.;Schelwies,M.;Weihofen,R. Chem. Commun. 2007 ,675691.(b) Miyabe,H.;Takemoto,Y. Synlett 2005 ,16411655.

20 Chap. 2: Metal-Catalyzed Allylic Substitutions that branched substrates give branched products with high selectivity and linear substrates tendtogivemixtures;(v)substrateswith( Z)configurationofthedoublebondpreferentially yield linear products with conservation of the ( Z)configuration. A few representative examplesofIrcatalyzedallylationofstabilizedcarbanionsaregiveninTable 2-5.

R R' cat. [Ir(cod)Cl] ,L* Nu or 2 Ar Ar Nu- Ar

L Ar= R= R’= Pronucleophile %yield %ee Ref

L13 (CH 2)2Ph OAc NaHC(CO 2Me) 2 99 93 54

L11 4MeOPh OAc NaHC(CO 2Me) 2 98 95 55

L12 4MeOPh OCO 2Me H2C(CO2Me) 2 99 96 56

L14 Ph OCO 2Me NaHC(CO 2Me) 2 88 96 57

L14 Ph OCO 2Me NaHC(CO 2Me) 2 82 82 58

L15 Ph OCO 2Me CH3CH 2NO 2 85(dr 1:1) 98,96 59

L15 Ph OCO 2Me CH 2(CO 2Et)NO 2 90 98 59

Ligands: OMe Ph O O O O O P O P N P N P N N P(4-CF -Ph) 3 2 O Ph O O O Ph OMe L11 L12 L13a L13b L13c Table 2-5:Examplesofallylicalkylationofcinnamylderivedacetatesandstereotypicalligands. The three following examples of Ircatalyzed allylicsubstitutions with carboncarbon bond formationhavebeenchosenduetotheirstrongresemblancewiththereactionsubsequently detailedinthismanuscript.Thefirstexampleistheenantioselective αallylationof enolates, generated in situ by the addition of fluoride anion to silyl ethers, yielding branched γ,δunsaturated ketones as the major product from silyl enol ethers and Boc protectedallylicalcohols( Scheme 2-19 ).60

54 Bartels,B.;Helmchen,G. Chem. Commun. 1999 ,741742.. 55 (a)Janssen,J.P.;Helmchen,G. Tetrahedron Lett. 1997 , 38 ,80258026.(b)GarciaYebra,C.;Janssen,J.P.; Rominger,F.;Helmchen,G. Organometallics 2004 , 23 ,54595470.. 56 (a)Fuji,K.;Kinoshita,N.;Tanaka,K.;Kawabata,T. Chem. Commun. 1999 ,22892290.(b)Kinoshita,N.; Marx,K.H.;Tanaka,K.;Tsubaki,K.;Kawabata,T.;Yoshikai,N.;Nakamura,E.;Fuji,K. J. Org. Chem. 2004 , 69 ,79607964. 57 Lipowsky,G.;Miller,N.;Helmchen,G. Angew. Chem. Int. Ed. 2004 , 43 ,45954597. 58 (a) Alexakis, A.; Polet, D. Org. Lett. 2004 , 6, 35293532. (b) Polet, D.; Alexakis, A.; TissotCroset, K.; Corminboeuf,C.;Ditrich,K. Chem. Eur. J. 2006 , 12 ,35963609.(c)Polet,D.;Alexakis,A. Org. Lett. 2005 , 7, 16211624. 59 Dahnz,A.;Helmchen,G. Synlett 2006 ,697700. 60 Graening,T.;Hartwig,J.F. J. Am. Chem. Soc. 2005 , 127 ,1719217193.

21 Chap. 2: Metal-Catalyzed Allylic Substitutions

OTMS O R' 2 mol% [Ir(cod)Cl]2 L13b 4 mol% ent- R' 46-94 % yield b:l 87:13-99:1 CsF 0.4 equiv. R OBoc R 91-96 % ee ZnF2 1.5 equiv

R = 4-anisyl, 4-CF3-Ph, 2-furyl, i-Pr, n-Pr,1-propenyl, Ph R' = Ph, 2-anisyl, i-Pr, phenethyl Scheme 2-19: Ircatalyzedregioandenantioselectiveallylationofpreformedsilylenolethers.

ThesecondexampleistheIrcatalyzedallylationofketaminestogive,afteracidichydrolysis, similar γ,δunsaturated ketones with high regioselectivity in preference for the branched positionandgoodenantioselectivity(Scheme 2-20). 61

N O i. 2 mol% [Ir(cod)Cl]2 R' 4 mol% ent-L13b R' 64-91 % yield b:l 85:15 - >99:1 77-97 % ee ZnCl2 0.5 equiv R Toluene R OCO2i-Pr ii. NaOAc/NaOH, H2O

R = Ph, 4-anisyl, 4-CF3-Ph, 2-furyl, 2-anisyl, Me, n-Pr R' = Ph, i-Pr, 2-anisyl, i-Bu Scheme 2-20: RegioselectiveandenantioselectiveIrcatalyzedallylationofpreformedenamines.

ThislastexampleofIrcatalyzedallylicsubstitutiondealswiththeregioandenantioselective decarboxylative alkylation of γsubstituted allylic βaryloylacetates in the presence of a stoichiometric amount ofbase( Scheme 2-21). 62 The same reaction, though catalyzed by a Rucomplex,willbethebasisforthismanuscript.

O O O 2 mol% [Ir(cod)Cl]2 Ar O 4 mol% ent-L13b Ar 62-83 % yield b:l 80:20 - >99:1 DBU 2 equiv. 89-96 % ee R R CH2Cl2, 40 °C

R = Ph, 4-Me-Ph, 4-MeO-Ph, 3-MeO-Ph, 4-CF3-Ph, 4-F-Ph, 2-furyl, Me, n-C5H11 Ar = Ph, 4-MeO-Ph, 4-Me-Ph, 2-naphthyl Scheme 2-21: Ircatalyzedregioandenantioselectivedecarboxylativeallylicalkylations.

SeveralothermetalshavebeenusedascatalystsinallylicsubstitutionsuchasNi, 63 Pt 64 and Fe 65 butwillnotbedetailedinthismanuscript.

61 Weix,D.J.;Hartwig,J.F. J. Am. Chem. Soc. 2007 , 129 ,77207721. 62 He,H.;Zheng,X.J.;Yi,U.;Dai,L.X.;You,S.L. Org. Lett. 2007 , 9,43394341. 63 (a)Consiglio,G.;Piccolo,O.;Roncetti,L.;Morandini,F. Tetrahedron 1986 , 42 ,20432053.(b)Consiglio,G.; Indolese,A. Organometallics 1991 , 10 ,34253427.(c)Indolese,A.F.;Consiglio,G. Organometallics 1994 , 13 , 22302234.(d)Son,S.;Fu,G.C. J. Am. Chem. Soc. 2008 , 130 ,27562757.(e)GomezBengoa,E.;Heron,N. M.;Didiuk,M.T.;Luchaco,C.A.;Hoveyda,A.H. J. Am. Chem. Soc. 1998 , 120 ,76497650. 64 (a)Blacker,A.J.;Clarke,M.L.;Loft,M.S.;Mahon,M.F.;Humphries,M.E.;Williams,J.M.J. Chem. Eur. J. 2000 , 6,353360.(b)Blacker,A.J.;Clark,M.L.;Loft,M.S.;Williams,J.M.J. Chem. Commun. 1999 ,913 914.

22 Chap. 2: Metal-Catalyzed Allylic Substitutions

2.4. Ruthenium-Catalyzed Allylic Substitutions

Sincerutheniumisthemetalofchoiceforthiswork, 66 a wider scope of reactions will be discussedbutkeepingafocusonCpRutypecatalysts.Rucatalyzedreactionscannotbefully coveredherebutonecannotomittociteolefinmetathesis 67 orenynecyclisationreactions. 68

2.4.1. Early-Stage Developments

Historically,thefirstuseofRubasedcatalystforallylicsubstitutionwasreportedbyTsujiin

1985 using [RuH 2(PPh 3)4] as catalyst, cinnamyl carbonates as substrate and activated β ketoestersasprenucleophile.69 SeveralotherRubasedcatalystsweresubsequentlyproposed forallylicsubstitution,howevernoneofthefollowingaffordedareactionwithasatisfying 70 71 regioselectivity in favour of the branched product: [Ru(cod)(cot)], [CpRuCl(PPh 3)2], 72 73 74 [CpRuCl(cod)], [CpRu(PPh 3)(MeCN)2][PF 6], and[CpRu(MeCN)3][PF 6]( 4a ). Thislatter exampleallowedhoweverthereactionstotakeplaceundermuchmilderconditions. 75 Thefirstbreakthroughintermsofregioselectivity,butalsointermsofreactivity,camewith theuseofCp*Rucomplexes;thefivemethylgroups offering to the metal simultaneously enhanced steric shielding and electron density. The first successful catalyst described is [Cp*RuCl(cod)]whichaffordedgoodselectivitiesinfavorofthebranchedproductmainlyfor cinnamyl substrates;alkyl substituted substratesremaininghoweverproblematic. 76 Alotof effortsweremadetodevelopnewcatalyticcombinationsandtheuseofNbasedligands 77 wasparticularlyinvestigated. 78 65 (a)Plietker,B.;Dieskau,A.;Mows,K.;Jatsch,A. Angew. Chem. Int. Ed. 2008 , 47 ,198201.(b)Fukuzawa, S.;Yamamoto,M.;Hosaka,M.;Kikuchi,S. Eur. J. Org. Chem. 2007 ,55405545. 66 Rucatalyzed«Carroll rearrangements»willbestudiedseparatelyattheendofthissection. 67 (a) Grubbs, R. H.; Trnka, T. M in Ruthenium in Organic Synthesis , ed Murahashi, S.I. WileyVCH, Weinheim,2004 ,153177.(b)Clavier,H.;Grela,K.;Kirschning,A.;Mauduit,M.;Nolan,S.P. Angew. Chem. Int. Ed. 2007 , 46 ,67866801.(c)Hoveyda,A.H.;Schrock,R.R.Comprehensive Asymmetric Catalysis 2004 ,1, 207233. 68 Trost,B.M.;Frederiksen,M.U.;Rudd,M.T. Angew. Chem. Int. Ed. 2005 , 44 ,66306666. 69 Minami,I.;Shimizu,I.;Tsuji,J. J. Organomet. Chem. 1985 , 296 ,269280. 70 (a)Zhang,S.W.;Mitsudo,T.;Kondo,T.;Watanabe,Y. J. Organomet. Chem. 1993 , 450 ,197207.(b)Kondo, T.;Mitsudo,T.in Ruthenium in Organic Synthesis ,edMurahashi,S.I.WileyVCH,Weinheim, 2004 ,129–151. 71 Kang,S.K.;Kim,D.Y.;Hong,R.K.;Ho,P.S. Synthetic Commun. 1996 , 26 ,32253235. 72 Morisaki,Y.;Kondo,T.;Mitsudo,T.A. Organometallics 1999 , 18 ,47424746. 73 Kitamura,M.;Tanaka,S.;Yoshimura,M. Journal of Organic Chemistry 2002 , 67 ,49754977. 74 Tanaka,S.;Saburi,H.;Ishibashi,Y.;Kitamura,M. Org. Lett. 2004 , 6,18731875. 75 Trost,B.M.;Fraisse,P.L.;Ball,Z.T. Angew. Chem. Int. Ed. 2002 , 41 ,10591061. 76 (a)Kondo,T.;Ono,H.;Satake,N.;Mitsudo,T.;Watanabe, Y. Organometallics 1995 , 14 , 19451953. (b) Kondo,T.;Morisaki,Y.;Uenoyama,S.;Wada,K.;Mitsudo,T. J. Am. Chem. Soc. 1999 , 121 ,86578658.(c) Renaud,J.L.;Bruneau,C.;Demerseman,B. Synlett 2003 ,408410. 77 Fache,F.;Schulz,E.;Tommasino,M.L.;Lemaire,M. Chem. Rev. 2000 , 100 ,21592231. 78 Bruneau,C.;Renaud,J.L.;Demerseman,B. Chem. Eur. J. 2006 , 12 ,51785187andreferencestherein.

23 Chap. 2: Metal-Catalyzed Allylic Substitutions

2.4.2. Ru-Catalysts for Regioselective Allylation of Nucleophiles

2.4.2.1. Structures of ηηη3-Allyl Cp*Ru(IV) Complexes Initial studies indicated that, as for palladium, the mechanism of Cp*Rucatalyzed allylic substitutions proceed through the formation of a πallylRu(IV) complex obtained by the oxidativeadditionofa16electronRu(II)complexontoanallylicsubtrate. 76aThestudyofthe structure of η3allylRu(IV) complexes has then received a lot of attention since they are believedtobeacrucialreactionintermediateandthuscloselyrelatedtothetransitionstate.

Alltheisolatedcomplexeshaveapseudotetrahedral(Td)geometrybearingan endo syn-η3 allylligandwithacleardissymmetryinthebondlengthbetweentheRuatomandtheallyl termini ( (RuC) up to 0.27 Å, Table 2-6). This difference in bond lengths is commonly referred to when rationalizing the regioselectivity of the reaction: the nucleophile attacks preferentiallyontothemosthinderedpositionduetotheweakermetalcarbonbondatthissite (longer bond length). 78 This dissymmetry (more important for aryl than alkyl R groups) is believedtomainlyarisefromaworseMOoverlap αtothesubstituentbecauseofconjugation orhyperconjugation.However,insolution,additionalspecieshavebeenobservedbyNMR, and are assumed to either arise from an endo-exo isomerism of the πallyl ligand (nOe 79 crosspeakbetweenthecentralallylicprotonandtheCp*), orfromL/Xexchangesfornon 13 symmetricalligands(twosetsofsignalsin CNMRforeachterminalallylcarbon).

Cplx Ru(CH 2) Ru(CHR) Ref

5a 2.18 2.35 76a 5b 2.19 2.35 79 Ru Ru Ru L O N 5c 2.21 2.28 80 X R O R N Ph 2.18 2.45 81 5a R=Ph L=Cl X=Cl t-BuO 5d 5b R=Ph L=NCMe X=Cl 5f R = 4-MeO-Ph 5g N-N= o-phenantroline 5e 2.19 2.34 81 5c R=Me L=NCMe X=Br 5d R = Ph L = Ph2(MeO)P X = Cl 5f 2.16 2.30 82 5e R = n-Pr L = Ph2(MeO)P X = Cl 5g 2.19 2.40 83

Table 2-6: ExamplesofCp*Ru(IV) πallylcomplexesandselectedbondlengthsintheXraystructures.

79 Hermatschweiler,R.;Fernandez,I.;Pregosin,P.S.;Watson,E.J.;Albinati,A.;Rizzato,S.;Veiros, L. F.; Calhorda,M.J. Organometallics 2005 , 24 ,18091812. 80 Mbaye,M.D.;Demerseman,B.;Renaud,J.L.;Toupet,L.;Bruneau,C. Adv. Synth. Catal. 2004 , 346 ,835 841. 81 Demerseman,B.;Renaud,J.L.;Toupet,L.;Hubert,C.;Bruneau,C. Eur. J. Inorg. Chem. 2006 ,13711380. 82 Hermatschweiler,R.;Fernandez,I.;Breher,F.;Pregosin,P.S.;Veiros,L.F.;Calhorda,M.J. Angew. Chem. Int. Ed. 2005 , 44,43974400. 83 Mbaye,M.D.;Demerseman,B.;Renaud,J.L.;Toupet, L.; Bruneau, C. Angew. Chem. Int. Ed. 2003 , 42 , 50665068.

24 Chap. 2: Metal-Catalyzed Allylic Substitutions

2.4.2.2. Regioselective Allylation of Oxygen-Nucleophiles One of the most studied regioselective Cp*Rucatalyzed allylic substitution reaction is the allylationofphenolderivativesstartingfromallylchlorides( Table 2-7). 80,81 Thesereactions smoothlyprovidethebranched Oallylatedphenolswithgoodregioselectivityinthecaseof phenyl or benzyl derivatives. One noticeable exception is the report by Pregosin of the C allylation,bya Friedel and Craft reaction,ofelectronrichphenolsoraromaticnucleophiles. 84

Cl [Ru] OAr ArOH R R 1.2 equiv. K2CO3

[Ru] Solv. R Ar b:l Ref

[Cp*Ru(MeCN)3][PF 6] MeCN Ph Ph 98:02 80

[Cp*Ru(MeCN)3][PF 6] MeCN Ph 4MeOPh 98:02 80

[Cp*Ru(MeCN)3][PF 6] MeCN Ph 4MePh 97:03 80

[Cp*Ru(MeCN)2(PPh 2OMe)][PF 6] THF PhCH 2 Ph 92:08 81

[Cp*Ru(MeCN)2(PPh 2OMe)][PF 6] THF PhCH 2 4MeOPh 96:04 81

[Cp*Ru(MeCN)3][PF 6] MeCN nPr Ph 63:37 80

[Cp*Ru(MeCN)3][PF 6] Me 2CO nPr Ph 70:30 80

Table 2-7: ExamplesofregioselectiveCp*Rucatalyzed Oallylationofphenols.

2.4.2.3. Regioselective allylation of nitrogen-nucleophiles ThefirstexampleofregioselectiveRucatalyzedallylicaminationreactionwasreportedby Kondo and Nagashima using a CpRucatalyst and piperidine as nucleophile but the regioselectivitywasclearlyinfavourofthelesssubstitutedposition( Table 2-8 (a) ). 85

H N [RuCl2(cod)]x 5 mol% (a) NH PF 10 mol% OCO Me 4 6 N 2 decane 100°C N 2 equiv. 77 % 37 %

L HNR 2 b:l Ref OCO Et [Cp*Ru(MeCN)3][PF6] 2 NR2 Phen piperidine 96:04 83 3 mol% HNR2 Ph L Ph Phen Et 2NH 89:11 83 Phen pyrrolidine 98:02 83 (b) R N N R cod Et 2NH 0:100 86

L14a R = i-Pr L14a Et 2NH 05:95 86 L14b R = Mes L14b Et 2NH 02:98 86

Table 2-8: ExamplesofregioselectiveCp*Rucatalyzed Nallylationofsecondaryamines.

84 Fernandez,I.;Hermatschweiler,R.;Breher,F.;Pregosin,P.S.;Veiros,L.F.;Calhorda,M.J. Angew. Chem. Int. Ed. 2006 , 45 ,63866391. 85 Morisaki,Y.;Kondo,T.;Mitsudo,T.A. Organometallics 1999 , 18 ,47424746.

25 Chap. 2: Metal-Catalyzed Allylic Substitutions

LaterBruneauandDemersemanobtainedmuchbetterregioselectivities(uptob/l96:4)with an in situ generatedCp*phenantrolineRucatalyst. 83 ThecrucialroleoftheN,Nligandwas showninalaterpublication( Table 2-8 (b) ). 86

2.4.2.4. Regioselective allylation of carbon-nucleophiles Stabilizedcarbonnucleophilesarethemostcommonincarboncarbonbondformingallylic substitution reactions and are usually generated by deprotonation of gem dicarbonyl compounds (ketones and/or esters) using NaH as base.76a Trost has shown that cationic 87 trisnitrilecomplexesas[CpRu(MeCN)3][PF 6] areefficientcatalyststoperformthereaction shown in Table 2-9 and that the preferred leaving group are carbonates.75 In contrast to rhodium and copper, the Rucatalyzed allylic substitution is not regiospecific as the same productsareobtainedfromthecorrespondingbranchedorlinearsubstrates;showingthatthe reactionmostprobablyproceedsthrougha πallylRuintermediate.

O O 2 O O OCO2R [Ru] MeO OMe MeO OMe R X Y R1 Entry [Ru] X,Y Solv. R1 R2 b:l Ref

1 [CpRu(MeCN)3][PF 6] Na,H DMF OMe tBu 55:45 88

2 [CpRu(MeCN) 3][PF 6] Na,H DMF H tBu 33:67 88

3 [CpRu(MeCN) 3][PF 6] Na,H DMF Cl tBu 30:70 88

4 [Cp*Ru(MeCN) 3][PF 6] Na,H DMF OMe tBu 95:05 88

5 [Cp*Ru(MeCN) 3][PF 6] Na,H DMF H tBu 90:10 88

6 [Cp*Ru(MeCN) 3][PF 6] Na,H DMF Cl tBu 90:10 88

7 [Cp*Ru(MeCN) 3][PF 6] Na,H DMF H tBu 92:8 75

8 [Cp*Ru(MeCN) 3][PF 6] Na,OMOM DMF H tBu 90:10 75

9 [Cp*Ru(MeCN) 3][PF 6] Na,NHBoc DMF H tBu 82:18 75

10 [Cp*Ru(MeCN)2(4,4’diMebipy)][PF 6] H,H MeCN H Et 96:04 83

Table 2-9: ExamplesofregioselectiveCp*Rucatalyzed Callylationofdimethylmalonate.

Once again, the superior efficiency of Cp*Ru based catalysts is clear both in terms of reactivityandofregioselectivity( Table 2-9 entries2,3 vs. 5,6).88 Theeffectoftheligands ontheCp*Rumoietyagainprovedtobecrucial.Insomecasestheuseofanadditionalbase couldbeavoidedbyusingthealkoxideliberatedbydecarboxylationofthecarbonateleaving group( Table 2-9 entry10).83 86 Mbaye,M.D.;Demerseman,B.;Renaud,J.L.;Bruneau,C. J. Organomet. Chem. 2005 , 690 ,21492158. 87 Trost,B.M.;Older,C.M. Organometallics 2002 , 21 ,25442546. 88 Hermatschweiler,R.;Fernandez,I.;Pregosin,P.S.;Breher,F. Organometallics 2006 , 25 ,14401447.

26 Chap. 2: Metal-Catalyzed Allylic Substitutions

2.4.3. Asymmetric Allylation of Nucleophiles

Although many studies of Rucatalyzed allylic substitution reactions have been communicated,asymmetricexamplesofthisreactionremainrare.

2.4.3.1. Stereospecific Nucleophilic Substitutions

Havingestablishedtheinvolvementofafunctionalequivalenttoa πallylRucomplex,Trost envisaged a stereoselective version of the above described reaction. The treatment of an enantioenriched branched cinnamyl carbonate with [Cp*Ru(MeCN)3][PF 6] and a carbon nucleophile yielded the desired product with a full transfer of the initial stereogenic information:acompleteretentionoftheabsoluteconfigurationofthebranchedcarbonwas achieved( Scheme 2-22 (a) ).75 Thus,thenucleophilicattackproceedsfasterthanthepossible equilibration of the transient πallylRu complex and the addition exclusively takes place from the side opposite to the metal coordination; globally resulting in a retention of configuration.Thiswasalsoshownforphenoxynucleophiles. 75 Inaddition,Onitsukashowed the very efficient kinetic resolution of racemic allylic carbonates with sodium dimethylmalonateusinganenantiopureCp’Rubasedcatalyst(Scheme 2-22 (b) ). 89

MeO2C CO Me OCO2Me 1 mol% [Cp*Ru(MeCN)3][PF6] 2 MeO2C CO2Me 1 equiv. NaH BocHN (R) (a) NHBoc DMF, R.T. (R) 99 % ee 99 % ee

- O O t-Bu O PF6 OCO2Et MeO OMe Ru O 90-94 % ee MeCN R R NaH MeCN P 2.5 mol% Ar2 (b) THF, R.T. OCO2Et O O R R MeO OMe 92-99 % ee

R = Me, Et Ar = Ph, 2-MeO-Ph, 3,5-Me2-Ph R R Scheme 2-22: Rucatalyzedstereospecificsubstitutionofenantiopureallyliccarbonates.

2.4.3.2. Enantioselective nucleophilic substitutions Althoughenantioselectiveallylicsubstitutionisapowerfulsynthetictoolveryfewexamples ofRucatalyzedreactionshadbeenreportedatthebeginningofthiswork.Stilltodayonly threereports,independentfromourgroup,areavailableintheliterature.Thefirstexample wasreportedbyTakahashiin2001usingenantiopureCp’RuplanarchiralcomplexeswithC

89 Onitsuka,K.;Matsushima,Y.;Takahashi,S. Organometallics 2005 , 24 ,64726474.

27 Chap. 2: Metal-Catalyzed Allylic Substitutions or Nnucleophiles ( Scheme 2-23 (a) ). 89,90 Since in this example the substrate was symmetrically1,3disubstituted,thereactiondidnotsufferfromaregioselectivityproblem.

Ontheotherhand,Bruneaushowedin2004that[Cp*Ru(MeCN) 3][PF 6]inconjunctionwith enantiopure bisoxazoline ligands could effect the enantioselective Oallylation of phenols starting from cinnamyl chloride albeit with low regioselectivity ( Scheme 2-23 (b) ). 91 Recently Onitsuka described the use of Cp’Ru catalysts to effect the same reaction and obtainedexcellentregioandenantioselectivities( Scheme 2-23 (c) ). 92

- R O PF6

Ru O MeCN P 5 mol% Nu OCO2Et MeCN Ar NuNa 2 63-97 % ee (a) Ph Ph THF, R.T. Ph Ph

NuNa = NaCH(CO2Me)2, NaCH(CO2Et)2, NaCMe(CO2Me)2 R = Me, Ph, t-Bu ; Ar = Ph, 2-MeO-Ph, 3,5-Me2-Ph O O Ph Ph N N Ph Ph 10 mol% Cl 10 mol% [Cp*Ru(MeCN) ][PF ] Ar OH 3 6 O b:l 1.6:1 - 3:1 52-82 % ee (b) Ar K CO , acetone, R.T. Ph 2 3 Ph Ar = 4-MeO-Ph, 4-Cl-Ph, 4-Me-Ph

- t-Bu O PF6

Ru O MeCN 2 Cl MeCN P 2.5 mol% R OH Ar2 O b:l > 95:5 2 (c) R 1 80-95 % ee R K2CO3,THF, R.T. R1

1 R = Ph, 4-CF3-Ph, 4-Cl-Ph, 2-MeO-Ph, 1-naphtyl, Me 2 R = Ph, 2-MeO-Ph, 3-Me-Ph, 4-Me-Ph, 2-t-Bu-Ph, 2-Ph-Ph, 4-CF3-Ph, Bn, Me Scheme 2-23: Rucatalyzedenantioselectivesubstitutionofallylicsubtrates.

2.4.4. Ru-catalyzed “Carroll rearrangement”

The“ Carroll rearrangement” 93 isadecarboxylative[3,3]sigmatropicrearrangementofallylic βketoesters,toyield γ,δunsaturatedketones,whichproceedsathightemperatures(typically 140180°C). 94 Thisreactionhashoweverfoundseveralusefulsyntheticapplications. 95

90 Matsushima,Y.;Onitsuka,K.;Kondo,T.;Mitsudo,T.;Takahashi,S. J. Am. Chem. Soc. 2001 , 123 ,10405 10406. 91 Mbaye,M.D.;Renaud,J.L.;Demerseman,B.;Bruneau,C. Chem. Commun. 2004 ,18701871. 92 Onitsuka,K.;Okuda,H.;Sasai,H. Angew. Chem. Int. Ed. 2008 , 47 ,14541457. 93 Forclarity,theimproperterm“ Carroll rearrangement”willbeusedthroughoutthismanuscripttonamethe Rucatalyzedversionofthereactionalthoughitdoesnotproceedtroughasigmatropicrearrangement. 94 (a)Carroll,M.F. J. Chem. Soc. 1940 ,12661268.(b)Carroll,M.F. J. Chem. Soc. 1940 ,704706.(c)Carroll, M.F. J. Chem. Soc. 1941 ,507511. 95 (a)Bonrath,W.;Netscher,T. Appl. Catal., A 2005 , 280 ,5573.(b)Defosseux,M.;Blanchard,N.;Meyer,C.; Cossy,J. Org. Lett. 2003 , 5,40374040.(c)Jung,M.E.;Duclos,B.A. Tetrahedron Lett. 2004 , 45 ,107109.and refferencestherein.

28 Chap. 2: Metal-Catalyzed Allylic Substitutions

2.4.4.1. Cp*Ru-Catalyzed Carroll Rearrangement ThefirstRucatalyzed Carroll rearrangementwasreportedbyNagashimausingCp*Rubased catalysts,butonlymoderateselectivitieswereobtained. 96 RecentlyTungereportedthatthe in- situ obtained[Cp*RuCl(bpy)]moietycould transform allylβketoesters almost exclusively intothecorrespondingbranchedketones. 97abInadditionTungealsoreportedthatthereaction could be stereospecific when starting from enantioenriched branched allylic substrates (Scheme 2-24 ).97c

O O O O O 2.5 mol% [{Cp*RuCl}4] 10 mol% bipy R or b:l > 98:2 R O R O rac or cee 45-98% CH2Cl2, R.T. Ar Ar Ar

R = Me, Bn, i-Pr ; Ar = Ph, 4-MeO-Ph, 4-Me-Ph, 4-Cl-Ph, 4-NO2-Ph,4-CF3-Ph Scheme 2-24: CpRucatalyzed(enantioselectiveorstereospecific)Carroll rearrangement.

2.4.4.2. CpRu-catalyzed Enantioselective Carroll rearrangement ThedevelopmentofaRucatalyzedenantioselectiveversionofthe Carroll rearrangementof cinnamyl derived substrates was achieved by our group using a combination of 98 [CpRu(MeCN)3][PF 6]andenantiopurepyridineimineligands( Scheme 2-25 ). Branched β ketoesters wereobtainedwithgoodregioandenantioselectivities(uptob:l>99:1and80% ee for linear substrate and 92 % ee for branched substrate). Interestingly, in this particular case, the Cp*Ru derived catalyst proved to be less efficient than their CpRu counterparts. Unfortunately,theseconditionsrequireratherlargeamountsofmetalprecursor(10mol%), long reactiontimes(20htoseveral days)andsuffer from an acute sensitivity to reaction parameters.

R2 O R1 O O O O 10 mol% [CpRu(MeCN) ][PF ] 3 6 3 10 mol% L* N R O or O N THF, 60 °C Ar L* Ar Ar 1 R = H, 4-NMe2, 6-Me 2 Ar = Ph, 4-MeO-Ph, 4-Cl-Ph up to b:l > 98:2 R = Ph, 2-MeO-Ph upto80or 92% ee R3 = Et, n-Pr, Bn, t-Bu Scheme 2-25: CpRucatalyzed(enantioselectiveorstereospecific) Carroll rearrangement.

96 Kondo, H.;Kageyama,A.; Yamaguchi, Y.;Haga, M.; Kirchner, K.; Nagashima, H. Bull. Chem. Soc. Jpn 2001 , 74 ,19271937. 97 (a)Burger,E.C.;Tunge,J.A. Org. Lett. 2004 , 6,26032605.(b)Tunge,J.A.;Burger,E.C. Eur. J. Org. Chem. 2005 ,17151726.(c)Burger,E.C.;Tunge,J.A. Chem. Commun. 2005 ,28352837. 98 Constant,S.;Tortoioli,S.;Muller,J.;Lacour,J. Angew. Chem. Int. Ed. 2007 , 46 ,20822085..

29 Chap. 2: Metal-Catalyzed Allylic Substitutions

AnalternativemethodologybasedontheuseofTRISPHATN99 coordinatinganionallowed therecyclingoftheprecatalyst Y (>85%).Inaddition,sincethesecomplexescouldbeeasily purifiedbychromatography,moreselectivereactionswereobtained( Scheme 2-26 ). 100

2 PF6

[CpRu(MeCN)3][PF6] [Bu3NH][TTN] 2 equiv. 2 equiv. N N Ru N N Ru Ru N N Ru

CH2Cl2 CH2Cl2 N N MeCN N N NCMe 43 % TTN N N TTN

X Y

Cl Cl Cl

O Cl Cl O O P N O O O Cl TRISPHAT-N (TTN) Cl Cl Cl

Enantioselectivity of branched product as a function of time in the reactions catalyzed by Y ( ) and X () Scheme 2-26: Useof TRISPHATNligandfortheCpRucatalyzed Carroll rearrangement. 2.5. Aim and scope of the work

The aim of this PhD was to further develop the CpRucatalyzed Carroll rearrangement methodologytomakeitsyntheticallyapplicableandtobetterunderstandthemechanismof the reaction. In order to solve some of the issues related to the preliminary work, new catalyticcombinationsweredevelopedandusedinthecontextofthe Carroll rearrangement. This led to the use of the pymox ligand family which exhibited greater reactivity and/or selectivity and to the use of a less air and moisturesensitive metal source. Different mechanisticaspectsofthereactionwerestudiedandattemptstorationalizemostexperimental observationshavebeenmade.Theuseofcocatalystswassubsequentlyenvisagedandthe scope of the catalytic systems finally probed with different “classical ” allylic substitution reactions.Alltheseresultsarereportedinthefollowingchapters.

99 Constant,S.;Frantz,R.;Muller,J.;Bernardinelli,G.;Lacour,J. Organometallics 2007 , 26 ,21412143. 100 Constant,S.;Tortoioli,S.;Muller,J.;Linder,D.;Buron,F.;Lacour,J. Angew. Chem. Int. Ed. 2007 , 46 ,8979 8982.

30 Chap. 3: Catalytic System Optimization

3. Catalytic System Optimization

There is no such thing as ligand design. At best one can copy features that are present in “privileged” ligands, that is, ligands that have been successful in other cases. Johannes G. de Vries 1 3.1. Preamble

Theintroductiontothischapterwillbeentirelydevotedtotheunderstandingofthedetailed scientificbackgroundtothisworkasitwasinitiatedandthedifferentissuesthatremained unsolvedatthattime.TheinitialreportsbyTungedealingwiththeCp*Rucatalyzed Carroll rearrangement 2setthebasisfortheworkofourgroup .( Scheme 3-1). 3

O O O O

[CpRu(MeCN)3][PF6] O (10 mol%) Ligand (10 mol%) * + THF, 60 °C 1 2 3 R R R

R = 4-OMe, H, Cl R'' For R = 4-OMe L11a R'=MeR''=H 56% ee N R' L11b R' = tBu R'' = H 72 % ee N L11c R' = tBu R'' = OMe 80 % ee Ligand Scheme 3-1: CpRucatalyzedrearrangementofprimaryesterswithligands L.

Inourhands,andincontrasttothereportofTunge, using 2,2’bipy as ligand, precatalyst

[Cp*RuCl]4 did not afford satisfactory reactivity and selectivity with all tested chiral N,N ligands.However,[CpRu(MeCN)3][PF 6](4a )wasfoundtobeanefficientprecatalystwhich, in the conjunction with pyridineimine ligands, afforded the smooth rearrangement of cinnamyl derived acetoacetates ( Fig 3-1).The pyridineimine ligandfamily allowedavery easyandstraightforwardscreeningduetotheeaseofsynthesisandtheavailabilityofthevast number of aldehyde and amine fragments. As such, ligand L11c appeared as the most selective:thebranchedisomer 2 wasobtainedselectively( b:l upto>99:1) withagoodlevel of enantioselectivity (up to 80 % ee with L11c ); the presence of pyridineimine ligands allowing a reversal of the preferential “linear” regioselectivity induced by 4a as catalyst. 4 Unfortunately,thesereportedconditionsrequireratherlargeamountsofmetalprecursor(10 1deVries,J.G.;Lefort,L. Chem. Eur. J. 2006 , 12 ,47224734,alsosee:Yoon,T.P.;Jacobsen,E.N. Science 2003 , 299 ,16911693. 2(a)Burger,E.C.;Tunge,J.A. Org. Lett. 2004 , 6,26032605.(b)Burger,E.C.;Tunge,J.A. Chem. Commun. 2005 ,28352837.(c)Tunge,J.A.;Burger,E.C. Eur. J. Org. Chem. 2005 ,17151726. 3Constant,S.;Tortoioli,S.;Muller,J.;Lacour,J. Angew. Chem. Int. Ed. 2007 , 46 ,20822085. 4(a)Trost,B.M.;Fraisse,P.L.;Ball,Z.T. Angew. Chem. Int. Ed. 2002 , 41 ,10591061.(b)Hermatschweiler, R.;Fernandez,I.;Pregosin,P.S.;Breher,F. Organometallics 2006 , 25 ,14401447.

31 Chap. 3: Catalytic System Optimization mol% of 4a ). Long reaction timesarealso needed (20 h to several days) especially with substrates bearing electron withdrawing substituents ( e.g. a 4-Cl: 5 days). 4b An acute sensitivity to several reaction parameters, including temperature and solvent, was noticed diminishing somewhat the scope of this process. A second issue came up when the rearrangementofbranchedcinnamylacetoacetates,firstdescribedbyTunge, 2bwaseffected. Usingsecondaryallylicesters( R)and( S)5c ( ee >99%)and L11c asligand,acomplicated “matched/mismatched”situationwasobserved( Scheme 3-2).

O O O O

[CpRu(MeCN)3][PF6] O (10 mol%) * Ligand (10 mol%) + THF, 60 °C 5c 2c 3c

OMe

tBu Ph Ph

N N At full conversion : L11c L11d (R)-5c L11c 6h (_)-70 % ee 5c L11c N N (S)- 10h (+)-92 % ee (S)-5c L11d 6h (+)-70 % ee Scheme 3-2: CpRucatalyzedrearrangementofsecondaryesterswithligands L

Comparedtotheuseofachiralligand L11d (70% ee ),( S)5c and L11c gavea“matched” situation (92 % ee ). But this “matched” reaction was quite slower than the “mismatched” (( R)5c and L11c: 70%ee )situationandlittleeffectonthe ee wasseeninthelattercasein comparisonwiththereactionwithachiral L11d .Reasoningthatblockingtherotationaround theCNsinglebondoftheiminemoietywouldrestraintheconformationalflexibilityofthe ligand,theuseofthemorerigid2pyridinemonooxazoline(pymox)structuralscaffoldwas considered. In addition, the relatively moderate enantioselectivity, obtained with ligands of type L11 , possiblywasaconsequenceofthisconformationalflexibility.Anewgenerationof ligandswasobviouslyneededtoovercomethelimitationsassociatedwiththeuseofpyridine imine ligands L11 and the use of a more rigid structural scaffold would ease up the rationalizationofthereaction’sstereochemicaloutcome.

32 Chap. 3: Catalytic System Optimization

3.2. Optimization of the Ligand

3.2.1. Use and Synthesis of Pymox Ligands

N,N-ligands 5 have received a lot of attention in the context of asymmetric metalcatalyzed reactions and more particularly ligands incorporating heteroaromatic fragments such as pyridines.6Thoughpymoxligandswereintroducedinthelate80sbyBrunner,theyhaveonly receivedlimitedattentioninotherfieldsthancoordinationchemistryandtheirapplicationto highlyenantioselectivereactionsremainsrare.Historically,pymoxligandswerepreparedby converting2cyanopyridinetothecorrespondingimidatebyadditionofmethanolfollowedby additionofthecorrespondingopticallyactiveaminoalcohol.7LaterBolmdescribedthedirect 8 ZnCl 2condensationofaminoalcoholonto2cyanopyridine( Scheme 3-3).

R 1) cat NaOMe MeOH R 2) aminoalcohol

Aminoalcohol O R4 N CN cat ZnCl N or 2 R3 PhCl, 60 °C N R2 R1

O N Ph O N O Ph N N N H OH N L12 L13 L14 Ph

RO O O O N N N Ph N N N L15Ph L16Ph L17 Scheme 3-3: Synthesesofpymoxligandsandchosenexamples.

Ligand L12 was used in the Rhcatalyzed enantioselective hydrosilylation of ketones with diphenylsilane.9 Ligands L13 and L14 , bearing additional stereogenic elements on the pyridinemoiety,wereusedintheRhcatalyzedenantioselectivehydrosilylation 10 andthePd catalyzed asymmetric allylic alkylation of 1,3diphenylprop2enyl pivalate with dimethyl malonate,respectively.11 Ligands L15 and L16, preparedwithsimilarstrategies,wereactive

5Togni,A.;Venanzi,L.M. Angew. Chem. Int. Ed. Engl. 1994 , 33 ,497526. 6(a)Fache,F.;Schulz,E.;Tommasino,M.L.;Lemaire,M. Chem. Rev. 2000 , 100 ,21592231.(b)Kwong,H. L.;Yeung,H.L.;Yeung,C.T.;Lee,W.S.;Lee,C.S.;Wong,W.L. Coord. Chem. Rev. 2007, 251,21882222. 7Brunner,H.;Obermann,U.;Wimmer,P. J. Organomet. Chem. 1986 , 316 ,C1C3. 8Bolm,C.;Weickhardt,K.;Zehnder,M.;Ranff,T. Chem. Ber. 1991 , 124 ,11731180. 9Brunner,H.;Henrichs,C. Tetrahedron-Asymmetry 1995 , 6,653656. 10 Brunner,H.;Storiko,R.;Nuber,B. Tetrahedron-Asymmetry 1998 , 9,407422. 11 Nordström,K.;Macedo,E.;Moberg,C. J. Org. Chem. 1997 , 62 ,16041609.

33 Chap. 3: Catalytic System Optimization inPdcatalyzedasymmetricallylicalkylation.12 Ligand L17,witharemotechiralsubstituent, wasobtainedfrom( S)mandelicacidandwasusedintheRhcatalyzedhydrosilylationof4 methylacetophenonewithtrichlorosilane.13

3.2.2. Ligand Structure Screening

Several pymox ligands were thus synthesized following the procedure of Bolm 8 and were subjected to the standard allylation reaction conditions developed for the pyridineimine ligands. 3Theresultsaresummarizedin Table 3-1.14

O O O O

[CpRu(MeCN)3][PF6] (10 mol%) O L18 (10 mol%)

THF, 60 °C

1a 2a 3a MeO MeO MeO Ph b c O O Ph Entry Ligand Time Conv. % ee Conf. b:l Ph N N 1 - 48h <3%

N L18aN L18b 2 L18a 2h >97% 53 (–) >97:3 3 L18b 2h >97% 56 (–) >97:3 O O 4 L18c 2h >97% 63 (+) >97:3 N N 5 L18d 2h >97% 72 (+) >97:3 N L18cN L18d 6 L18e 48h <3% 7 L18f 2h >97% 80 (–) >97:3 O O a N N Fresh 4a (10mol%),ligand L18 (10mol%),THF,60°C, c(1a )0.5 M; theresultsbeingtheaverageofatleasttworuns; bsignofopticalrotation N L18eN L18f of 2a ; cratiosofbranched( 2)tolinear(3)productsweredeterminedby 1HNMR(400MHz). Table 3-1:Ligandscreening,oxazolinepart.a

Ligand L18a,bearingthesameoxazolinethanthemostselectiveligandofBruneau,15 proved tobealreadyquiteefficientinourcase:the Carroll rearrangementofsubstrate 1a yieldedthe expectedproduct 2a withfullconversionandperfect b:l ratioinlessthan2hwithadecent ee valueof53%(entry2).Agradualincreaseofthebulkofthesubstituent αtothe Natom improvedtheenantiomericexcessupto72%withthevalinolderivedpymox L18dwithout anylossofregioselectivity(entries35).Surprisingly,ligand L18ederivedfrom tert leucinol

12 Bremberg,U.;Rahm,F.;Moberg,C. Tetrahedron-Asymmetry 1998 , 9,34373443.. 13 Malkov,A.V.;Liddon,A.J.P.S.;RamirezLopez,P.;Bendova,L.;Haigh,D.;Kočovský,P. Angew. Chem. Int. Ed. 2006 , 45 ,14321435. 14 Conversionsaregiven(butnotisolatedyields)sinceitwaspossibletoisolatethemixturesof 2a and 3a in yieldsabove95%eachtime.Theyieldsarethusconsideredtobevirtuallyquantitativeinallcases. 15 Inthecontextof Oallylationofphenols:Mbaye,M.D.;Renaud,J.L.;Demerseman,B.;Bruneau,C. Chem. Commun. 2004 ,18701871.

34 Chap. 3: Catalytic System Optimization displayed no catalytic activity whatsoever (entry 6). The completelyrigid ligand L18f, derivedfrom(1 R,2 S)cis1amino2indanol,affordedsolelythedesiredbranchedproduct 2a withanenantioselectivityof80%atfullconversion(entry7).Ligand L18fperformedthusas regio and enantioselectively as the most efficient pyridineimine ligand L11c but with a muchhighercatalyticactivity(2h vs. 24hfor L18fand L11c respectively). Inordertofurtheroptimizethestructureoftheligand,variationsonthesubstitutionpatternof thepyridinepartwereundertakenandafewotherstructuresweresynthesizedusingtheabove mentionedmethods. 7,8

O O O O

[CpRu(MeCN)3][PF6] (10 mol%) O L18 (10 mol%)

THF, 60 °C

1a 2a 3a MeO MeO MeO

O O N N N N N L18g N L18h b c Entry Ligand Time Conv. % ee Conf. b:l 1 1a L18g 3.5h >97% 78 (–) >97:3 O O 2 1a L18h 3.5h >97% 78 (–) >97:3 N N 3 1a L18i 1.5h >97% 73 (–) >97:3 N L18i N L18j 4 1a L18j 4h >97% 76 (–) >97:3 5 1a L18k 16h >97% 58 (–) >97:3 O O H Bn 6 1a L18l 14h >97% 64 (–) >97:3 N N N N 7 1a L18m 5h >97% 69 (–) >97:3 N L18k N L18l 8 1a L18n 48h <3%

aFresh 4a (10mol%),ligand L18 (10mol%),THF,60°C, c(1a )0.5 M; O O theresultsbeingtheaverageofatleasttworuns; bsignofopticalrotation Li c N O of 2a ; ratiosofbranched( 2)tolinear( 3)productsweredeterminedby N N 1HNMR(400MHz). N L18m N L18n

Table 3-2:Ligandscreening,heteroaromaticpart.a

Electron poor pyrimidineand pyrazinederived ligands( L18g and L18h respectively)were thussynthesizedinasimilarmannerto L18f.Thesetwoligandsaffordedsolelythebranched product 2a withthesame ee valueof78%.However,forthesetwoelectronpoorligands,the reactionswerenoticeablyslowerthanfortheunsubstitutedpyridineligand L18f (Table 3-2, entries 1 and 2). On the other hand, ligand L18i (entry 3), bearing an electrondonating methyl group para to the N-atomofthepyridine,affordedafasterreactionwith excellent regioselectivitybutalowerenantioselectivity(73% ee in1.5hfor L18i, vs .80% ee in2h for L18f).Electronicfactorsonthepyridinesideoftheligandseemtoplayacrucialroleon

35 Chap. 3: Catalytic System Optimization thekineticsofthereaction(electronpoorligandsaffordingslowerreactions)butaccelerating the reaction seems detrimental to the enantioselectivityoftheprocess.3Inaddition,the5 methylsubstitutedpyridineligand L18j(entry4)allowedreachingfullconversionof 1a into 2a butwithastronglydetrimentaleffectonthekineticsofthereaction(76% ee in4hfor L18j, vs . 80 % ee in 2 h for L18f). The additional methyl group, in the latter cases, is probably sterically interacting with the πallyl fragment and overall slowing down the reaction.Replacing thepyridine moiety by a NH or NBnbenzimidazole ( L18kand L18l) provedtohaveadetrimentaleffectonbothreactionkineticsandenantioselectivities(entries5 and 6). However the deprotonated benzimidazoleoxazoline ligand L18m afforded a much fasterreactionthanitsNHequivalent(entry7).ThiseffectisnotlikelyduetotheLication sincetheadditionofLiPF 6tothereactionof 1awithligandsL18fof L18kdidnothaveany measurableeffectontheoutcomeofthereaction.Ligand L18n (entry8)didnotshowany catalytic activity at all; probably due to the alwayspresent disfavored steric interaction betweentheCpandtheindenylmoieties.

A“naked”pyridinemoietycombinedwithanindanyloxazolineontheligandthusseemsto bethebestcompromisetofulfillthestereoelectronicrequirementsforthereactiontoproceed. Ligand L18fthusappearedasthemostsuitablecandidateforfurtherreactionoptimization.

3.3. Optimization of the Reaction Conditions

3.3.1. Reaction Conditions Screening

Reactionconditionswerethenscreenedagainwithligand L18f. Surprisingly, little solvent effectcouldbeobservedwithavarietyofmedia( Table 3-3)totheexceptionofacetonitrile and benzonitrile 16 which completely inhibited the reaction. Probably, these two latter stronglycoordinatingsolventscompeteefficientlywiththepymoxligandforanaccesstothe firstcoordinationsphereofthemetalandthusinhibittheligandacceleratedcatalysis. 17 Due tothehigherreactivity ofthecatalyticsystemderivedfromligand L18f , aloweringofthe catalystloadingtowardsamoresyntheticallyapplicablelevelwasdeemedfeasible.Several experimentswereperformedanditwasobservedthattheamountofmetalcouldbedecreased

16 6 4+ Theisolationofastable[CpRu{CpRu(η pCH 3C6H4CN)} 3] complexhasbeendescribedbyPregosinand coworkersseeRef4b. 17 [CpRu(MeCN)3][PF 6]cannotcatalyzethe Carroll rearrangementofallylicestersoftype 1withoutasuitable ligand:noreactionisobservedintheabsenceofaproperligand(see Table 3-1 entry1).

36 Chap. 3: Catalytic System Optimization to2.5mol%withoutanynoticeablelossofregioorenantioselectivity( Table 3-4).Tokeep convenientlyshortreactiontimes,theconcentrationofthesubstratewasgraduallyincreased from0.5to2 Mwithagainnoobviouseffectonthestereochemicaloutcomeofthereactionor theconversion.

O O O O

[CpRu(MeCN)3][PF6] (10 mol%) O L18f (10 mol%)

THF, 60 °C

1a 2a 3a MeO MeO MeO

Entry Ester Solvent Time Conv. % ee Conf. b b:l c

1 1a Acetone 2h >97% 78 (–) >97:3 2 1a DME 2h >97% 77 (–) >97:3 3 1a DMF 2h >97% 77 (–) >97:3 4 1a THF 2h >97% 80 (–) >97:3 5 1a MeCN 48h <3% 6 1a PhCN 48h <3%

aFresh 4a (10mol%),ligand L18f (10mol%),60°C, c(1a )0.5 M;theresultsbeing theaverageofatleasttworuns; bsignofopticalrotationof 2a ; cratiosofbranched (2)tolinear( 3)productsweredeterminedby 1HNMR(400MHz). Table 3-3:SolventscreeningCpRucatalyzedrearrangementofallylicester 1a .a

O O O O

[CpRu(MeCN)3][PF6] (x mol%) O L18f (x mol%)

THF, 60 °C

1a 2a 3a MeO MeO MeO

Entry c( 1a ) mol% Time Conv. % ee Conf. b b:l c

1 0.5M 10 2h >97% 80 (–) >97:3 2 0.5M 5 4h >97% 79 (–) >97:3 3 2M 5 2h >97% 80 (–) >97:3 4 2M 2.5 6h >97% 79 (–) >97:3

a Fresh 4a (x mol%), ligand L18f (x mol%), 60 °C; the results being the average of at least two runs; b sign of optical rotation of 2a ; c ratios of branched( 2)tolinear( 3)productsweredeterminedby 1HNMR(400MHz). Table 3-4:Catalystloadingscreening a

3.3.2. Synthesis of the Substrates

Thecinnamylacetoacetates 1a , 1b , 1d , 1e ,1f , 1i , 1j , 1k ( Table 3-5)weresynthesizedinhigh yieldfromthecorrespondingcommerciallyavailablecinnamic acids( Scheme 3-4).Thefirst stepistheacidcatalyzedformationofthecorrespondingmethylesterswhichissubsequently reducedtotheallylicalcoholusingDIBALH.Theresultingalcoholisthenesterifiedusing diketene 6a in THF or commercially available 2,2,6trimethyl4H1,3dioxin4one 6b in

37 Chap. 3: Catalytic System Optimization toluene (DMAP catalysis).Substrates 1c and 1h (Table 3-5) were synthesizedinasimilar mannerdirectlyfromthe commerciallyavailableallylicalcohol.Compound 1g (Table 3-5) was prepared by a palladiumcatalyzed Sonogashira coupling of 4iodo anisole and propargylic alcohol. The triple bond was subsequently selectively hydrogenated to the Z

olefinusingPd/BaSO 4ascatalyst,theallylicalcoholbeingthenesterifiedasdescribedbefore.

O O O O OH 1.5 equiv. 6a R cat HCl, MeOH R 3 equiv. DIBAL-H R Reflux 2 h THF -78 °C THFreflux 2 h O OH OMe R 94 - 99 % 97 - 99 % or 0.95 equiv. 6b R' R' R' cat DMAP Tol. 100°C 87 - 95 % R' 1 [PdCl2(PPh3)2] 2.5 mol% OH CuI 5 mol%, I OH H , Pd/BaSO 10% 1.1 equiv. NEt3 2 4 MeO O MeOH, R.T. MeO MeCN, R.T., 2h MeO OH 0.95 equiv. 6b 88 % 95% cat DMAP Tol. 100°C 1 equiv. 1.2 equiv. MeO 92 % O O

R = 4-MeO, 2-MeO, 4-Cl, 4-NO , 3,4-OCH O,H O 2 2 6a O O 6b R' = Me, Ph O O Scheme 3-4: Synthesisofcinnamylacetoacetates.

3.3.3. Scope of the Reaction

To assess the scope ofthis catalyticcombination, 10mol%ofcatalystappearedasagood compromise to keep constant conditions for fast but also slowreacting substrates. Using ligand L18fand“classical”conditions 18 (THF,60°C,0.5 M ofsubstrate 1, 4a and L18f10 mol%each),thescopeofthereactionwasinvestigatedwiththevarietyofsubstratesdetailed inTable 3-5(compounds 1a to 1g ).

The regioisomeric anisyl derivatives 1a and 1b ( o or p-OMe) and 1f bearing a 3,4 methylidene dioxy group reacted equally well when submitted to the reaction conditions yieldingthecorrespondingbranchedproductswith ca .80% ee inallcases.Asobservedwith thepyridineimineligands, 3withthemorechallengingsubstratesbearingnosubstituentoran electron withdrawing group ( 1c to 1e ), the reactions were slower. However with L18f as

ligand,reactionsoccurredwithinafewdaysevenwith 1e bearinga pNO 2group.Amuch lower b:l ratio of 76:24 was only obtained for this particular substrate; this being in good agreement with the previously described reactivity of such electron poor substrates. 4b Contrary to what had been previously observed using L11c as ligand for which the enantioselectivitywaslowerwhenlongerreactiontimeswereneeded(80,74and66% ee for 1a, 1c and 1d respectively), 3onlythe b:l ratiowassignificantlyinfluencedbytheelectronic 18 The“nonoptimized”conditionswereappliedtoallowtheuseofasinglesetofconditionsforallsubstrates.

38 Chap. 3: Catalytic System Optimization propertiesofthecinnamylfragment( Table 3-3,entries1,4and5).Noimportanteffecton the enantioselectivity of the reaction was observed along this series. This observation indicatesthattheenantioandtheregiodeterminingstepsofthisreactionareprobablydistinct andindependent.

Theconfigurationoftheolefinisalsoimportant.Forinstance,compound 1g,the Zisomerof 1a , reacted to form 2a as the major product. The reaction was nevertheless significantly slower (7 h vs . 2 h) and much less selective (15 vs. 80 % ee ); the same levorotatory enantiomerof 2a beinghoweverpredominantinbothcases.Furthersubstratelimitationsfor thecatalyticsystematplaycouldbeuncoveredasallylicsubstrates 1h to 1k didnotreactat all. The reasons for the lack of reactivity of alkylderived substrate 1i and of cinnamyl substratesbearingatrisubstitutedalkenemoiety 1j to 1k remainstobeclarifiedbuttheresults showthecrucialimportanceofthestereoelectronicpropertiesofthesubstratesforthistypeof transformationtooccur.

O O O O O O O O

O O O O n-Pr

1f 1h R O R O O 1i R = Me 1a R = 4-OMe 1j R = Ph 1b R = 2-OMe O 1c R = H 1d R = 4-Cl O O 1e R = 4-NO2 MeO O O 1g 1k

Entry Ester Time Conv. % ee Conf. b b:l c

1 1a 2h >97% 80 (–) >97:3 2 1b 3h >97% 78 (–) >97:3 3 1c 7h >97% 77 (–)(R) 95:5 4 1d 24h >97% 77 (–) 93:7 5 1e 120h >97% 75 (–) 76:24 6 1f 1.5h >97% 77 (–) >97:03 7 1g 7h >97% 15 (–) 95:05 8 1h 48h <3% 9 1i 48h <3% 10 1j 48h <3% 11 1k 48h <3%

aFresh 4a (10mol%),ligand L18f (10mol%),THF,60°C, c(1)0.5 M;the resultsbeingtheaverageofatleasttworuns; bsignofopticalrotationof 2 and absolute configuration when known; c ratios of branched ( 2) to linear ( 3) productsweredeterminedatcompleteconversionby1HNMR(400MHz). Table 3-5:CpRucatalyzedrearrangementofallylicesters 1.a

39 Chap. 3: Catalytic System Optimization 3.3.4. Metal Source Optimization

However, importantly, we observed during the initial screening process that the enantioselectivity of the reaction of 1a could vary from one reaction tothe next under the same conditions ( Table 3-6). After extensive investigation of reaction parameters, this 19 phenomenoncouldbecorrelatedtoachangeofaspectofthe[CpRu(MeCN)3][PF 6] saltand to the shelvingtimeof 4a inthefreezerinparticular.Indeed,thecolorof thisprecatalyst, although kept under argon atmosphere at –20 °C, gradually changed from bright yellow (whenfresh)tobrownorangeafterafewweeks.Then,usingolderandoldersamplesof 4a ,a gradualdecreaseoftheenantioselectivitywasnoticed,from80% ee withfreshlyprepared 4a to69%withafiveweeksoldsample.Interestingly,neitherthe b:l rationortheconversion after two hours was affected by the condition of 4a . Needless to say that all previously detailedexperimentshavethenbeencarriedoutwithfreshlypreparedprecatalyst 4a (lessthan oneweekold).

O O O O

[CpRu(MeCN)3][PF6] (10 mol%) O L18f (10 mol%)

THF, 60 °C

1a 2a 3a MeO MeO MeO

Entry Ester 4a age Time Conv. % ee Conf. b b:l c

1 1a <1week 2h >97% 80 (–) >97:3 2 1a 2weeks 2h >97% 76 (–) >97:3 3 1a 3weeks 2h >97% 72 (–) >97:3 4 1a 5weeks 2h >97% 69 (–) >97:3

a4a (10mol%),ligand L18f (10mol%),60°C, c(1a )0.5 M;theresultsbeing the average of at least two runs; b sign of optical rotation of 2a ; c ratios of branched( 2)tolinear( 3)productsweredeterminedatcompleteconversionby 1HNMR(400MHz). Table 3-6:Effectoftheagingofprecatalyst 4a .a

In addition, the synthesis of 4a requires several days and the final product is almost impossibletopurify.Inaddition,outofthenumerousbatchesof 4a synthesizedduringthis work,twogaverisetoaparasitereaction( Scheme 3-5):510%of Oallylatedproductwas obtained.20 Unfortunately, no experimental conditions were found to neither promote, nor preventthissidereactionusingthesetwoprecatalystbatches.

19 Kündig,E.P.;Monnier,F.R. Adv. Synth. Catal. 2004 , 346 ,901904. 20 ProductratiosweremesuredbyGCMSand ee wasdeterminedbyCSPGC.

40 Chap. 3: Catalytic System Optimization

O O O

[CpRu(MeCN)3][PF6] (10 mol%) O L18f (10 mol%) O

THF, 60 °C

MeO MeO 90-95 % MeO 5-10 % 80 % ee 81 % ee Scheme 3-5: Sidereactionusing 4a ascatalyst.

Tocircumventtheseproblems,theuseofadifferentsourceofmetalprecursorwasenvisaged 6 19 – and [CpRu( η naphthalene)][PF 6] complex 4b in particular ( Table 3-5). As reported recentlybyHintermannandBolm, 21 thisairstablecomplexcanbeusedasaprecatalystfor hydrationofterminalalkynes.Initialexperimentsvalidatedthischoiceassalt 4b wasindeed able, in the presence of ligand L18f, to yield the desired product 2a with excellent regioselectivity. However, in theexperiments performedunderstandardconditions,a quite lower ee valuewasobtained(71% ee with 4b , Table 3-4,entry2 vs .80% ee with 4a Table 3-3,entry1).Wereasonedthatthepresenceofthesubstrateduringthedisplacementofthe η6naphthalene by the pymox ligand was perturbing the outcome of the reaction. This problemwasthenovercomebytreatingcomplex 4b withtheligandpriortotheadditionof thesubstrate.

Todeterminetheoptimalinductionperiod,reactionswereperformedwithaninitiationtime of 30, 60 or 90 minutes before introducing the allylic ester. In the latter two cases, the enantioselectivitywasessentiallyrestored(79% ee , Table 3-7,entries3and4).

O O O O 4b (10 mol%) O L18f (10 mol%) THF, 60 °C

1a 2a 3a MeO MeO MeO

b c Entry Ligand Initiation Time Conv. % ee Conf. b:l PF6 PF6 1 0min 48h <3% Ru Ru 2 0min 6h >97% 71 (–) >97:3 MeCN NCMe L18f NCMe 3 L18f 30min 6h >97% 74 (–) >97:3 4a 4b 4 L18f 60min 6h >97% 79 (–) >97:3 5 L18f 90min 6h >97% 79 (–) >97:3 a4b (2.5mol%),ligand L18f (3mol%),THF,60°C, c(1a )2 M;theresultsbeingtheaverageofatleasttworuns; bsignofopticalrotationof 2; cratiosofbranched( 2)tolinear( 3)productsweredeterminedatcompleteconversionby 1HNMR(400MHz). Table 3-7:Initiationtimeeffectwith 4b .a

21 (a)Labonne,A.;Kribber,T.;Hintermann,L. Org. Lett. 2006 , 8,58535856.(b)Kribber,T.; Labonne,A.; Hintermann,L. Synthesis 2007 ,28092818.(c)Labonne,A.;Zani,L.;Hintermann,L.;Bolm,C. J. Org. Chem. 2007 , 72 ,57045708.

41 Chap. 3: Catalytic System Optimization Whethertheliberatednaphthalenemoietyisinvolvedinthereactionafteritsdisplacementis debatable,however,itisalmostquantitativelyrecoveredunchangedattheendofthereaction andthusprovidesaninternalreferenceforGCyieldcalculations. 22

To probe the influence of the metal’s counterion in the catalytic process, salts of type [CpRu( η6naphthalene)][X] were synthesized following the procedure by Kündig ( 4c X = 19 SbF 6, 4d X=BPh 4, 4e X=BF 4). WhereastheSbF 6saltwasobtainedingoodyield(60%) 23 andhighpurity,theBPh 4 (46%) andtheBF 4(74%)saltswereobtainedinunsatisfactory purity. When used as catalyst, all these salts proved to be potent catalysts in the standard conditionsdetailedabove( Table 3-8), but theenantioselectivity and the regioselectivity of thereactionwereonceagaindependantonthepurityofthemetalsource.Overall,PF 6salt 4b appearsasthebestchoiceofcatalystforfurtherstudies.

O O O O [CpRu(η6-napht)][X] (2.5 mol%) O L18f (3 mol%)

THF, 60 °C 1a 2a 3a MeO MeO MeO

b c d Entry [Ru] X Time Conv. % ee Conf. b:l

1 4b PF 6 6h >97% 79 (–) >97:3

2 4c SbF 6 6h >97% 79 (–) 95:5

e 3 4d BPh 4 6h >97% 74 (–) 93:7

4 4e BF 4 6h >97% 73 (–) 79:21

a4(2.5mol%),ligand L18f (3mol%),THF,60°C, c(1a )2 M;theresultsbeingtheaverageof atleasttworuns; b reactiontimewithout1hinductiontime; c signofopticalrotationof 2; d ratiosofbranched( 2) to linear ( 3)productsweredeterminedatcompleteconversionby 1H NMR(400MHz); e12hinitiationtimewasnecessarytosolubilizethecomplex. Table 3-8:CpRucatalyzedrearrangementofallylicesters 1a with 4.a

The generality of this catalytic combination was then tested using some of the substrates described previously. The results are detailed in Table 3-9. For all tested substrates, the catalystgenerated in-situ from 4b performedasselectivelyastheonederivedfrom 4a .Inthe particularcaseofthelessactivesubstrates(entries3and4),regioandenantioselectivities 6 wereevenslightlybetter.Importantly,complex[CpRu( η naphthalene)][PF 6]couldbestored at ambient temperature under regular atmosphere in a screwcap vial for over 6 months without any noticeable erosion of reactivity or selectivity. However, due to the

22 Theintensityofthesignalbeingnotsufficientforaccuratemeasurements. 23 6 6 Thiscomplexwasobtainedasa60:40mixtureof[CpRu( η naphtalene)][BPh 4]and[CpRu( η BPh 4)].

42 Chap. 3: Catalytic System Optimization

6 24 photosensitivity of [CpRu( η naphthalene)][PF 6], caremustneverthelessbe takentostore 4b inthedark.

O O O O 6 [CpRu(η -napht)][PF6] (2.5 mol%) O L18f (3 mol%)

THF, 60 °C 1 2 3 R R R

b c d Entry Ester R Time Conv. % ee Conf. b:l 1 1a 4MeO 6h >97% 79 (–) >97:3 2 1c H 25h >97% 77 (–) 95:5 3 1d 4Cl 120h >97% 81 (–) 93:7

4 1e 4NO 2 400h >97% 79 (–) 79:21

a4b (2.5mol%),ligand L18f (3mol%),THF,60°C, c(1)2 M;theresultsbeingtheaverageof atleasttworuns; b reactiontimewithout1hinductiontime; c signofopticalrotationof 2; d ratiosofbranched( 2) to linear ( 3)productsweredeterminedatcompleteconversionby 1H NMR(400MHz). Table 3-9:CpRucatalyzedrearrangementofallylicesters 1with 4b .a

Therobustnessofthiscatalyticsystemwasfurtherassessedbyperformingtherearrangement ofallylicester 1a innonanhydrousconditions.Theresultsofthereactionsperformedwith variousamountsofwaterarereportedin Table 3-10 .Noeffectontheregioselectivity(>97: 3)andonlyaverysmalleffectontheenantioselectivity(78 vs. 79% ee )oftheprocesswas noticedwith10,300and2100ppmofwaterinTHF(entries1to3,Table9).Howeverifthe amountofwaterisraisedtoapproximately0.3%(volume),thebranchedproductisstillthe onlyobtainedbutwithaslightlylowerenantioselectivity(75 vs. 79% ee ).Thisreactioncan thus also be performed under nonanhydrous conditions using standard bottled solvent (typicallylessthan50ppmofwaterforcommerciallyavailableanalyticalgradeTHF)with virtuallynoeffectonthestereochemicaloutcomeofthereaction.

24 ForleadingreferencesonthephotolabilityofareneligandsinCpRu( η6arene)complexes,see(a)McNair,A. M.;Mann,K.R. Inorg. Chem. 1986 , 25 ,25192527.(b)Trost,B.M.;Older,C.M. Organometallics 2002 , 21 , 25442546.

43 Chap. 3: Catalytic System Optimization

O O O O 6 [CpRu(η -napht)][PF6] (2.5 mol%) O L18f (3 mol%)

THF, 60 °C 1 2 3 R R R

b c d e Entry Water(ppm) Time Conv. % ee Conf. b:l 1 10 8h >97% 79 (–) 99:1 2 300 8h >97% 78 (–) 98:2 3 2100 8h >97% 78 (–) 98:2 4 11600 8h >97% 75 (–) 97:3

a4b (2.5mol%),ligand L18f (3mol%),THF,60°C, c(1)2 M;theresultsbeingtheaverageofatleasttworuns; b measuredusinga Karl-Fisher apparatus; creactiontimewithout1hinductiontime; dsignofopticalrotationof 2; e ratiosofbranched( 2)tolinear( 3)productsweredeterminedatcompleteconversionby 1HNMR(400MHz). Table 3-10:CpRucatalyzedrearrangementofallylicester 1a with 4b innondryTHF.a

3.4. Conclusion

Herein, we have reported that the conjunction of simpletomake and readily available enantiopure pymox ligands (one step from commercially available sources) and a CpRu precatalyst provides an efficient catalytic system which allows Carroll rearrangements of allylβketoesters of type 1 with good to perfect regioselectivity and good enantiomeric excess.Evenchallengingsubstratesbearingelectronwithdrawingatomsorgroupscouldreact with catalyst loadingsaslowas 2mol%.Inaddition, to avoid the phenomenonofcatalyst agingdetrimentaltotheselectivityofthereaction,analternativecatalyticcombinationwas 6 developed combining airstable [CpRu( η naphthalene)][PF 6] 4b and indanylpymox ligand L18f,reproduciblyallowinghighselectivities.

44 Chap. 4: Mechanistic Insight

4. Mechanistic Insight

There are two possible outcomes: if the result confirms the hypothesis, then you've made a discovery. If the result is contrary to the hypothesis, then you've made a discovery. Enrico Fermi (1901-1954)

4.1. Preamble

Atthisstage,itthusappearedimportanttobetterunderstandthemechanismofthereaction. As an initial working hypothesis, it was considered that the Rucatalyzed Carroll rearrangement proceeds through intermediates similar to Pdcatalyzed allylic substitution reactions ( Scheme 2-2). As such, understanding the precise structure of [CpRu(LL’)( η3 allyl)] 2+ seemedcrucialtocomprehendtheregioandstereochemicaloutcomeofthereaction.

3 4.2. MO Analysis of [CpRuL 2(ηηη -allyl)] Complexes

The first step for this purpose is to consider, on a theoretical point of view, the [CpRu] fragment’s molecular orbitals (MOs). A simplified MO interaction diagram is given in Scheme 4-1andexplainedinthesubsequentparagraphs.1

e2"

Metal spn hybrid dxz

Metal 4d orbitals

e1"

d yz d z2

a2" dx2-y2 dxy

spn Ru2+: (4d4 5s2) Ru 4 n Scheme 4-1:SimplifiedinteractiondiagrambetweenCp and d Ru(II)fragments(onlythe pzbased sp molecularhybridshownand5selectronsomittedforclaritysincenotinteractingwiththeCpmolecularorbitals).

1Rauk,A. Orbital interaction theory of organic chemistry ;2nded.;WileyInterscience:NewYork, 2001 .

45 Chap. 4: Mechanistic Insight

Twotypesofinteractionsareimportant:onlytheCp πorbitalsoverlapefficientlywiththe d and sp nhybridMOsofthemetal.Consideringthepseudotetrahedralgeometryofthemetal complex, the sp n MO has an hybridization close to sp 3. It appears that only one strongly bondinginteractionexistsbetweentheCp frontierMOswiththe sp 3MOofthe4d4Ru(II) fragment(onlytheMOarisingfromtheoverlapofthe pzisshown):astabilizinginteraction n occurs upon overlap of the Cp a2” MO with the sp hybrid on the metal. Due to non equivalent symmetries between the Cp e2” MO with the d orbitals of the metal, the interactionsaregloballyweakandnonbonding.The e1” MO efficiently interacts with the degenerate dxy and dx2-y2butmuchlessoverlapwiththe dxz and dyz ispossibleduetodifferent

MOs symmetry. In the case of a Ru(II) complex, the dz2 globally has a nonbonding interactionwiththe e1”MOduetotheirdifferentsymmetry:itisonlyslightlymorestabilized thaninthecaseofthe dxz and dyz .

If one considers that, as for palladium, the catalytically active species is a 16electron unsaturated metal species, it is also important to describe its structure ( Scheme 4-2). This twoleggedpianostoolmetalcomplexhas C2v symmetryifligandsLandL’areidenticaland hasanempty porbital(Tshapedcomplexwith sp 2hybridizedmetal).Uponinteractionwitha ligand this p orbital progressively hybridizes to sp 3 (2 nd order Jahn Teller distortion) thus yielding a chiral pseudo tetrahedral threelegged piano stool (L ≠ L’ ≠ L”). This is the geometryofa[CpRu(LL’)(C=C)] +olefincomplexwhichcouldbeareactionintermediatefor thestudiedreaction.

2nd order Jahn-T eller distortion M L M L' L L' M L' M ϕ ϕ L' 2θ L L L'' Scheme 4-2: Jahn-Teller distortionfor16electron[CpMLL’] +.

TheinteractionsbetweentheCpRu(II)andthe η3allylfragmentsareprimarilybasedonthe overlapofthe πorbitalsoftheallylmoietywiththepopulated e2and 1a 1MOsofthemetal 2 (Scheme 4-3). Repulsiveinteractionsoccurthroughthe π1MOwhichhowevercanoverlap n withtheempty sp hybridMO.Ontheotherhandthemetaldxy hasthecorrectsymmetryto efficientlyoverlapwiththe π2MOoftheallylfragment.Inaddition,metaltoallylstabilizing backbondinginteractionsaresymmetryallowedbetweenthe dz2 and d x2-y2ofthemetalandthe

2Pruchnik,F.P. Organometallic chemistry of the transition elements;PlenumPress:NewYork, 1990 ,427475.

46 Chap. 4: Mechanistic Insight

π3 MO of the allyl fragment. As discussed in Chapter 2 , the allyl ligand can adopt two configurations( endo and exo )forwhichtheoverlapwiththe dMOsisunequallyefficient.

The dxy π2 interactionisstabilizingandan endo arrangementoftheallylligandisfavored 3 because of better orbital overlap ( Scheme 4-4). Indeed, in the d π3 backbonding interaction,boththe dz2and d x2-y2MOsareparticipating( Scheme 4-5).Inthecaseofan endo arrangement,theoverlapbetween dz2 and π3 ismoreefficientthaninthe exo arrangement;on the other hand, the dx2-y2 π3 interaction is stronger in the exo case than in the endo case. 4 However, since the dz2 has a higher orbital energy ( Scheme 4-3), it has a greater back 5 bondingabilitythanthe d x2-y2MO. Theendo arrangementisalsostericallyfavoredas,inthe exo arrangement, the CCC allylic moiety eclipses the two ML bonds giving significant repulsiveinteractions.Inaddition,theproximityofthecentralallylicsubstituentwiththeCp “roof”alsoprovides,inthe exo arrangement,higherstericrepulsionforCp’orCp*ligands.

3 sp 2a1

Anti bonding MOs

e1 dyz d xz metal(d) to η3-allyl(π ) π or 3 3 back-bonding interactions

dx2-y2 dxy 1a1

metal(d) to η3-allyl(π ) π or 2 2 bonding interactions

dz2 e2

π or repulsive 1 interactions

4 d -CpRu(II) cationic η3-allyl Scheme 4-3: Interactionsbetween d4CpRu(II)and η3allylfragments.

dxy dxy

L L L L endo exo

Scheme 4-4: Bondinginteractionsbetween dxy and π2. 3Bi,S.W.;Ariafard,A.;Jia,G.C.;Lin,Z.Y. Organometallics 2005 , 24 ,680686. 4 3 In [CpML 2(η allyl)] structures, the dx2-y2 MO does not have any σ*antibonding character with the two L ligandsresidingonthenodalplanes.Forthisisthe reason dx2-y2 is lower in energy than dz2inafourlegged pianostoolcomplex. 5(a)Kubacek,P.;Hoffmann,R.;Havlas,Z. Organometallics 1982 , 1,180188.(b)Poli,R. Organometallics 1990 , 9,18921900.Lin,Z.Y.;Hall,M.B. Organometallics 1993 , 12 ,1923.(c)Ward,T.R. Organometallics 1996 , 15 ,28362838.

47 Chap. 4: Mechanistic Insight

dx2-y2 dz2 dx2-y2 dz2

L L L L L L L L

endo exo Scheme 4-5: Metal( d)to η3allyl( π3)backbonding.

4 3 Overall, the endo arrangement in d [CpRuL 2(η allyl)] complexes is intrinsically both electronically and sterically more stable than its exo counterpart. For example, an energy difference of 14.3 kcal.mol 1 between endo and exo isomers was calculated for the 3 3 [CpRuCl 2(η allyl)]complex.

4.3. Regioselectivity of the Reaction in the Case of Unsymmetrically Substituted Substrates

AnotherfieldofapplicationoftheMOstheoryistherationalizationoftheregioselectivityof theadditionofanucleophileontoanunsymmetrcallysubstituted πallylfragment.Indeed,the addition of a [CpML 2] fragment onto prochiral allylic substrates creates stereoisomeric situationswhichcanbegovernedbybothstericandelectronicrequirements;andthuscanbe analyzedintermsoffrontiermolecularorbitals.

4.7.1. Analysis in Terms of Molecular Orbitals

The dissymmetricallysubstituted πallyl complex is chiral and possibly exists in several isomericforms(Scheme 2-24 )duetostericandelectronicreasons;thetwoallylicterminiare assuchnonequivalenttowardsnucleophilicadditionsincethenucleophilecanselectoneor theotherterminus.Theeffectoftheelectronicasymmetry of a bidentate ligand onto such metalπallyl complexes has been widely studied in the case of several other metals. 6 Howeverthethroughmetalelectroniceffectsoftheligandsremaindifficulttopredict,even qualitatively,withoutextensivecomputationalcalculations.Fromanelectronicpointofview, andinfirstapproximation,thenucleophilewillattackintothe π 2MOoftheallylfragment.

Theallylic π2 MOhasanodalplaneonthecentralallyliccarbon;thisiswhyonlyproducts resultingfromtheattackofthenucleophileontooneofthetermini of theallyl moiety are 6(a)Sakai,N.;Mano,S.;Nozaki,K.;Takaya,H. J. Am. Chem. Soc. 1993 , 115 ,70337034.(b)LloydJones,G. C.;Pfaltz,A. Angew. Chem. Int. Ed. Engl. 1995 , 34 ,462464.(c)Burckhardt,U.;Hintermann,L.;Schnyder,A.; Togni,A. Organometallics 1995 , 14 ,54155425.(d)Schnyder,A.;Hintermann,L.;Togni,A. Angew. Chem. Int. Ed. Engl. 1995 , 34 ,931933.

48 Chap. 4: Mechanistic Insight obtained. In addition the antisymmetrical nature of this MO implies an approach of the nucleophile anti tothemetal.Incaseofadissymmetricallysubstitutedallylicsubstrate,the two lobes centred on the terminal carbons are of different size and thus orienting the nucleophilicattackmainlyontooneofthetwopossibletermini( Scheme 4-6).

In the case of an electron rich substituent (Electron Donating Group, EDG case 3), the positivechargeinthe π2MOisbettercancelledαtothesubstituentduetostrongeroverlap. Thisresultsinasmallercoefficientand,assuch,asmallerlobeonthemostsubstitutedC(3) carbon.Theoverlapwiththe dxy MOofthemetalfragmentisthuslowerforC(3)thanfor C(1)resultinginalongerRuC(3)bondandassuchafavouredattackofthenucleophileat thisposition.Theoppositecase istobe expected with electron poor substituent (Electron

WithdrawingGroup,EWGcase2).However,asthe π2MOisinvolvedininteractionwith themetal dorbitals,theeffectofthemetalshouldbetakenintoaccountforamoreaccurate descriptionofthereaction.Still,theresultsshownin Table 3-6areingoodagreementwith thepreviousanalysisasfarasaromaticsubstituentsareconsidered.

1/2 1/2

(1) (2) (3) 13 1 3 EWG 1 3 EDG

Scheme 4-6: Schematicrepresentationofelectroniceffectsonthe π2 MOofthe πallyl.

Importantly, the previous analysis of the πallyl MOs is not sufficient in itself: there are several other elements to take into account to be able to rationalize the regioselectivity directing properties of the metal complex; and the early or late transition state of the nucleophilic addition in particular (Scheme 4-7). The structure of an early transition state, being more similar to the structure of the reactants, will resemble to the CpRuπallyl complex. The most electrophilic site on the allylic fragment will thus control the regioselectivity.Foralatetransitionstate,theformationofthemoststable η2olefincomplex, produced after nucleophilic addition, will be the determining factor. In the case of monosubstitutedallylicsubstrates,boththemoststablefinalolefincomplex(duetolesssteric hindrance)andtheattackofthenucleophileatthemostelectrophilic(branched)siteprovide thesameregioselectivity.Consequently,thisdoesnotallowdrawinganyconclusiononthe earlyorlatenatureofthetransitionstateofthenucleophilicattack.

49 Chap. 4: Mechanistic Insight

Early transition state Late transition state reactant like product like

2 L L' L L' Ru Ru Nu- Ar Ar Nu Most electrophilic Most stable η2-olefin- site metal complex Scheme 4-7:Schematicreactionprofile.

4.7.2. Substituent effect: linear free-energy relations

As mentioned before, the electronic properties of the allylic fragment’s substituent should have an impact on the regioselectivity. The data collected in Table 3-9 indeed shows an evolutiontowardsmorelinearproductwiththeincreasingelectronwithdrawingeffectofthe substituent(Scheme 4-8).Inviewofthiscollectionofresults,amoreindepthanalysiswas donetodetermineapossiblelinearfreeenergyrelationbetweentheelectronicpropertiesof theallylicfragmentandtheregioselectivityofthenucleophilicaddition.Theregioselectivity results(log(( b/l)/( bH/lH)))werethusplottedagainstdifferent Hammett coefficient σvalues + 7 (σp,σp and σp inparticular).

0.8 OMe sigma sigma+ 0.6 sigma - Linear (sigma+) 0.4 y = -0.8977x Me 2 0.2 R = 0.9947 )) H

/l H H 0 -1 -0.5 0Cl 0.5 1 1.5

log((b/l)/(b -0.2

-0.4

-0.6 NO 2

-0.8 Sigma Scheme 4-8: Hammett plotand ρconstantcalculationfor para substituents.

+ 2 Onlyinthecaseofthe σp scale,agoodlinearcorrelationwasobtained(,R >0.99).Since asingleslopewasobtainedthroughoutthescaleofelectronegativityofthe para-substituents, + asinglemechanismismostprobablyatplay.Inaddition,bydefinitionofthe σp values,this 7Hansch,C.;Leo,A.;Taft,R.W. Chem. Rev. 1991 , 91 ,165195.

50 Chap. 4: Mechanistic Insight showsthatthethroughconjugationmesomericaleffectisthepredominantregiodetermining factor. Considering a linear correlation passing through the origin of the graph, a negative + Hammett constant(orsensitivityconstant)isobtainedbylinearregressionoftheseriesof σp data,affordinga ρvalueof0.9.Thesedatathusleadtotheconclusionthatthereissome amount of positive charge on the benzylic carbon which is stabilized (or destabilized) by resonanceduringtheformationofthetransitionstate that sets the regiochemistry. 8 This is coherentwiththeproposedmechanisminvolvingionizationbyoxidativeadditionyieldinga cationic πallylcomplexontowhichissubsequentlyaddedanucleophile. Since theresults showareductionoftheelectrondensityontheallylicfragmentinthetransitionstateofthe nucleophilicadditionstep,itismostprobablyanearlytransitionstate.Assuchitsstructure resemblesmoretothe πallylcomplex,confirmingthevalidityofthepreviousMOanalysis.

4.4. Enantioselectivity of the reaction

Asdiscussedforpalladiuminsection2.2.3,therecanbeseveralenantiodeterminingevents fortheconsideredallylicsubstitutionreaction( Carroll rearrangement).InthecaseofCpRu chemistry,thereisonemoreelementtobeconsidered:thestereogenicityofthemetalatom.

4.7.1. Stereoselectivity at the Ru-centre

Ifonereasonsthatthecatalyticallyactivespeciesisanunsaturated16electronCpruthenium complex ( Scheme 4-2),twodiastereomericformscanbeobtainedwithanenantiopure C1 symmetricalliganduponcoordinationofathirdligand.Indeed,duetothepseudotetrahedral geometryinan18electronpianostoolshapedcomplexoftheRuatom.Inthepresenceof four different ligands, two RRu or SRu diastereomeric complexes arise. This has been thoroughlystudiedbyBrunner 9andDavies 10 with(amongothers)pymoxligandsandCpor 6 η arene ruthenium pianostool complexes respectively. With a bidentate enantiopure C1 symmetricalligand,thetwopossibleorientationsoftheligandprovidetwodifferentisomeric complexesasshowin Scheme 4-9.Inthefirstcase,theproximityoftheindanylarenemoiety of L18f with the Cp ring results in important steric repulsion ( Scheme 4-9 (a)). Case (b) seemslikethemostliablecomplextoformalabileolefincomplexthatwillallowthereaction

8Lehmann,J.;LloydJones,G.C. Tetrahedron 1995 , 51 ,88638874. 9Brunner,H.;Klankermayer,J.;Zabel,M. Organometallics 2002 , 21 ,57465756.. 10 (a)Davies,D.L.;Fawcett,J.;Garratt,S.A.;Russell,D.R. Organometallics 2001 , 20 ,30293034.(b)Davies, D.L.;Fawcett,J.;Garratt,S.A.;Russell,D.R.Dalton Trans. 2004 ,36293634..

51 Chap. 4: Mechanistic Insight toproceedfurther.Inthiscase,theliganddelimitstheenvironmentinsuchawaythatonly onerelativeorientationofthecinnamylfragmentispossible( Scheme 4-9 (c) ).

(a)

(b) (c) Scheme 4-9: 3Ddrawingsofthetwodiastereomericformsoftheallegedcatalyticallyactivespecieswith L18f (a)and(b)(thirdligandomittedforclarity)andofthepostulatedmoststable πallylcomplex(c).

Itcanhowevernotbeexcludedthatform(a)participatesinthereactionandthusaccountsfor apartoftheimperfectenantiomericexcess( ee <100%).Anothermoreplausibleexplanation is that form (b) solely reacts and that a perfect orientation of the cinnamyl fragment is obtained(allylicCH 2pointingtowardstheindanylmoiety, Scheme 4-9 (c) )butthatthe endo / exo isomerismisimperfectlycontrolled(the endo and exo isomersshowadifferentfacefor 11 the nucleophilic attack). To assess this issue, [Cp*Ru(MeCN)3][PF 6] was tried as metal sourceforthe Carroll rearrangementofester 1a inthestandardconditions.Themorebulky Cp*ligandisbelievedtopromoteabettercontrolofthe endo / exo isomerismbyenhanced steric interactions with the central allylic substituent. However, using L18f as ligand, the reactionwasveryirreproducibleintermsofenantioselectivity( ee 4575%,(–)enantiomer still being major as with 4a ) and the reaction was much slower than with

[CpRu(MeCN)3][PF 6] ( 4a ) as metal source. This slower reaction rate is quite surprising knowingthetraditionallyacceptedstrongeroxidativeadditionefficiencyofCp*complexes. 12 11 Mbaye,M.D.;Demerseman,B.;Renaud,J.L.;Toupet,L.;Bruneau,C. Adv. Synth. Catal. 2004 , 346 ,835 841. 12 (a)Hermatschweiler,R.;Fernandez,I.;Pregosin,P.S.;Breher,F. Organometallics 2006 , 25 ,14401447.(b) Trost,B.M.;Older,C.M. Organometallics 2002 , 21 ,25442546.

52 Chap. 4: Mechanistic Insight

ItappearedthatthisreactionissensitivetothemetalligandstoichiometrywiththeCp*Ru basedcatalyst.Thisisprobablyduetothefactthat,contrarytotheCpRuspecies,theCp*Ru species are catalytically active even when the bidentate ligand is not or only partially coordinatedtothemetalcentre.

Starting from [CpRu(COD)I] (generous gift from the Kündiggroup) and 1 equivalent of ligand L18f in dry CH 2Cl 2, complex[CpRu( L18f)I] ( 7a)wasobtainedin75%yieldafter columnchromatography.Theanalysisofthe 1HNMR(500MHz)spectrumof 7a showed that it was composed of a 67:33 mixture of two isomeric complexes (ratio of H α and H Cp protons).

13 When starting from [CpRu(MeCN)3][PF 6], obtained by the method of Kündig, and 1 equivalentofligand L18findryCD 2Cl 2,thetransientcomplex[CpRu( L18f)(MeCN)][PF 6] (7b) was obtained as a single visible species (one set of signals for each proton). The coordinationoftheligandwasshownbyaclearupfieldshiftofthe 1HNMRsignalsofthe coordinated ligand (especially for H α) compared to free L18f and by the appearance of a signalforfreeMeCNaccountingfor2equivalents.Complex 7bwasthusobtainedasasingle isomer or an ontheNMRtimescale rapidly isomerizing mixture of stereoisomers. Upon bubbling of CO into the reaction mixture, the signal for the free MeCN accounted for 3 equivalentsandall 1Hsignalsweresplitintotwosets.Eachgroupofpeaks,accountingfor two diastereomeric species of complex [CpRu( L18f)(CO)][PF 6] ( 7c), was obtained with a 64:36 ratio. The coordination of CO to the complex being irreversible in the reaction conditions,thisresultcouldaccountforthekineticratioofthetwoisomers.Unfortunatelythe different isomers could not be separated for catalytic activity studies. As such the stereoisomeric mixtures of complexes 7a and 7c were separately tried as catalysts for the Carroll rearrangementbutnoneofthesetwocatalyticcombinationsaffordedanyreactionin thestandardconditions(THF,60°C…).

Cl Cl Cl HCp HCp Ru Ru O Cl Hααα Hααα Cl O O N N N N P H N O O O O X ααα X O Cl TRISPHAT-N (TTN) Cl Cl 7a X = I, 7b X = NCMe/PF6, 7c X = CO/PF6, 7d X = TRISPHAT-N Cl Scheme 4-10: CpRu(indanylpymox)complexes. 13 Kündig,E.P.;Monnier,F.R. Adv. Synth. Catal. 2004 , 346 ,901904.

53 Chap. 4: Mechanistic Insight

Recently our group reported the synthesis, resolution and use of TRISPHATN (TTN), a hexacoordinated phosphate anion able to coordinate to metal centers though the Lewis 14 basicity of the pyridine’s Natom. When [CpRu(MeCN)3][PF 6] was treated with 1 equivalentof L18fand1equivalentofenantiopure[ nBu 4N][ TTN],aredorangecomplex 1 wasobtainedaftercolumnchromatography(SiO 2,CH 2Cl 2)in76%yield.Analysisof Hand 31 PNMR spectra showed the formation of two sets of signals and hence the presence of diastereomeric[CpRu( L18f)( TTN)]complexesina63:37ratio( Scheme 4-11).

Weak NOESY

rac TTN (a) SRu (a)

Strong NOESY

TTN(+ ΛTTNminor)

(b) RRu

1 Scheme 4-11: H αsignalsof[CpRu( L18f )(TTN)]complexes( HNMR,CDCl 3,500MHz,withintegrations);(a) WeakNOESYbetweenH Cp anH 5,(b)StrongNOESYbetweenH Cp anH 5(TTNanionomittedforclarity).

Some minor signals were also noticed and compound [CpRu( L18f)( rac TTN)] was synthesizedtoconfirmthenatureoftheseminorsignals.Indeed,thislattercomplexconsists 1 offourdifferentdiastereomers(( RRu ,TTN ),(SRu ,TTN ),(RRu ,ΛTTN )and(SRu ,ΛTTN )whose H and 31 PNMRsignalsoverlapperfectlywiththemajorandminorsignalsobtainedforthe TTNasstartingmaterial.Thusconfirmingthattheminorsignalsaccountforthepresenceof some ΛTTN in the analyzed sample. Furthermore, the absolute configurations of all stereogenic elements of the four different diastereomers could be deduced by NOESY experimentsandthecrosspeakbetweenthesignalofCpprotons(H Cp )andtheonesforthe 14 (a)Constant,S.;Frantz,R.;Müller,J.;Bernardinelli,G.;Lacour,J. Organometallics 2007 , 26 ,21412143.(b) Constant,S.;Tortoioli,S.;Muller,J.;Linder,D.;Buron,F.;Lacour,J. Angew. Chem. Int. Ed. 2007 , 46 ,8979 8982.

54 Chap. 4: Mechanistic Insight twodiastereotopicprotons αtotheNatomoftheoxazoline( Scheme 4-11 ).Unfortunately theseTRISPHATNbasedCpRucomplexesdidnotdisplaysufficientcatalyticactivityinthe Carroll rearrangementandwerenotprobedfurther.

Thediastereomericratiosobtainedforcomplexes 7a to 7d aresurprisinglylow(~2:1)when comparedtotheenantiomericratiosoftheproductfromthe Carroll rearrangement(~9:1). However, these results do not contradict the proposed rational since the formation of the olefincomplexismostprobablyreversible,thusprovidinga Curtin-Hammett situation:oneof thetwodiastereomericformsoftheolefinRucomplex undergoes faster oxidativeaddition thantheother.

4.7.2. Rationalization of the enantioselectivity

The stereochemical analysis of the outcome of the reaction is also dependent of the configurational stability of the πallyl complex. This issue was assessed by two series of experiments: one involving enantiopure secondary cinnamyl acetoacetates ( Table 4-1) as substrate, and the other cinnamyl esters that cannot decarboxylate under standard reaction conditions( Table 4-2).

First, the rearrangement of the secondary acetoacetate 5c for which no trivial matched / mismatchedeffectcouldbeobservedusing L3 asligandwasrevisited. 15 Inthecaseof L18f,a clear matched / mismatched situation wasobservedas (–,R)2cand (+, S)2cwereobtained with ee values of 45 and 87 % starting from enantiopure (S)5c and ( R)5c respectively (Table 4-1).Inaddition,inthemismatchedseries,thereactionwasslowerandthe b:l ratio wasnoticeablylower.Whenracemic 5cwassubmittedtothereactionconditions,aslightly enantioenrichedproductwasobtainedat86%conversion( ee 15%infavorofthe(–)(R) enantiomer)whichisingoodaccordancewiththeresultsobtainedinbothenantiopureseries and the fact that the reaction is globally stereospecific with branched secondary allylic substrates. 16,17 Interestingly, the b:l ratio is lower in the mismatched series; the different regioselectivity show that the reaction in the matched and the mismatched series proceed through different diastereomeric transition states which are not interconverting under the standardreactionconditions.

15 Constant,S.;Tortoioli,S.;Muller,J.;Lacour,J. Angew. Chem. Int. Ed. 2007 , 46 ,20822085. 16 Trost,B.M.;Fraisse,P.L.;Ball,Z.T. Angew. Chem. Int. Ed. 2002 , 41 ,10591061. 17 Burger,E.C.;Tunge,J.A. Chem. Commun. 2005 ,28352837.

55 Chap. 4: Mechanistic Insight

Toaccountforthenoncompleteconservationoftheenantiomericexcess,Tungesuggested, inhisstudywithCp*Ru(bpy)catalyst,thatthebranchedesters5couldisomerizeintotheir linearregioisomer 1inthepresenceofthemetalliccomplex,thusresultinginalossofthe initialstereochemicalinformation; 17 butwewerenotabletoverifythisexplanation.Globally, theseresultsareingoodaccordancewiththeabovedetailedrationalbutdonotallowdrawing anydefinitiveconclusionconcerningtheconformationalstabilityoftheallegedtransient π allylcomplex.

O O O O 4b (10 mol%) O L18f (10 mol%) + 5c 2c 3c

Entry Ester Time Conv. % ee Conf. b b:l c

1 (R)5c 2.5h >97% 87 (–)R 95:5

2 (S)5c 3h 85% 45 (+)S 90:10

3 rac 5c 3h 86% 23 (–)R 88:12

a 4b (10 mol%), ligand L18f (10 mol%), THF, 60 °C, c(1) 2 M; the results being the average of at least two runs; b sign of optical rotation of 2 andabsolute configuration when known; c ratiosof branched( 2)to linear ( 3) products weredetermined 1HNMR (400MHz). Table 4-1: CpRucatalyzedrearrangementofallylicesters 5c .a

To verify the validity of Tunge’s isomerization hypothesis, several branched or linear cinnamylesters( 8,rac-9and 10 )weresynthesizedfromthecorrespondingcinnamylalcohols andacylchloridesandsubmittedtothereactionconditions.Theseesterswerechosenbecause of their ability to get ionized and their inability to decarboxylate. Indeed,an isomerization processmayoccurinthepresenceoftheRucatalystuponionizationofthecinnamicester andrecombinationofthetwogeneratedfragments.

In all cases, in the absence of Rucatalyst ( Table 4-2, entries 1 to 4), no reaction was observed.Linearesters 8a(R=Me)and 8b(R= t-Bu)werenottransformedinanyvisible way when submitted to the standard Rucatalysis conditions (Table 4-2, entries 5 and 6). However, starting from branched 9a and 9b the corresponding linear products ( 8a and 8b respectively)wereselectivelyobtained(Table 4-2,entries7and8).Theseresultsshowthat, upon treatment with the Rucatalyst, the linear esters can, as hypothesized by Tunge, 17 isomerizetothethermodynamicallymorestablelinearisomers.Inadditionwhen 10a (Z/E > 99:1), the ( Z)isomer of 8a, was submitted to the reaction conditions: the Z/E ratio progressivelydiminishestoreach80:20after19hand58:42after48h.Thisshowsthatthe isomerizationoftheRuπallylcomplexispossiblebutslowcomparedtotheattackofthe carboxynucleophile. Comparing the kinetics of the Carroll rearrangement with this Z /E

56 Chap. 4: Mechanistic Insight isomerizationreaction,itseemsreasonabletosupposethattheeffectoftheisomerizationof the πallyl complex during the reaction is negligible on the stereochemical outcome of the reaction. In order to more accurately compare these latter experiments with the Carroll rearrangement, two double crossover experiments were conducted starting from approximately 1:1 mixtures of linear 8a/11b andbranched 9a/12b (Scheme 4-12). Inboth cases, GCMS analysis of the resulting crude reactionmixtureshowed,after19hours,the formationofallpossiblelinearproductscompatiblewithintermolecularprocesses.Thisresult indicates that the rearrangement reactionclearly proceeds through a state where the in-situ generated nucleophilic and electrophilic fragments are separated in solution, resulting in a crossover.

O O

O R 4b (2 mol%) O R L18f (2.4 mol%)

8a R = Me THF, 60 °C,19 h 8b R = t-Bu 8a, 8b O O 4b (2 mol%) O R L18f (2.4 mol%) O R'

THF, 60 °C, 19 h r ac-9a R = Me 8a, 8b r ac-9b R = t-Bu O 4b (2 mol%) L18f (2.4 mol%) O O 10a THF, 60 °C O Z/E > 99:1 19 h, Z/E 80:20 48 h, Z/E 58:42

Entry Ester b [Ru] R= Time b:l c

1 8a Me 19h <1:99

2 8b - tBu 19h <1:99

3 rac-9a Me 19h >99:1

4 rac -9b tBu 19h >99:1

5 8a 4b Me 19h <1:99

6 8b 4b tBu 19h <1:99

7 rac -9a 4b Me 19h <1:99

8 rac -9b 4b tBu 19h <1:99

a4b (2mol%),ligand L18f (2.4mol%),THF,60°C, c(8/9 )1 M;theresultsbeingthe averageofatleasttworuns; b regiosisomericpurityoflinear 6( b:l <1:99)andbranched 7( b:l >99:1)startingmaterialsweredeterminedbyGCMS cratiosofbranched( 6)to linear( 7)productsweredeterminedbyGCMS. Table 4-2: CpRucatalyzedrearrangementofallylicesters 8 to 10 .a

57 Chap. 4: Mechanistic Insight

O O

O O

O O

O O 4b (2 mol%) 8a 30% 11b 41% L18f (2.4 mol%) O O 11b 8a THF, 60 °C, 19h O O

11a 14% 8b 15%

O O

O O O

O O O 4b (2 mol%) L18f (2.4 mol%) 8a 33% 11b 18%

O O 12b 9a THF, 60 °C, 19h O O

11a 17% 8b 26%

Scheme 4-12:Doublecrossoverexperiments(ratiosofproductsdeterminedbyGCMS).

Withtheseresults(page55to56)confirmingtheglobalconformationalstabilityoftheRuπ allylcomplexes,itisinterestingtoreconsidertheresultsobtainedforthe Zand Ecinnamyl acetoacetate reported in Table 3-5 (entries 1 and 7, 1a and 1g respectively). The lower ee obtainedforthe Zisomershouldthennotbeattributedtoanisomerizationoftheresulting anti CpRuπallylcomplexbutcanbeexplainedbyalowercontrolofthe endo /exo isomerism duringtheformationofthe πallylcomplexinthecaseofan anti allylmoiety( Scheme 4-13 ). Indeed the energy difference between the endo,anti and the ( exo,anti )CpRuπallyl complexesislowerduetodestabilizingstericinteractionspresentinbothcases(CpPhforthe endo,anti and CpCH for the exo,anti ). The fact that the same (–)(R)2c enantiomer was predominantlyobtainedisbothcasestendstoshowthatthe( exo,anti )CpRuπallylcomplex isslightlymorestable.Thisexplanationishoweverbasedonthe(reasonable)hypothesisthat theorientationoftheligandandtheallylfragmentremainsthesameinbothcases.

From (E) substrates From (Z) substrates

Ru H Ru Ru H >>Ru <

endo,syn exo,syn endo,anti exo,anti

(R)-2c (S)-2c (S)-2c (R)-2c Scheme 4-13: Rationalizationofthe E / Zselectivityofthe Carroll rearrangement.

58 Chap. 4: Mechanistic Insight

Finally,possiblenonlineareffectswereassessed.Aseriesofreactionswithsubstrate 1c were performed with different mixtures of the two enantiomers of ligand L18f . Results are summarized in Table 4-3 and show that the enantioselectivity of the reaction is directly proportional to theenantiomeric purity of the ligand L18f . Thisindicatesthat, the metallic complexinvolvedintheenantiodeterminingstepisprobablyamonomericspeciescomposed ofonesingleligand. 18

O O O O 4b (2 mol%) O L18f + ent-L18f (2.4 mol%)

THF, 60 °C, 22 h 1c 2c 3c

Entry ee of L18f b b:l c % ee b,d 80%

1 >(+)99% 95:5 (–)76%[(–)76%] 40% 2 (+)67% 95:5 (–)47%[(–)50%]

3 (–)44% 95:5 (+)35%[(+)34%] 0% 4 >(–)99% 95:5 (+)76%[(+)76%] -100% -50% 0% 50% 100% ee L18f of

a 4b (2mol%),ligand L18f + ent L18f (2.4mol%),THF,60°C, -40% c(1c )1 M;theresultsbeingtheaverageofatleasttworuns; b c signof αDgiven; ratiosofbranched( 2c )tolinear( 3c )products weredeterminedbyGCMS;d ee measuredbyCSPGC,signof -80% ee of 2c αDgivenandcalculated ee giveninbrackets. Table 4-3:CpRucatalyzedrearrangementofallylicesters 1c; effectofligandenantiopurity.a

Overall these experimental data are in line with the proposition that the CpRucatalyzed Carroll rearrangement is proceeding through a Ruπallyl complex obtained from the oxidative addition of an unsaturated Rucomplex onto an allylic ketoester; this Ruπallyl complex having, in the reaction conditions, a relatively high configurational stability. However the transient allylic species could not be directly observed by spectrometric or spectroscopicmethods.

4.5. Nature of the nucleophile

Tofurtherbackupthe“πallyltheory”,astudyofthenatureofthenucleophileappearedtobe crucial.Asinitial workinghypothesis, the mechanistic rationalproposed byTunge forthe Cp*Rucatalyzedversionofthereactionwasenvisaged( Scheme 4-14 ). 17 Oxidativeaddition ofthemetalcomplexontothesubstrateleadstothereleaseofaketoacetatemoietywhich, upon decarboxylation, generates an “ unstabilized ” enolate. This nucleophilic enolate

18 (a)Bolm,C.;Bienewald,F.;Seger,A. Angew. Chem. Int. Ed. Engl. 1996 , 35 ,16571659.(b)Mikami,K.; Yamanaka,M. Chem. Rev. 2003 , 103 ,33693400.(c)Kagan,H.B. New Front. Asymmetric Catal. 2007 ,207 219.

59 Chap. 4: Mechanistic Insight subsequently adds to the πallyl complex to regenerate the catalytically active ruthenium complexandfurnishesthecorrespondingγ,δunsaturatedketone.

O O O O R O R O 2+ Ar [Ru*] 1 Ar

[Ru*]+ CO2 O

R 2+ O O [Ru*] R R Ar Ar Ar 2 3 Scheme 4-14: MechanisticrationalfortheCp*Rucatalyzed Carroll rearrangementproposedbyTunge. 19,20

Sincethenucleophilicspeciescouldnotbeobserveddirectlyeither,attemptstointerceptthe nucleophilicintermediatesweremadetoconfirmtheirnature.Whenthereactionof 1c was conducted in the presence of 1 equivalent of dimethylmalonate, 19 no incorporation of the malonatefragmentontotheallylfragmentwasobserved(GCMS).Rathersurprisingly,this tendstoshowthattheadditionofthealleged“ unstabilized ”enolateontotheallylfragmentis muchfasterthanthedeprotonationoftheacidicmalonicester.Moreover,incontrasttothe observationofTungeusingaCp*Rubasedcatalyst, 20 theenolatecouldnotbetrappedbya Michael acceptor (typically substituted methylenemalononitriles) in the standard reaction conditions. In view of the lack of interception of the nucleophilic species, it was then debatablewhetherthereactionproceededintramolecularlyratherthanintermolecularly.

Tosolvethisissue,adoublecrossoverexperimentwasperformedusinga1:1mixtureof 1a and 1r( Scheme 4-15 ).Gaschromatographicandmassspectrometricanalysisoftheresulting crude reaction mixture showed, after 6 hours, the formation of all possible branched and linearproductscompatiblewithintermolecularprocesses( 2a , 3a , 2r, 3randcrossover 9a, 10a, 9r, 10r).Thisresultindicatesthatthealkylationreactionproceedsclearlythroughastate where in-situ generated nucleophilic and electrophilic fragments are separated in solution

19 Burger,E.C.;Tunge,J.A. Org. Lett. 2004 , 6,26032605. 20 Wang,C.;Tunge,J.A. Org. Lett. 2005 , 7,21372139.

60 Chap. 4: Mechanistic Insight resultinginacrossover.AspostulatedbyTunge,bimolecularadditionofarutheniumenolate toarutheniumallylremainsapossibility.19

O O O O

O

MeO 1a 52 % MeO MeO 4b (2 mol%) 2a 32 % 13a 23 % L18f (2.4 mol%) b:l 99 : 1 b:l 99 : 1 O O O THF, 60 °C 6 h O O

1r 48 %

13r 19 % 2r 26 % b:l 97 : 3 b:l 96 : 4 Scheme 4-15: Doublecrossoverexperiment,linearproducts 3andlinearcrossoverproducts 13areomittedfor clarity(productsdistributionand b:l ratiosmeasuredbyGCMS).

To further characterize the nucleophilic species and probe the generality of the reaction, several more elaborate cinnamyl ketoesters were synthesized ( 1l to 1q). As some of these substrates react quite slowly, 10 mol% of catalyst wereused insteadof 2mol% toafford fasterkinetics;theirreactionsaresummarizedinTable 4-4.Substrates 1lto 1nbearingan α substituent between the carbonyl moieties reacted with similar kinetics and enantioselectivitiestounsubstituted 1c ( Table 3-5,entry3 vs. Table 4-4,entries1to3).The regiochemistry in favor of the branched adducts was however noticeably lower (down to 81:19atmost).Clearly,thebulkieristhenucleophile,thelargertheamountoflinearproduct. Itshowsthattheregioselectivityofthereactionisnotonlycontrolledbytheelectronicfactors ofthe πallyldescribedinthesection4.3.1.Furthermore,fortheseparticularsubstrates,the presenceofthe αsubstituentleadstotheintroductionofanovelstereogeniccentreand,asa result, four stereoisomers of compounds 2 and two enantiomeric linear adducts 3 were obtained.

Forbranchedderivative 2l,GCanalysisindicatedthatthediastereoselectivitylinkedtothe presenceofthenewstereocentrewaslow(ca.2:1).21 Asasimilarlylowselectivitywasalso observedfor(cyclic) 2mand 2n( Table 4-4entries2and3);thisisprobablynotduetoalack of control of the E / Z geometry of a possible enolate intermediate. Interestingly and

21 Asimilarresult(dr 1.9)wasobservedbyTungeforsubstrate 1m .Seereference19.

61 Chap. 4: Mechanistic Insight somewhatincontrastwithwhathasjustbeendetailed,thechirallinearproducts 3land 3m wereobtainedwithdecentenantioselectivities( ee 67%and79%respectively).Itshowsthat the facial approach of the alleged enolate is better controlled when the attack onto the electrophilicfragmentoccursattheunsubstitutedallylicterminalpositionratherthan αtothe aromaticmoiety( Scheme 4-9 (c) ).22

O O O

O O O O O O

1l 1m 1n

O O O O O

O O O Ph O

1o 1p 1q

b c d d e f Entry Ester Time Conv. b:l dr % ee (b1, b2, l) Conf. 1 1l 9h >97% 81:19 68:32 72, nd ., g 67 (–) 2 1m 9h >97% 87:13 64:36 nd ., g 81,79 (–) 3 1n 9h >97% 86:14 64:36 77,77, nd . g (–) 4 1o 9h >97% 83:17 57 (–) 5 1p 9h >97% 85:15 67 (–) 6 1q 5h >97% 92:8 78 (–) 7 1q h 24h >97% 95:5 83 (–) 8 1q i 64h >97% 95:5 86 (–)

a4b (2.5 mol%),ligand L18f (3 mol%),THF,60 °C, c(1)2 M; theresultsbeingtheaverage of at least tworuns; b reactiontimewithout1hinductiontime; cdeterminedby 1HNMR(400MHz); dratiosofbranched( 2)tolinear( 3) productsanddiastereomericratiosamongcompounds2( dr ) weredeterminedatcompleteconversionbyGCMS; eee of firstandsecondelutedbranchedstereoisomersof 2and oflinear 3 respectively; f sign ofoptical rotation of 2; gnot determinedduetoabsenceofpeakseparation; h reactionwasperformedat40°C; ireactionwasperformedat25°C. Table 4-4:CpRucatalyzedrearrangementofallylicesters 1.a

In addition, when substrate 1m was reacted in the presence of 1 equivalent of ethyl 2 oxocyclopentanecarboxylate, in the standard conditions, GCMS analysis of the crude reactionmixturerevealedtheincorporationofethyl2oxocyclopentanecarboxylateontothe cinnamyl fragment as well as a corresponding amount of cyclopentanone ( Scheme 4-16 ). Thistendstoshowthatthebulkierthenucleophile,theslowerthenucleophilicadditionsince

22 (a)Trost,B.M.;VanVranken,D.L. Chem. Rev. 1996 , 96 ,395422.(b)Trost,B.M. J. Org. Chem. 2004 , 69 , 58135837.(c)Lu,Z.;Ma,S.M. Angew. Chem. Int. Ed. 2008 , 47 ,258297.(d)Mohr,J.T.;Stoltz,B.M. Chem. Asian J. 2007 , 2,14761491.

62 Chap. 4: Mechanistic Insight the enolate could, this time, be partially intercepted by deprotonation of an activated ketoester.

O O O O O

4b(2.5 mol%) 2m 72 % 3m 18 % L18f (3 mol%) 1m THF, 60°C O O O O EtO C CO2Et EtO 2

8 % 2 % Scheme 4-16: Incorporationofactivatedketoestersintorearranged1m(ratiosdeterminedbyGCMS).

Substrates 1l, 1oand 1p,designedtoprobetheexistenceofenolateintermediatesandtheir regioisomericstability,reactedsmoothlyunderthereactionconditions( Table 4-3 entries1,4 and 5). In the particular case of 1o, as there is no αhydrogen atom in between the two carbonyl groups, the selective formation of 2o indicates that the decarboxylation of the resulting ketoacetate occurs necessarily prior to the attack onto the πallyl complex. In addition,thefactthatthenewCCbondsin 2lto 2pand 3lto 3p( Scheme 4-17)resultsolely fromtheattackofthecarbonpreviouslybearingthecarboxylatemoietyiscompatiblewith theformation ofenolates in which theregiochemistry is preservedthroughout the catalytic cycle. 17,19

O O

+ O 2o 87 % 3o 13 % 4b (2.5 mol%) O O L18f (3 mol%)

THF, 60°C O O 1o +

2p 0 % 3p 0 % Not observed Scheme 4-17: Conservationoftheenolateregiochemistryfor 1o (ratiosdeterminedbyGCMS).

Finallythebenzoylsubstitutedsubstrate 1qreactedsmoothlywithfasterkineticsbutthesame selectivitythan 1c inthesameconditions( Table 4-3 entries6to8).23 Thefasterreactionfor thissubstrateallowedthetemperaturetobeloweredto25°Cand 2qcouldbeobtainedwith

23 ForIrcatalyzedregioandenantioselectiverearrangementofthistypeofbenzoylderivedsubstratessee:He, H.;Zheng,X.J.;Yi,U.;Dai,L.X.;You,S.L. Org. Lett. 2007 , 9,43394341.

63 Chap. 4: Mechanistic Insight

86%ee anda b:lratioof95:5within64h.Thisresultconfirmsthatbetter ee valuescanbe obtainedifreactionsareperformedatlowertemperatureandareingoodaccordancewiththe energyselectivity principle (calculated free Gibbs energy). Similar results on substituted cinnamyl benzoylacetates were obtained by Dr. F. Buron using the same catalytic combinationandreactionconditions.

To further study the incorporation phenomenon described in Scheme 4-16 , several rearrangement reactionswere runusing substratesdiffering only from theketoestermoiety (R,R’=HorMe)inthepresenceofactivated1,3dicarbonylcompounds( Table 4-5).Since the pK aofanunactivatedketoneliesaround26(DMSO),itshouldbeabletodeprotonate ethylmalonate(pK a=16.4inDMSO)orethylacetoacetate(pK a=14.2inDMSO)andas such,theincorporationofsubstantialamountsofthedicarbonylfragmentintothefinalallylic substitutionproductisexpected.Inthecaseofsubstrate 1a (R=R’=H),noincorporationof themalonateintheproductwasobserved(entry1).Whenethylacetoacetatewasused,7%of incorporation product was observed by GCMS (entry 3) but, no incorporation of the cyclohexanonecarboxylatemoietycouldbeseen(entry2).ThisissurprisingsincethepK as ofthetwolatterdicarbonylproductsisverysimilar.

O O O O O O O R R2 R 1 O 4b (5 mol%) R OEt R1 OEt L18f (6 mol%) R R' R2 THF, 60 °C,4 h 1.1 equiv. 1 2/3 15/16

(2/3): (2/3): Entry R= R’= R1,R 2 Conv. b Entry R= R’= R1,R 2 Conv. b (15 /16 )b (15 /16 )b

O O O O 1 H H >99% 100:0 5 Me H OEt >99% 100:0 EtO OEt O O O O 2 H H OEt >99% 100:0 6 Me H >99% 94:6 OEt O O O O 3 H H >99% 93:7 7 Me Me >99% 100:0 OEt EtO OEt O O O O 4 Me H >99% 100:0 8 Me Me OEt >99% 90:10 EtO OEt O O 9 Me Me >99% 40:60 OEt

a4b (5mol%),L18f (6mol%),THF,60°C, c1 M; bconversion,andratioof Carroll Products( 2/3)productsandallylic substitutioncrossoverproducts( 15 /16 )weredeterminedbyGCMS. Table 4-5:Incorporationofactivated1,3dicarbonylcompoundsintoCarroll rearrangementproducts.a

64 Chap. 4: Mechanistic Insight

Thesamesituationoccurredinthecaseof 1l (R=Me,R’=H;entries4to6):onlytheethyl acetoacetatefragmentwasslightlyincorporatedinthefinalproduct(6%,entry6).Inthecase of 1o (R=R’=Me;entries7to9),thedecarboxylationisnecessarilyoccurringpriortothe nucleophilicadditionontotheallylicfragment.Assuch,inthiscase,itispossibletoconclude that the nucleophilic species is a decarboxylated fragment. Again, no incorporation of a malonate fragment was observed (entry 7), but some incorporation (10 %) of the cyclohexanone carboxylate moiety was detected by GCMS. In addition, this time, the productcontainingtheacetoacetatemoietywasmajorlyobtained(60%).Theseresultsdonot fitatallwiththescaleofpK asforthedifferentspeciesshowingthattheenolates,ifformed, aredefinitelynot unstabilized butmostprobablycoordinatedtoametalspecies.Inaddition, both the bulk of the “ enolate ” and the prenucleophile play a crucial role on the trapping reactions.Thisisprobablyduetodifferencesinthekineticsofthenucleophilicadditionand thedeprotonationoftheactivatedprenucleophiles: the bulkier the“ enolate ” theslowerthe nucleophilicadditionandassuchabiggerproportionofdeprotonation.

Overall it has not been possible to directly observe any of the intermediate nucleophilic speciesandinterceptingthemhasprovendifficult.However,strongevidenceinfavourofa transientregiochemicallystable enolate hasbeenfound.

4.6. Approaches to Co-Catalysis / Dual-Activation

Though the exact mechanism of the Carroll rearrangement reaction remains largely unassigned,theintermediate πallylcomplex,separatedfromanenolatespecies,appearsas themostreasonableworkinghypothesis.Thenewcatalyticcombination,involvingaCpRu metalsourceandpymoxligands,wasshowntobeabletoovercomemostoftheproblems associatedwiththeuseofpyridineimineligands.However,thequestionofthelowreactivity stillremainedsinceelectronpoorsubtratesrequireextensivereactiontimes(upto17daysfor 1e ,Table 3-9 entry4).OneofthereasonsforthelackofreactivityoftheCpRucoreisthat, eveninanolefinmetalcomplex,itisnotelectronrichenoughtoprovideefficientoxidative addition.Itwasthoughtthusthata Lewis activationoftheleavingketoacetate,makingita better leaving group, would ease this ionisation step. 1,3Dicarbonyl moieties are very commonasligandsformanymetalsourcesandmostoftenhaveadoublecoordinationtothe metal.

Thefirstideawastoactivatetheketoesterswithalkalimetalsalts.Howeverthisstrategywas notsuccessfulatfirst.TheadditionofLiPF 6orKPF 6(120mol%)tothereactionmixtures

65 Chap. 4: Mechanistic Insight didnotaffordanyvisibleeffectonneitherthereaction’skineticsorselectivity.Bythefact thatmagnesiumionshaveproventobecrucialinboththeacetylCoAbiotincarboxylation,24 thebiosynthesisoffattyacidsandmalonylCoAdecarboxylation 25 weturnedourattentionto thisdivalentmetal.Fromamoresyntheticchemistrypointofview,onecanalsohighlightthe useofmagnesiummethylcarbonate(MMC)asreagent for the reversible carboxylation of ketonesforselectivealkylations( Scheme 4-18 ). 26 TreatmentofaketoneinDMFat110°C with a stoichiometric amount of MMC allows the formation of the magnesium salt of the corresponding βketoacidwhichcouldsubsequentlybeselectivelyalkylated.Thesemethods havebeenappliedmanytimesbuthavethedisadvantagetorequirelargeamountsofMMC. 27 To replace the use of MMC and to more specifically overcome the high temperatures required,Rathkedevelopedtheuseofastoichiometricamountofamixtureofmagnesium halideandtriethylamineundercarbondioxideatmosphere. 28

Mg i. 1 equiv. R''X O O 1 equiv. MMC O O + ii. H R'' R' R R DMF 110 °C R O R' R' Scheme 4-18: UseofMMCforketonealkylation.

Magnesiumhalidesaltshavealsobeenusedas Lewis acidstocatalyzetheenantioselective amination of Nacyloxazolidinones 29 or the diastereoselective anti aldol reaction of enantiopure Nacyloxazolidinones 30 and Nacylthiazolidinethiones ( Scheme 4-19 (a) ).31 Bisoxazoline Mgcomplexes have also proven efficient in asymmetric catalysis. 32 More recently,KobayashidescribedtheuseofMgBr 2fortheactivationof2picolinoxygroupas

24 (a)Dimroth,P.;Guchhait,R.B.;Stoll,E.;Lane, M.D. P. Nat. Acad. Sci. USA 1970 , 67 , 13531360. (b) Attwood,P.V.;Graneri,B.D.L.A. Biochem. Soc. Trans. 1991 , 19 ,S231S231.. 25 Scorpio,R.M.;Masoro,E.J. Biochem. J. 1970 , 118 ,391399.. 26 Stiles,M. J. Am. Chem. Soc. 1959 , 81 ,25982599.. 27 (a)Danishefsky,S.;Bryson,T.A.;Puthenpurayil,J. J. Org. Chem. 1975 , 40 ,18461848.(b)Parker,R.A.; Kariya,T.;Grisar,J.M.;Petrow,V. J. Med. Chem. 1977 , 20 ,781791.(c)Hand,E.S.;Johnson,S.C.;Baker,D. C. J. Org. Chem. 1997 , 62 ,13481355. 28 (a)Tirpak,R.E.;Olsen,R.S.;Rathke,M.W. J. Org. Chem. 1985 , 50 ,48774879.(b)Rathke,M.W.;Nowak, M.A. Synthetic Commun. 1985 , 15 ,10391049.(c)Rathke,M.W.;Cowan,P.J. J. Org. Chem. 1985 , 50 ,2622 2624. 29 Evans,D.A.;Nelson,S.G. J. Am. Chem. Soc. 1997 , 119 ,64526453. 30 Evans,D.A.;Tedrow,J.S.;Shaw,J.T.;Downey,C.W. J. Am. Chem. Soc. 2002 , 124 ,392393. 31 Evans,D.A.;Downey,C.W.;Shaw,J.T.;Tedrow,J.S. Org. Lett. 2002 , 4,11271130. 32 (a) Corey,E.J.;Ishihara,K. Tetrahedron Lett. 1992 , 33 ,68076810.(b)Desimoni,G.;Faita,G.;Righetti,P. P. Tetrahedron Lett. 1996 , 37 ,302730.(c)Carbone,P.;Desimoni,G.; Faita,G.; Filippone, S.; Righetti, P. Tetrahedron 1998 , 54 ,60996110andreferencestherein.(d)Takacs,J.M.;Quincy,D.A.;Shay,W.;Jones,B. E.;Ross,C.R. Tetrahedron: Asymmetry 1997 , 8,30793087.(e)Honda,Y.;Date,T.;Hiramatsu,H.;Yamauchi, M. Chem. Commun. 1997 ,14111412.

66 Chap. 4: Mechanistic Insight leavinggroupinthecontextofCucatalyzedallylicsubstitutions( Scheme 4-19 (b) ).33 With alltheseprecedents,itwastotrytheeffectofMgsaltsinourreaction.

[Mg] [Mg] X O OH X O OH N O O X R''CHO "ArCu" Ar N R'' or N R'' O N X X X R R R R R' R R' R' R' X = O X = S (a) (b) R'

Scheme 4-19: SomeexamplesoftheuseofMgX 2saltsincatalysis.

To assess the feasibility of this cocatalysis approach ( Table 4-6), cinnamyl ester 1a was chosen because of its high reactivity and selectivity under the previously described conditions.WhenMgBr 2•Et 2O(1mol%)wasaddedtothe in-situ preparedcatalystsolution, the reaction mixture immediately turned from dark orange to deep purple whether the substrate hadalready beenaddedor not (entry 1). In both cases, no catalytic activity was observedatroomtemperatureorat60°C.Itseemsthatthebromideanionshadbeentrapped bytherutheniumcoreyielding,asfortheiodocomplex 7a ,anoncatalyticallyactivespecies.

Mg(ClO 4)2,ontheotherhand,affordedacompletedisappearanceofthestartingmaterialafter 24h(TLCmonitoring)butnoproductwasobtainedafterfiltrationonsilica(entry2).

O O 4b (2 mol%) O O L18f (2.4 mol%) O MX2 (1 mol%)

THF, R.T. 1a 2a 3a MeO MeO MeO

b c d e Entry MX 2 Time Conv. b:l % ee Conf.

1 MgBr 2•Et 2O 48h <3%

f 2 Mg(ClO 4)2 48h >97% - -

3 Mg(OTf) 2 24h >97% 97:3 84% (–)

4 Cu(OTf) 2 54h 95% 89:11 84% (–)

5 Zn(OTf) 2 54h 80% 94:6 80% (–) 6 TfOH g 48h <3%

a4b (2mol%),ligand L18f (2.4mol%),THF,24°C, c(1a )1 M;theresultsbeingtheaverageofatleast b c 1 tworuns; reactiontimewithout1hinductiontimeafterwhichisaddedtheMX 2; determinedby H NMR (400 MHz); d ratios of branched ( 2) to linear ( 3) products were determined at complete conversionbyGCMS; esignofopticalrotationof 2;fnoproduct 2or 3obtained; g2mol%wereused. Table 4-6:CpRucatalyzedrearrangementofallylicester 1a ,cocatalysteffect. a

Mg(OTf) 2affordedacleanreactionatroomtemperature(entry3). The rearranged product was obtained with a slightly higher enantiomeric excess ( ee 84 % vs. 79 %) but a lower 33 Kiyotsuka,Y.;Acharya,H.P.;Katayama,Y.;Hyodo,T.;Kobayashi,Y. Org. Lett. 2008 , 10 ,17191722.

67 Chap. 4: Mechanistic Insight regioselectivity( b:l 97:3 vs. 99:1,GCMS).Thisresultconfirmedtheviabilityofsuchaco catalysis approach. Cu(OTf) 2 and Zn(OTf) 2(entries4and5)werethentestedtostudythe influence of thecocatalytic metal salt. In bothcases,the reactions were noticeably slower (incompleteconversionafter54h)andtheregioand/orenantioselectivitywaslowerthanfor

Mg(OTf) 2whichappearedasagoodcandidateforfurtherscreening.Importantly,noreaction was obtained with 2 mol% of triflic acid (entry 5), showing that a Brønsted acid contaminationisnotplayingaroleinthecatalysis(conjugatedacidofthetriflateanion).

Thenextnecessarystepwastodeterminetheoptimal 4b / L18f/Mg(OTf) 2stoichiometry; the results of this screening are reported in Table 4-7. Clearly all three compounds are indispensabletoobtainthedesiredreaction(entries1and2).Italsoappearedthattheamount of Mg(OTf) 2hadaninfluencebothontheregioandtheenantioselectivity of the reaction (entries 3 to 5): enhancing the cocatalyst loading had a negative influence on both parameters. However, with the right amount of Mgsalt, the reaction proceeds more enantioselectivelyandundermilderconditions.

O O O O 1) 4b (x mol%) O L18f (y mol%)

2) Mg(OTf)2 (z mol%) THF, 25 °C 1a 2a 3a MeO MeO MeO

b c d e Entry 4b L18f Mg(OTf) 2 Time Conv. b:l % ee Conf. 1 2.4mol% 1mol% 48h <3% 2 1mol% 48h <3% 3 2mol% 2.4mol% 1mol% 24h >97% 97:3 84% (–) 4 2mol% 2.4mol% 2mol% 24h >97% 94:6 83% (–) 5 2mol% 2.4mol% 3mol% 24h >97% 90:10 78% (–)

a 4b (xmol%),ligand L18f (ymol%),Mg(OTf) 2(zmol%),THF,24°C, c(1a )1 M;theresultsbeing theaverageofatleasttworuns; breactiontimewithout1hinductiontimeafterwhichisaddedthe c 1 d Mg(OTf) 2; determinedby HNMR(400MHz); ratiosofbranched( 2)tolinear( 3)productswere determinedatbyGCMS; efsignofopticalrotationof 2. Table 4-7:CpRucatalyzedrearrangementofallylicester 1a ,effectofcocatalystloading. a

Tofurthertesttheefficiencyofthiscocatalysis,amorechallengingsubstratewaschosen: namely rac cinnamyl 2oxocyclohexanecarboxylate 1n . Ester 1n , for which the diastereoselectivity is also an issue, was chosen as model substrate because of the lower regioandenantioselectivitiesobtainedforitunderclassicalconditions(Table 4-8).

Forthepurposeofthescreening,the 4b /Mg(OTf) 2ratiowasfixedat2:1.Performingthe reactioninthestandardconditions( 4b / L18f/Mg(OTf) 2ratio2:2.4:2)at60°Cand24°C (entries1and5respectively)showedthatthetemperatureplayedaroleonallthreemonitored parameters( b:l , dr.and ee ,GCMS/CSPGC).Loweringthetemperatureappearedtohavea

68 Chap. 4: Mechanistic Insight beneficial effect onthe enantioselectivity (from 77 to 87 %ee ),butthebranchedtolinear ratiowasonlyslightlyinfluenced(from b:l 79:21to81:19)andmoresurprisinglyanegative effectonthediastereomericratio(from dr.64:36to58:42)wasnoticed.Overalltheseresults areworseintermsofregioselectivityanddiastereomericratiocomparedtothereactionof 1n withoutcocatalystat60°C( Table 4-4 entry3).Reasoningthatthesetwofactorsweremore dependingonthenatureofthenucleophile,additionalamountofligand L18fwereaddedto lower the Lewis acidity of the magnesium cation. The 4b / L18f / Mg(OTf) 2 ratio was graduallychangedfrom2:2.4:2to2:5.4:2.At60°C,noeffectwasseenonthe dr. orthe ee butthe b:l ratiocouldbeincreasedtoalmostthesamelevelofthereactionwithoutcocatalyst (entries1to4).Performingthesamescreeningat24°Cwasmoreefficientsince,thoughno effect on the ee wasvisible,boththe dr and the b:l ratiocouldbeincreasedto90:10and 62:38respectively( vs. 86:14and64:36forthenoncocatalyzedprocess,Table 4-4 entry3).

O O 1) 4b (2 mol%) O L18f (2.4 mol%) O O

2) Mg(OTf)2 (1 mol%) L18f (x mol%) 1n 2n 3n

b c d d e f Entry L18f Temp Time Conv. b:l dr % ee (b1, b2, l) Conf. 1 60°C 14h >97% 79:21 64:36 77,77, nd . g (–) 2 1mol% 60°C 14h >97% 85:15 64:36 76,77, nd . g (–) 3 2mol% 60°C 14h >97% 87:13 64:36 77,78, nd . g (–) 4 3mol% 60°C 14h >97% 87:13 64:36 77,77, nd . g (–) 5 24°C 24h >97% 81:19 58:42 87,87, nd . g (–) 6 1mol% 24°C 24h >97% 85:15 59:41 86,86, nd . g (–) 7 2mol% 24°C 24h >97% 91:9 61:39 87,88, nd . g (–) 8 3mol% 24°C 24h >97% 90:10 62:38 86,87, nd . g (–)

a 4b (2mol%),ligand L18f (2.4+xmol%),Mg(OTf) 2(1mol%),THF, c(1n )1 M;theresultsbeingtheaverage b c ofatleasttworuns; reactiontimewithout1hinductiontimeafterwhichisaddedtheMg(OTf) 2; determined by 1H NMR (400 MHz); d ratios of branched ( 2n ) to linear ( 3n ) products and diastereomeric ratios among compounds 2n ( dr ) weredeterminedatcompleteconversionbyGCMS; eee offirstandsecondelutedbranched stereoisomersof 2andoflinear 3 respectively; fsignofopticalrotationof 2n ; gnotdeterminedduetoabsence ofpeakseparation. Table 4-8:CpRucatalyzedrearrangementofallylicesters 1n ,cocatalystloadingeffect. a

The magnesium complex has an influence on the nucleophilic species and thus on the stereochemicaloutcomeofthereaction.Inanattempttodeterminethe modus operandi ofthe magnesiumcationintheactivationofthereaction,stoichiometricamountofallylicester 1a andMg(OTf) 2weremixedtogetherandanalyzedbyIRspectroscopy.Contrarytowhatwas expected,novisibledifferencewithasampleof 1ainthewavenumbers,correspondingtothe twoC=Odoublebonds vibrations(ketone 1714 cm 1 and ester 1738 cm 1), were obtained. Thiscouldmeanthatthemagnesiumdoesnotactivatethesubstratefromthebeginningbut

69 Chap. 4: Mechanistic Insight onlyplaysaroleinalaterstepinthemechanism:bytransmetallationofarutheniumenolate forexample.Toconfirmthishypothesis,subtratesthatdidnotaffordanyreactionwithoutco catalystweresubmittedtothenewcocatalyticconditions( Table 4-9).

Interestingly,theuseofMg(OTf) 2ascocatalystallowedtherearrangementofsomeofthe substrates thatdidnotaffordany reaction otherwise(see Table 3-3). Forinstance 1i or 1s yielded, at 60 °C, the corresponding branched product 2 with some control of the regioselectivity(entries1and4).Howeveraliphatic 1r providedareactionwherethelinear productwasthemajor(entry3)andsubstrates 1j and 1t (entries2and4respectively)stilldid not undergo any reaction at all. In view of these disappointing results in terms of regioselectivity,theenantiomericexcessofthebranchedproductswasnotmeasured.

O O O O O O

O O O 1i Ph 1j 1r

O O O O O O

1t 1s S O2

Entry Ester Time b Conv. c b:l d

1 1i 24h >97% 70:30 2 1j 24h <3% 3 1r 24h 40% 9:91 4 1s 24h >97% 71:29 5 1t 24h <3%

a b 4b (10mol%),ligand L18f (13mol%),Mg(OTf) 2(5mol%),THF, c(1)1 M; reactiontime c 1 without1hinductiontimeafterwhichisaddedtheMg(OTf) 2; determinedby HNMR(400 MHz); dratiosofbranched( 2)tolinear( 3)productsweredeterminedbyGCMS. Table 4-9:CpRucatalyzedrearrangementofchallengingallylicesters 1.a

To assess the importance of the ketoester moiety, cinnamyl isopropenyl carbonate was synthesized from the corresponding alcohol and the commercially available chloroformate (Scheme 4-21 ).Noreactionwasobtainedinthestandardcocatalysisreactionconditionsand onlyanextremelyslowreactionwasobtainedinthestandardnoncocatalyzedconditions(< 15%conv.after24h);onceagainshowingtheimportanceoftheketoestermoiety.

O

co-catalysis conditions OH O O O No reaction 1.1 equiv. Pyr. Cl O DCM, 0 °C to R.T. standard conditions Slow reaction 95 % Scheme 4-20: Synthesisofconstitutionalisomerof 1a andrearrangementreactions.

70 Chap. 4: Mechanistic Insight

Overall,theuseofMg(OTf) 2 ascocatalystallowstouseawiderscopeofsubstratesbutthis catalytic combination still suffers from restrictions in the stereoelectronic properties of the possibleallylicketoesters.Ontheotherhand,theseresultstendtoshowthatthemagnesium cationplaysaroleintheactivationofoneoftheintermediatespriortothedecarboxylation. Themagnesiumcouldalsoplayaroleinthedecarboxylationstep;howeveritismostunlikely that the substitution pattern of the allylic fragment plays such a crucial role on the decarboxylationoftheseparatedketoacetate.TheactionoftheMgsaltremainsunclear,but themostlikelyhypothesisisthattheMgcationactivatestheketoacetateleavinggroupina similarmannertowhatwasdescribedbyKobayashi(Scheme 4-19 (b) ). 33

4.7. Mechanistic Rational

4.7.1. Kinetic Isotope Effects

In order to analyze possible secondary αisotope effects for the Carroll rearrangement, several isotopologues of 1a were synthesized ( Scheme 4-21). The deuterated ketoester 1u was obtained by the reduction of the corresponding cinnamyl methyl ester using in situ generatedAlD 3followedbystandardesterification.Thetwoprotonsbetweentheketoneand theestermoietiesof 1a arepronetoprotondeuteriumexchange:treating 1a ina1:1mitureof

D2Oandacetoned6inthepresenceofacatalyticamountofDClaffordedquantitativelythe bis deuterated product 1v . The deuterated ketoester 1w was obtained by the regioselective reductionofthecorrespondingpropargylicalcohol by LiAlH 4andsubsequentquenchwith

D2Ofollowedbystandardesterification.

O O O 1 equiv. LiAlD4 OH 0.95 equiv. 6b 3 equiv. AlCl3 cat DMAP O OMe D D Et2O, 0 °C Tol. 100°C D 87 % 80 % D MeO MeO 1u D/H > 97 % O O O O

O cat DCl O D D D2O/Acetone-d6 (1:1) 98 % 1v MeO 1a MeO D/H > 97 % O O OH 1) 1.2 equiv. LiAlH4 0.95 equiv. 6b THF,0 °C to R.T.,24 h D OD cat DMAP D O

2) 50 equiv. D2O Tol. 100°C 85% 82 % 1w MeO MeO MeO D/H > 97 % Scheme 4-21: Synthesisofisotopologuesof 1a ( 1u , 1v and 1w ).

71 Chap. 4: Mechanistic Insight

Secondary αisotopeeffectsoccurwhentheatombearingtheassociatedisotopeundergoesa changeof hybridizationduringthe rate determining step. 34 Secondary isotope effects arise fromthedifferenceoffrequencyofbendingvibrations( Scheme 4-22).For normal isotope effect,thetransitionstateisdevelopinga sp 2characteratthe sp 3 carbonwheretheisotopic substitutionislocated;thedifferenceinenergyisthusloweratthetransitionstatethanforthe reactants.Thereaction isthenslower forthe substrate bearing a deuterium on the carbon undergoing a change in hybridization (kH/k D > 1, A). The opposite case is observed for inverse isotopeeffectwherethecarbonbearingadeuteriumrehybridizesfrom sp 2to sp 3in thetransitionstate(kH/k D<1, B). Substrates 1u to 1w werechosenforthisstudysincetheyarerespectivelybearingdeuterium substitutionatallthreecarbonsthatareliabletochangehybridizationduringthereaction.As such,comparingtheconversionsofthereactionsofthedifferentisotopologuesshouldallow toidentifytheratedeterminingstep.

Scheme 4-22:Diagramsshowing normal ( A)and inverse ( B)secondarykineticisotopeeffects.34

Thedeuteriumlabeledcompoundswerethussubmittedtothereactionconditionsandwere quenched by the addition of an excess of lithium bromide (formation of a catalytically inactive [CpRu(L18f )Br] species ofdeeppurplecolor) andsubsequentprecipitation of the metalsaltswithpentane.Thecrudereactionmixturewassubsequentlyfilteredthoughaplug of silica (elution with ether) and the conversion was measured by 1H NMR (400 MHz).

34 Anslyn,E.V.;Dougherty,D.A. Modern physical organic chemistry ;UniversityScience:Sausalito,CA, 2004 .

72 Chap. 4: Mechanistic Insight

Resultsarereportedin Table 4-10 .Sincethemethodologyusedhereisobviouslyimprecise, onlygrosstendenciescanbeprovidedforaqualitativeanalysis.Amoresuitableandprecise methodshouldbefoundforquantitativeanalysisoftheisotopeeffects.

Overall these results show that the reactions are globally much faster than what had been deducedfromTLCmonitoringoftheconversion:almostafullconversionisreachedwithin anhour(onlytracesofstartingmaterialcanbeseenby 1HNMRafter1h).Onlyinthecaseof isotopologue 1u ,thekineticsareclearlydifferenttotheothers.Thefactthatthereactionof deuteriumlabeled 1u isslowerthan 1a tendstoshowa normal isotopeeffectwhichimpliesa buildingup of a sp 2characterattheterminalallyliccarbon.Thisobservation is consistent with the oxidative addition being the rate limiting step and corroborates the mechanistic hypothesisformulatedinthecontextofthecocatalysisapproach.

O O O O O O O O

O O O D O D D D D MeO 1a MeO 1u MeO 1v MeO 1w

Entry Ester Time b Conv. c b:l d ee Entry Ester Time b Conv. c b:l d ee

1 1a 10min 80% 99:1 79% 9 1a 30min 97% 99:1 79% 2 1u 10min 75% 99:1 79% 10 1u 30min 93% 99:1 79% 3 1v 10min 79% e 97:3 79% 11 1v 30min 97% e 98:2 78% 4 1w 10min 81% 99:1 78% 12 1w 30min 98% 99:1 79% 5 1a 20min 92% 98:2 80% 13 1a 60min >97% 99:1 80% 6 1u 20min 87% 99:1 79% 14 1u 60min >97% 99:1 79% 7 1v 20min 92% e 98:2 79% 15 1v 60min >97%e 98:2 78% 8 1w 20min 93% 99:1 79% 16 1w 60min >97% 99:1 79%

a4b (5mol%),ligand L18f (6mol%),THF, c(1)1 M; breactiontimewithout1hinductiontimeafterwhichis addedketoesters 1; cdeterminedby 1HNMR(400MHz); dratiosofbranched( 2)tolinear( 3)productswere determinedatcompleteconversionbyGCMS. esomescrambling(~510%)ofthedeuteriumatomscouldbe 1 seenby HNMRinCDCl 3ofthefinalproduct. Table 4-10:CpRucatalyzedrearrangementofisotopologuesof1a.a

4.7.2. Effect of CO 2

It was also attempted to analyze the effect of CO 2 onto the kinetics of the reaction by performingreactionsthatwouldleadtodifferentmolarpressuresofCO 2.Vialsofthesame volumewereusedwithdifferentamountsofabulksolutionofcatalystandsubstratetoallow thedifferentbuildupoftheincreasinginternalCO 2pressure.However,usingthepreviously describedmethodology,onlyverylowdifferencesinconversionweremeasured(<2%).As suchitisnotsuitabletousetheseresultsinarationalizationofthemechanismofthereaction. Onceagainamoreaccuratemethodtofollowthereactionshouldbedeveloped.Qualitatively,

73 Chap. 4: Mechanistic Insight when adding a lump of dry ice in the vial along with the reaction mixture, the reaction proceededclearlyfasterbutaslightnegativeeffectontheenantioselectivitywasobserved( ee 75% vs. 79% Table 3-9,entry1).Thisnegativeeffectontheselectivityismostprobably duetotheadditionofwateralongwiththedryicepiece( Table 3-10 ).Ontheotherhand, absorbingthereleasedCO 2withacalciumhydroxide“cartridge”appearedtohaveanegative effectonthekineticsofthereaction.Thisorderissurprisingfromanentropicpointofview, butamoreprecisemeasurementoftheeffectofCO 2mightleadtothedevelopmentofamore efficientprocessandshouldconsequentlybefurtherandmoreaccuratelyassessed.

4.8. Conclusion

Experimentalevidencewhichshedssomelightonthemechanismofthereactionhavebeen gathered in this chapter. In addition it has been possible to develop a new methodology involvingamagnesiumcocatalystthatallowsperformingthereactionsatroomtemperature resulting in a slightly enhanced enantioselectivity. Some of the mechanistic elements described in this chapter still remain imprecise; however a reasonable mechanistic rational takingallthedisclosedelementsintoaccountcanstillbeproposed( Scheme 4-23).

Since the CpRucatalyzed Carroll rearrangements are not regiospecific, the reactions most probablyproceedthougha πallylrutheniumintermediateformeduponoxidativeadditionof the Rucatalyst onto the substrate. Deuterium labeling experiments tend to show that the oxidativeadditionistheratelimitingstep.ItwasshowthattheintermediateRucomplexes areslowlyisomerizinginthereactionconditions;assuchthestereogenicinformationsetat the oxidative addition stage is conserved throughout the catalytic cycle. The ketoacetate generatedbytheformationofthe πallylcomplexsubsequentlyundergoesdecarboxylationto yield an unstabilized enolate. Double crossover experiments showed that nucleophilic and electrophilicfragmentsarefreelydiffusinginsolutionunderthereactionconditions.Sinceit was difficult to trap the enolate species this latter step is most probably very fast. The generatedenolateconsequentlyaddsontotheallylfragmenttoyieldthedesiredproduct.

TheuseofaMgcocatalystallowedtoperformthereactionsatlowertemperaturesandthus obtainbetterregioandenantioselectivities.ItappearedthattheMgcationwasplayingarole both in the enantio and the regiodetermining steps since both of these selectivities were perturbedbytheuseofthecocatalyst.

74 Chap. 4: Mechanistic Insight

Scheme 4-23: Proposedcatalyticcycleandeffectofmagnesiumcocatalystonreaction.

75 Chap. 5: Applications to “Classical”Allylic Substitution

5. Applications to “Classical ” Allylic Substitution

No amount of experimentation can ever prove me right; a single experiment can prove me wrong. Albert Einstein (1879-1955)

5.1. Preamble

Themostcommon CnucleophilesusedinRucatalyzedallylicsubstitutionsaredeprotonated 1,3dicarbonyl derivatives. 1 When starting from allylic carbonates as substrates, the in-situ generationofalkoxidesallowthedeprotonationoftheactivatedprenucleophiles,generating thecorrespondingreactivespecies.This“basefree”possibilitywasshownbyBruneauinthe context of Rucatalyzed regioselective allylic substitution,2 butremains,tothebestof our knowledge,theonlyreportusingaRubasedcatalyst.Itthusappearedinterestingtoapplythe previouslydescribedprotocoltosuch intermolecular processes.

O EtO- NuH Nu [Ru] [Ru] b EtO O Ph Nu Ph Ph l CO2 EtOH Ph π-allyl intermediate Scheme 5-1:BasefreeregioselectiveCpRucatalyzedallylicsubstitutionreactions. 2

5.2. Activated C-nucleophiles

5.2.1. 1,3-Dicarbonyl Prenucleophiles

Cinnamyl carbonates 14a to 14d (R = Me, Et, iPr and t-Bu), synthesized from the correspondingcommerciallyavailablechloroformates,weretreatedwith1.1equivalentofa ketoacetateesterinthepresenceofthe in situ generatedRucatalyst(from 4b andbipyridine). Resultsarereportedin Table 5-1.Thereactionproceedswithgoodtoverylowconversions only. At first sight, the kinetics of the reaction is clearly influenced by the bulk of the alkyloxypartofsubstrate 14 .Thebulkieristhealkoxide,theslowerthereaction.Inaddition, thesameremarkisvalid,buttoalesserextent,forthebulkofthealkoxymoietyofthe1,3

1SeeChapter2.4andreferencescitedtherein. 2Mbaye,M.D.;Demerseman,B.;Renaud,J.L.;Toupet,L.;Bruneau,C. Angew. Chem. Int. Ed. 2003 , 42 ,5066 5068.

76 Chap. 5: Applications to “Classical”Allylic Substitution ketoester.Interestingly,noproductcorrespondingtotheattackofthealkoxidedirectlyonto the πallylmoietycouldbedetectedinanyofthereactions.Clearlyinthiscase,andcontrary to the case of the Carroll rearrangement case, the deprotonation by the alkoxide of the activatedprenucleophileisfasterthanitsadditionontothe πallylfragment.Inallcases,the branchedtolinearratioremainedhigh(from9:1to20:1,entry9and1respectively).Asfor the Carroll rearrangement,abulkiernucleophileresultedinalessregioselectiveprocessand thediastereoselectivityforbranchedproduct 15 waslow(from47:53to55:45,entries1and7 respectively).

O O O O O O OR 4b (2.5 mol%) O O bpy (3 mol%) OR OR

14a R = Me OR' THF,60 °C, 24 h 14b R = Et 1.1 equiv. 14c R = i-Pr 14d R = t-Bu R' = Me, Et, i-Pr, t-Bu 15 16

Entry 15 R= R’= Conv. b b:l b dr. b

1 a Me Me 93% 95:5 47:53

2 b Me Et 95% 93:7 50:50

3 c Me iPr 87% 92:8 52:48

4 d Me tBu 82% 90:10 53:43 c

5 a Et Me 81% 92:8 48:52

6 b Et Et 79% 91:9 50:50 7 c Et iPr 72% 90:10 55:45

8 a iPr Me 21% 90:10 48:52

9 a tBu Me 19% 89:11 47:53

10 c tBu iPr 10% 90:10 54:46

11 d tBu tBu 8% nc. nc.

a4b (2.5mol%),bpy (3mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversion,ratiosofbranched( 15 and 15’ )tolinear( 16 )productsand dr. ofbranched(15 and 15’ )productsweredeterminedbyGCMS; cwith15%ofMe transesterifiedproduct. Table 5-1:BasefreeregioselectiveCpRucatalyzedallylationofacetoacetatederivatives.a

Toverifytheinfluenceofthegeometryoftheenolateonthediastereoselectivity,secondary ketoesterswereusedwiththemostactivesubstrate 14a (Table 5-2).Onceagain,thesame trendsintermsofregioanddiastereoselectivitywereobserved;thusrulingoutthepossibility oflackofcontrolofthe E/ Zgeometryofthe in situ generatednucleophile.

77 Chap. 5: Applications to “Classical”Allylic Substitution

O O O O O O O O O 4b (2.5 mol%) OEt bpy (3 mol%) RO RO n n 14a n THF, 60 °C, 24 h 1.1 equiv. 15 16

Entry 15 n Conv. b b:l b dr. b

O O 1 e >99% 82:18 51:49 OEt

O O 2 f >99% 87:13 nd . c OEt O O

3 g OEt >99% 82:18 52:48

a4b (2.5mol%),bpy (3mol%),THF,60°C, c1 M;theresultsbeingtheaverageofatleasttworuns; bconversion,ratiosof branched( 15and 15’)tolinear( 16)productsand dr. ofbranched(15and 15’)productsweredeterminedbyGCMS; cnot determinedduetoabsenceofpeakseparation. Table 5-2:BasefreeregioselectiveCpRucatalyzedallylationofacetoacetatederivatives;enolategeometry.a

Thegeneralityoftheprocedurewasthenassessedwithdifferentactivatedprenucleophiles; resultsarereportedin Table 5-3.Formoreelaborateketoesters(entries1and2),theresults are inlinewith what had been obtainedforethyl acetoacetate both in term of regio and diastereoselectivity.Formalonatediesterderivatives(entries3to5),resultsweresimilarand thesametrendforthebulkdependencyoftheregioselectivityandthekineticswasobserved. However, inall threecasesGCMS analysis ofthecrude reaction mixture revealed small amounts (< 2 %) of bisallylated products 17 . Ethyl cyanoacetate afforded a very regioselectivereaction(97:3entry6)butalmost60%ofbisallylatedproductswereobtained. Ontheotherhand,Ethylnitroacetatereactedslowly(entry7)butwithagoodregioselectivity. Nobisallylatedproducts 17 couldbeseenbyGCMSbut,onceagain,thediastereoselectivity wasverylow.

Eventhoughtheregioselectivitycouldbenicelycontrolledusingthesameprotocolthanfor the Carroll rearrangement, the same problems observed in terms of reactivity and diastereomericratioremained.Itwasthusenvisagedtoapplyacocatalysisstrategyinorder totrytoovercometheseproblems.

78 Chap. 5: Applications to “Classical”Allylic Substitution

O OR' O O Ph O O 4b (2.5 mol%) R R O O bpy (3 mol%) OR' OR' R R Ph 14a OR' THF, 60 °C, 24 h + different 1.1 equiv. regioisomers 15 16 17

Entry 15 R= R’= Conv. b b:l b dr. b 17 b

1 h F3CCO Et >99% 91:9 56:44 <1% 2 i PhCO Et >99% 94:6 52:48 <1%

3 j MeOCO Me >99% 91:9 1%

4 k EtOCO Et >99% 92:8 1% 5 l tBuOCO tBu 86% 80:20 2%

6 m NC Et >99% 97:3 nd. 57% c

7 n O2N Et 46% 97:3 55:45 <1%

a4b (2.5mol%),bpy (3mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversion,ratiosofbranched( 15and 15’)tolinear( 16)products,dr. of branched (15 and 15’) products and ratio of 17 were determined by GCMS; c three diasteroisomersof 17 wereobtainedinaratioof72%,14%,14%(GCMS). Table 5-3:BasefreeregioselectiveCpRucatalyzedallylationofactivatedesterderivatives.a

5.2.2. Application of Co-Catalysis

Asafirsttry,additionofMg(OTf) 2,whichhadbeensuccessfulinthecontextofthe Carroll rearrangement,wastriedinallylationreactionsofketoacetates( Table 5-4).Theadditionof themagnesiumsalt(4mol%)provedtobeverybeneficialonthereactionkinetics,butthe regioselectivity was clearly lower than without Mgsalt. In addition, no effect on the diastereoselectivitywasobtainedbutthetrendinthebulkdependencyoftheregioselectivity (R↑, dr. ↓)waspreserved.

O 1) 4b (2 mol%) O O O O O O bpy (2.4 mol%) O O 2) Mg(OTf)2 (4 mol%) OR OR

14a OR THF, 60 °C, 12 h 1.1 equiv. R' = Me, Et, i-Pr, t-Bu 15 16

Entry 15 R= Conv. b b:l b dr. b

1 a Me >99% 67:33 48:52

2 b Et >99% 66:34 50:50

3 c iPr >99% 63:48 52:48

4 d tBu >99% 56:44 55:45

a4b (2mol%),bpy (2.4mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversion,ratiosofbranched( 15 and 15’ )tolinear( 16 )productsand dr. ofbranched(15 and 15’ )productsweredeterminedbyGCMS. Table 5-4:BasefreeregioselectiveCpRucatalyzedallylationofacetoacetates;magnesiumcocatalyst.a

The effect of the cocatalyst loading was further assessed by running the reactions with variousamountsofMgSaltandresultsaresummarizedin Table 5-5.Overalltheeffectofthe

79 Chap. 5: Applications to “Classical”Allylic Substitution amountofMgsaltusedwasonlyverysubtleontheregioselectivityandcompletelyinexistent intermsofdiastereoselectivity.

O 1) 4b (2 mol%) O O O O O O bpy (2.4 mol%) O O 2) Mg(OTf)2 (x mol%) OR OR

14a OR THF, 60 °C, 12 h 1.1 equiv. R = Me, Et 15 16

b b b Entry 15 R= Mg(OTf) 2 Conv. b:l dr.

1 a Me 1mol% >99% 67:33 48:52

2 a Me 2mol% >99% 68:32 48:52

3 a Me 4mol% >99% 68:32 48:52

4 b Et 1mol% >99% 70:30 50:50

5 b Et 2mol% >99% 68:32 50:50

6 b Et 4mol% >99% 66:34 50:50

a4b (2mol%),bpy (2.4mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversion,ratiosofbranched( 15 and 15’ )tolinear( 16 )productsand dr. ofbranched(15 and 15’ )productsweredeterminedbyGCMS. Table 5-5:BasefreeregioselectiveCpRucatalyzedallylationofacetoacetates;magnesiumcocatalystloading.a

Asinthecaseofthe Carroll rearrangement,additionalamountsofligandwereintroducedbut noeffectontheoutcomeofthereactionwasseeninthiscase( Table 5-6).

O O O O O 1) 4b (2 mol%) O O bpy (2.4 mol%) O O OR OR 2) Mg(OTf)2 (1 mol%) bpy (y mol%) 14a OR 1.1 equiv. THF,60 °C, 14 h R = Me, Et 15 16

Entry 15 R= bpy Conv. b b:l b dr. b

1 a Me 1mol% >99% 72:28 48:52

2 a Me 2mol% >99% 70:30 48:52

3 a Me 3mol% >99% 71:29 48:52

4 b Et 1mol% >99% 72:38 50:50

5 b Et 2mol% >99% 73:27 50:50

6 b Et 3mol% >99% 73:27 50:50

a4b (2mol%),bpy (2.4mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversion,ratiosofbranched( 15 and 15’ )tolinear( 16 )productsand dr. ofbranched(15 and 15’ )productsweredeterminedbyGCMS. Table 5-6:BasefreeregioselectiveCpRucatalyzedallylationofacetoacetates;bpyloading.a

Finally,notemperatureeffectontheselectivitieswasnoticedasshownin Table 5-7.

80 Chap. 5: Applications to “Classical”Allylic Substitution

O O O O O 1) 4b (2 mol%) O O bpy (2.4 mol%) O O OR OR 2) Mg(OTf)2 (1 mol%) bpy (y mol%) 14a OR 1.1 equiv. THF, 14 h R = Me, Et 15 16

Entry 15 R= bpy T= Conv. b b:l b dr. b

1 a Me 1mol% 20°C 7% n.d. n.d.

2 a Me 2mol% 20°C 5% n.d. n.d.

3 a Me 1mol% 40°C 80% 70:30 46:54

4 a Me 2mol% 40°C 82% 71:29 46:54

5 a Me 1mol% 60°C >99% 72:28 48:52

6 a Me 2mol% 60°C >99% 70:30 48:52

7 b Et 1mol% 20°C 7% n.d. n.d.

8 b Et 2mol% 20°C 8% n.d. n.d.

9 b Et 1mol% 40°C 79% 75:25 50:50

10 b Et 2mol% 40°C 78% 73:27 50:50

11 b Et 1mol% 60°C >99% 72:38 50:50

12 b Et 2mol% 60°C >99% 73:27 50:50

a4b (2mol%),bpy (2.4mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversion,ratiosofbranched( 15 and 15’ )tolinear( 16 )productsand dr. ofbranched(15 and 15’ )productsweredeterminedbyGCMS. Table 5-7:BasefreeregioselectiveCpRucatalyzedallylationofacetoacetates;temperatureeffect.a

Clearlythechoiceofamagnesiumsaltascocatalystwasnotsuccessfulexceptintermsof reactivity.Ourattentionthenturnedtomonocationicmetalsaltsinordertobettermimicthe classicalsodiomalonatenucleophiles.Theinfluenceofseveralmetalsaltsascocatalystswas thus assessed and the results are reported in Table 5-8. The first tests with silver hexafluorophosphate(entries1and5)provedtobeencouragingintermsofregioselectivityof thereaction.Howeverlinearallylicether 18 ,resultingfromtheattackofthemethoxideanion onto the πallyl fragment, was obtained as the major product. Alkali metal salts were subsequently tried and experiments the nucleophilic attack of the methoxide could be completely suppressed (entries 24 and 68). With potassium hexafluorophosphate, the regioselectivity of the reaction was globally recovered (entries 2 and 6) but the reactivity problemremained(conv.<40%).Sodiumhexafluorophosphateprovidedamuchfasterandas selective reaction (entries 3 and 7). Overall the best results were obtained using lithium hexafluorophosphateascocatalyst(entries4and8).

81 Chap. 5: Applications to “Classical”Allylic Substitution

O O O O O O O 1) 4b (2 mol%) O O bpy (2.4 mol%) OR OR OMe OR 2) [M][PF6] (1 mol%) 1.1 equiv. THF, 60 °C, 14 h 14a R = Me, Et 15 16 18

b b b Entry 15 R= [M][PF 6] Conv. b:l dr. 18

1 a Me [Ag][PF 6] >99% 86:14 49:51 85%

2 a Me [K][PF 6] 38% 91:9 48:52 <1%

3 a Me [Na][PF 6] 92% 91:9 47:53 <1%

4 a Me [Li][PF 6] >99% 93:7 46:54 <1%

5 b Et [Ag][PF 6] >99% 87:13 50:50 87%

6 b Et [K][PF 6] 40% 91:9 49:51 <1%

7 b Et [Na][PF 6] 91% 91:9 49:51 <1%

8 b Et [Li][PF 6] >99% 92:8 49:51 <1%

a4b (2mol%),bpy (2.4mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversion,ratiosofbranched( 15 and 15’ )tolinear( 16 )productsand dr. ofbranched(15 and 15’ )productsweredeterminedbyGCMS. a Table 5-8:BasefreeregioselectiveCpRucatalyzedallylationofacetoacetates;[M][PF 6]cocatalysts.

OMe O O O O O O O 1) 4b (2 mol%) O O bpy (2.4 mol%) OR OR 18 OR 2) [Li][Z] (1 mol%) 1.1 equiv. MeO THF,60 °C,14 h 14a R = Me, Et 15 16 19

b b b Entry 15 R= [M][PF 6] Conv. b:l dr. 18 19

1 a Me LiHMDS 49% 92:8 45:55 11% 3%

2 a Me [Li][NTf 2] >99% 93:7 48:52 <1% <1%

3 a Me [Li][BF 4] >99% 93:7 48:52 <1% <1%

4 a Me LiO tBu >99% 92:8 48:52 <1% <1%

5 a Me LiOMe >99% 93:7 48:52 <1% <1%

6 b Et LiHMDS 62% 90:10 46:54 18% 5%

7 b Et [Li][NTf 2] >99% 89:11 50:50 <1% <1%

8 b Et [Li][BF 4] >99% 89:11 50:50 <1% <1%

9 b Et LiO tBu 97% 90:10 50:50 <1% <1%

10 b Et LiOMe >99% 89:11 50:50 <1% <1%

a4b (2mol%),bpy (2.4mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversion,ratiosofbranched( 15 and 15’ )tolinear( 16 )productsand dr. ofbranched(15 and 15’ )productsweredeterminedbyGCMS. Table 5-9:BasefreeregioselectiveCpRucatalyzedallylationofacetoacetates;[Li][Z]cocatalysts.a

Furtherscreeningoftheanionicpartofthelithiumsaltwasperformedandresultsarereported in Table 5-9. The use of lithium hexamethyldisylazane, a strong base, did not provide the expected resultsin terms ofreactivity(entries 1 and 6). However, theuseof[Li][NTf 2]or

[Li][BF 4]affordedsimilarresultsto[Li][PF 6](entries2,3and7,8);showingthattheanionic

82 Chap. 5: Applications to “Classical”Allylic Substitution counterpart only plays a little role on the outcome of the reaction. The use of inexpensive lithiumalkoxideswasthusenvisagedandcommerciallyavailablelithium tert butoxideand methoxide were tried as cocatalysts in the reaction (entries 4, 5 and 9, 10). The latter reactionsproceededsmoothlyandgoodresultsintermsofreactivityandregioselectivitywere obtained. Unfortunately the problem of the diastereoselectivity of the branched product remainstobesolved.Lithiummethoxideconsequentlyappearedasagoodchoiceforfurther reactionscreening. Withoptimizedconditionsinhand( 4b ,LiOMe…)thecocatalyticmethodologywasused withligand L18f andavarietyofactivatedcarbonylcompounds:resultsarereportedin Table 5-10 .Clearlyligand L18f issuitableforthistransformationsinceonlyethylnitroacetate(low reactivity,entry6)appearedtobeproblematic.Fordifferent1,3ketoesters(entries1to5),the reactions were complete. Good regioselectivities above 9:1 were obtained; the relative selectivitiesbeingthesamethanwhenusing2,2’bipyridine( Table5-3).Inadditionthesame problem of low diastereoselectivity remained unsolved in all cases. The more bulky N,N diethylacetylacetamidereactedefficientlybuttheregioselectivitywasnoticeablylower(entry 7).Symmetricalacetylacetone(entry8)didnotaffordanefficientreactionwhereasdiethyl malonate(entry9)affordedafullconversionwithgoodregioselectivity.

O O O O O 1) 4b (2 mol%) O L18f (2.4 mol%) R R 2) LiOMe (1 mol%) R' R' R 14a R' THF,60 °C,14 h 1.1 equiv. R = Me, Et 15 16

Entry 15 R= R’= Conv. b b:l b dr. b

1 b MeCO OEt >99% 92:8 50:50

2 i PhCO OEt >99% 96:4 50:50

3 h CF 3CO OEt >99% 87:13 55:45

O O 4 f >99% 95:5 n.d. OEt O O

5 g OEt >99% 91:9 60:40

6 n O2N OEt 9% n.d. n.d.

7 o MeCO NEt 2 89% 70:30 45:55 8 j MeCO Me 10% n.d.

9 k EtOCO OEt >99% 90:10

a4b (2mol%), L18f (2.4mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversion,ratiosofbranched( 15 and 15’ )tolinear( 16 )productsand dr. ofbranched(15 and 15’ )productsweredeterminedbyGCMS. Table 5-10:BasefreeregioselectiveCpRucatalyzedallylationofacetoacetates;chiralligand L18f .a

83 Chap. 5: Applications to “Classical”Allylic Substitution Theenantioselectivityaspectofthisreactionwasnotinvestigatedduetotimerestrictionsbut overall, the catalytic combination of 4b and L18f , in conjunction with a lithium salt like lithiummethoxide,provedtobeefficientbothonthereactivityandregioselectivitypointsof view. This methodology efficiently competes with the literature procedures and should be furtherdeveloped.

5.3. Preformed C-Nucleophiles

FollowingthereportofHartwig et al concerningtheIrcatalyzedallylationofsilylenolethers derived from ketones, 3 the newly developed cocatalytic combination was tried for this particular reaction. Results are summarized in Table 5-11 . Two commercially available trimethylsilylenolethers,respectivelyderivedfromcyclohexanoneandacetophenone,were usedinthisstudy.Inthiscase,thereleasedmethoxideshouldbeabletoattacktheTMSenol etherandreleasetheketoneenolatewhichcouldthenaddtothe πallylcomplexyieldingthe sameproductsthanthe Carroll rearrangementofcorrespondingketoesters.

Disappointingly,inbothcasestheconversionwaslowafter14hoursofreaction.Inthecase of1(trimethylsilyloxy)cyclohexene(entry1)only54%conversionwerereached,butmore importantly the regioselectivity was clearly lower than the corresponding Carroll rearrangementreaction( b:l 54:55 vs. 86:14,Table 4-4,entry3).Inaddition,largeamountsof productcorrespondingtothenucleophilicattackofthemethoxideweredetected(38%)with, inthiscase,a1:1ratioofbranched 19 andlinear 18 .Interestinglythediastereoselectivityof branchedproduct 2wasinversedcomparedtothe Carroll rearrangementof 1n ( dr. 40:60 vs. 64:36 Table 4-4 entry 3). A similar situation is obtained with 1penyl1trimethylsilyloxy ethylene(entry2):mediumconversion(74%),lowregioselectivity(20:80vs. 95:5 Table 4-4 entry6)andsomecinnamylmethyletherwasdetected(8%witha b:l ratioof1:1).

Obviously, the situation in this case is different from the corresponding Carroll rearrangement. The nucleophilic species in the two cases have very different chemoselectivities;especiallytheregioselectivityofthereactionisstronglyinfluenced.One plausibleexplanationforthelower b:l ratiocouldbethattheenolatemoietyisnot(oronly partially)decoordinatedfromthesiliconatom.Thisbulkiernucleophilewill,accordingtothe previouslyobservedempiricalrelationbetweennucleophilebulkandregioselectivity,provide

3Graening,T.;Hartwig,J.F. J. Am. Chem.Soc. 2005 , 127 ,1719217193.

84 Chap. 5: Applications to “Classical”Allylic Substitution alessregioselectivenucleophilicattack.Thisshouldbefurtherassessedbyvaryingthebulk ofthenontransferablealkylgroupsonthesilicon(TMS,TBDMS,TBDPS,TIPS…).

O O R R R' R' O

O O 1) 4b (2 mol%) OTMS L18f (2.4 mol%) 2 3 2) LiOMe (1 mol%) R 14a R' THF, 60 °C, 14 h 1.1 equiv. OMe OMe

19 18

Entry 2 R= R’= Conv. b b:l b dr. b 18 19 OTMS

1 n 54% 45:55 40:60 19% 19%

OTMS 2 q 74% 20:80 4% 4%

a4b (2mol%), L18f (2.4mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversion,ratiosofbranched( 15 and 15’ )tolinear( 16 )productsand dr. ofbranched(15 and 15’ )productsweredeterminedbyGCMS. Table 5-11:BasefreeregioselectiveCpRucatalyzedallylationofacetoacetates;chiralligand L18f .a

Oneothersimilarpossibilitywouldbe,asdescribedbyHartwig,touseisolatedenaminesas nucleophile;4thismethodologyyieldsthesameproductsbutthe major issue resides in the regioselectivesynthesisofthestartingenamines.

5.4. Unstabilized Nucleophiles

5.4.1. Unstabilized Ketones

5 ReasoningintermsofpK a(DMSO) thereleasedalkoxideshouldbeabletodeprotonatealso unactivated ketones. The previously described methodology was then tried with cyclohexanoneandacetophenoneasprenucleophile( Table 5-13 ).Unfortunately,whenusing reactant 14a(R=Me),onlytheattackofthealkoxideontothe πallylfragmentwasdetected byGCMS.Thebranchedtolinearratiooftheobtainedproductwascloseto1:1.5whatever the ketone used. Once again, 14d (R = tBu) only afforded a very slow reaction; the

4Weix,D.J.;Hartwig,J.F. J. Am. Chem. Soc. 2007 ,129 ,77207721. 5 InDMSO:pk a(MeOH)=29.0;pk a(tBuOH)=32.2;pk a(cyclohexanone)=26.4;pk a(acetophenone)=24.7.

85 Chap. 5: Applications to “Classical”Allylic Substitution distribution of products was thus not determined. Overall these results show the need for activatedprenucleophilesinordertoachievethedesiredreactivity.

O O R R R' R' O R O O 1) 4b (2 mol%) O L18f (2.4 mol%) 2 3 2) LiOR (1 mol%)

14 R'' R' THF, 60 °C, 24 h 1.1 equiv. OR OR

19 18

Entry 2 R= R’= R’’= Conv. b b:l b dr. b 18 19 O

1 n Me 60% nd. nd. 36% 24%

O 2 q Me 58% nd. nd. 34% 24%

O

3 n t-Bu <5% nd. nd. nd. nd.

O 4 q t-Bu <5% nd. nd. nd. nd.

a4b (2mol%), L18f (2.4mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversion,ratiosofbranched( 15 and 15’ )tolinear( 16 )productsand dr. ofbranched(15 and 15’ )productsweredeterminedbyGCMS. Table 5-13:RegioselectiveCpRucatalyzedallylationofinactivatedketones;chiralligand L18f .a

5.4.2. Unstabilized Alkynes

In addition to the Carroll rearrangement, Tunge also described the Pdcatalyzed decarboxylative sp sp 3couplings,6theacetylidebeinggenerated in-situ bydecarboxylationof apropiolatemoiety.Thisreactionappearedtousasapossibleapplicationforthepreviously described CpRu protocol. The synthesis of branched 20a and linear 20b allylic phenylpropiolicestersisdescribedin Scheme 5-1.Phenylacetylenewasdeprotonatedwith n

BuLi and quenched with dry CO 2; subsequent acidic workup afforded the corresponding carboxylic acid. The final substrates were obtained in high yield by DCC mediated esterification(DMAPwasusedascatalyst)withthecorrespondingallylicalcohol.

6Rayabarapu,D.K.;Tunge,J.A. J. Am. Chem. Soc. 2005 , 127 ,1351013511.

86 Chap. 5: Applications to “Classical”Allylic Substitution

O O 1) n-BuLi (0.95 equiv.) DCC (0.95 equiv.) O 2) dry CO2 DMAP (0.1 equiv.) ROH (1 equiv.) O O 3) HClaq or Ph OH Ph Ph Ph Ph THF,0 °C, 5 min Ph THF,0 °C, 5 min 20a 90 % (2 steps) 20b 84 % (2 steps) Scheme 5-1:Synthesisofallylicphenylpropiolicesters 20 . Substrate 20a wasthen submitted to the standard reaction conditions ( Table 5-14). Using onlytheRubasedcatalyst( 4b + L18f ),noreactionwasobtained.Thestartingmaterialwas completelyrecovered(entry1).Inordertoachievesomereactivitytheuseofcocatalystswas envisaged.However,evenmetalsknowntointeractwithalkynemoietiesascopper(IandII) orsilversaltsdidnothelpingettingareactivity.

O Ph Ph 1) 4b (2 mol%) O L18f (2.4 mol%) 2) MX (1 mol%) Ph n Ph THF, 60 °C, 14 h Ph Ph 20a 21a 22a

b Entry MX n Conv.

1 <1%

2 LiPF 6 <1%

3 AgPF 6 <1% 4 CuTc <1%

5 (CuOTf) 2Tol <1%

6 Cu(Otf) 2 <1%

a4b (2mol%), L18f (2.4mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversiondeterminedbyGCMS(ratioof 20a /20b ). Table 5-14:Rearrangementofphenylpropiolicester 20a.a

Once again, to assess the apparent lack of reactivity, branched 20b was submitted to the reactionconditions( Table 5-15).Inthiscase,andwhateverthecocatalystused,thebranched 20b wasfullyisomerizedtolinear 20a .ThisshowsthattheRucatalystisabletoreactwith substrate 20b andthattheapparentlackofreactivityof 20a ismostprobablydueto(i)an inability of the phenylpropiolate fragment to undergo decarboxylation or (ii) a very fast returnreaction(re)forming 20a afterionization.

87 Chap. 5: Applications to “Classical”Allylic Substitution

O O 1) 4b (2 mol%) O L18f (2.4 mol%) O 2) MX (1 mol%) Ph n Ph Ph Ph THF, 60 °C, 14 h 20b 20a

b Entry MX n Conv.

1 Cu(OTf) 2 >99%

2 (CuOTf) 2Tol >99%

3 AgPF6 >99% 4 >99%

a4b (2mol%), L18f (2.4mol%),THF,60°C, c1 M;theresultsbeingtheaverageofat leasttworuns; bconversiondeterminedbyGCMS(ratioof 20a /20b ). Table 5-15:Rearrangementofphenylpropiolicester 20b .a 5.5. Heteroatomic Nucleophiles

Sincetheapplicabilityoftheasymmetricprotocolwouldbegreatlybenefitfromabroadening ofthescopeofnucleophilestoheteroatomicfragments,somereactionstowardsthisgoalwere performedwithafewchosensubstrates.

5.5.1. N-Nucleophiles

For Nnucleophiles, carbamates appeared as a possible family of substrates. 7 Cinnamyl carbamates 23a to 23d were easily synthesized from the corresponding commercially availablecarbamoylchlorides( Scheme 5-2).Tertiarycarbamates 23a and23bdidnotshow anyreactivitywhensubmittedtothereactionconditions.Thesituationforcarbamates 23c and 23d wassignificantlydifferentsincethereactionproceededwellbutonlylinearproductwas obtainedfrom 23c after24hoursandaverynonselectiveprocesstookplacefrom 23d : large amountsoflinearproductandofdiallylatedanilinewereobtained( Scheme 5-3).

O O O O Ph Ph O N O N O N O N H O Ph

23a 23b 23c 23d Scheme 5-2:Synthesizedcinnamylcarbamates23.

O NHPh NHPh NHPh 4b (2.5 mol%) N O NHPh L18f (3 mol%)

THF, 60 °C, 24 h Conv. > 97 % 24a 31 % 24b 34 % 23d 24d 35 % Scheme 5-3: Rearrangementreactionofcarbamate 23d. 7Bruneau,C.;Renaud,J.L.;Demerseman,B. Chem. Eur. J. 2006 , 12 ,51785187.

88 Chap. 5: Applications to “Classical”Allylic Substitution With this result in hand, we turned our attention to another class of substrate. The methodologyofOvermann 8andPeters 9fortherearrangementofallylictrichloroacetimidates intoallylicamideswasthenconsidered.Cinnamyltrichloroacetimidate 25 was synthesized from commercially available trichloroacetonitrile and the corresponding alcohol. 8 When submittedtothestandardreactionconditions,therearrangementindeedtookplace;GCMS aswellas 1Hand13 CNMRandGCMSspectralanalysesallowedtodeterminethenatureand theratiosoftheobtainedproducts( Scheme 5-4).Thebranchedproduct 26awasobtainedina 50%proportionandwithanenantiomericexcessof65%.However30%oflinearproduct 26b wasalsoobtainedalongwith15%ofbranchedlineardoublyallylated 26cand5%of doublylinear 26d.Theseresultsareobviouslymuchworsethanthepublishedproceduresand clearly, the reaction is not a standard intramolecular rearrangement as for the palladium catalyzedversionofthistransformation.8,9

O O

HN CCl3 HN CCl3

NH

4b (2.5 mol%) 26a 50 % 26b 30 % O CCl3 L18f (3 mol%) 65 % ee O THF,60 °C,24 h O Conv. > 97 % N CCl 25 3 N CCl3

26c 15 % 26d 5 % Scheme 5-3:Rearrangementoftrichloroacetimidatesoftype25. Overall the proposed catalytic system does not seem to be well suited for the use of N nucleophiles.

5.5.2. O-Nucleophiles

Onucleophiles also represent an important class of reactive fragments. As such, many methods have been disclosed in the literature, but only very few examples Rucatalyzed

8(a)Anderson,C.E.;Overman,L.E. J. Am. Chem. Soc. 2003 , 125 ,1241212413.(b)Anderson,C.E.;Donde, Y.;Douglas,C.J.;Overman,L.E. J. Org. Chem. 2005 , 70 ,648657.Watson,M.P.;Overman,L.E.;Bergman, R.G. J. Am. Chem. Soc. 2007 , 129 ,50315044. 9(a)Weiss,M.E.;Fischer,D.F.;Xin,Z.Q.;Jautze,S.;Schweizer,W.B.;Peters,R. Angew. Chem. Int. Ed. 2006 , 45 ,56945698.Fischer,D.E.;Xin,Z.Q.;Peters,R. Angew. Chem. Int. Ed. 2007 , 46 ,77047707.Jautze, S.;Seiler,P.;Peters,R. Angew. Chem. Int. Ed. 2007 , 46 ,12601264.

89 Chap. 5: Applications to “Classical”Allylic Substitution enantioselectiveallylicsubstitutionsoflinearunsymmetricalsubstrateshavebeenreported.10 Bothexamplesdescribetheetherificationofallylchlorideswithphenolsinthepresenceof stoichiometric amounts of base. It was thought that the previouslydeveloped catalytic protocolcouldbeefficientinperformingthedecarboxylativerearrangementofcinnamylaryl carbonates:Thisprocesswouldallowthebasefreeadditionofaphenoxidenucleophileonto the πallylmoiety.ThisprojectwascarriedoutbyMartinaAusteri(PhDstudentofthegroup) andisdescribedhereonlyasafurtherexampleofapplicationofthecatalyticcombination.As such only few selected examples will be described. 11 All the substrates of type 27 were obtained from commercially available aryl chloroformates and corresponding cinnamyl alcohol.Whensubmittedtothecatalystcombination,thearylcarbonatesprovedtobevery reactive substrates (see Table 5-16) yielding the desired branched allylic ethers with high selectivity. A similar effect of the electronegativity of the substituents on the cinnamyl fragmentontheregioselectivityoftheprocesswasobservedasforthe Carroll rearrangement (Table 3-5).Sincethesubstrateswereveryreactive,thereactionscouldbeperformedatroom temperature(25°C)andenantioselectivitiesaround85%wereobtainedinallcaseswhichis similartotheMgcocatalyzed Carroll rearrangement( Table 4-6).

R' R' R' O 4a (10 mol%) O O L18f (10 mol%) O O

THF, R.T.

R 27 R 28 R 29

Entry Carbonate R= R’= Time Conv. % ee Conf. b b:l c

1 27a H H 2h >97% 84% (+) >97:3

2 27b Cl H 2.5h 92% 87% (+) >97:3

3 27c NO 2 H 7h 87% 85% (–) 75:25

4 27d H Me 2.5h 90% 84% (–) 90:10

a4a(10mol%), L18f (10mol%),THF,R.T., c0.5M;theresultsbeingtheaverageofat least two runs; b conversion, ratios of branched ( 27 ) to linear ( 28 ) products were determinedby 1HNMR(400MHz). Table 5-16:BasefreeregioselectiveCpRucatalyzedetherificationofallylcarbonates.a

Inaddition,ithasbeenshowninpreviousexperimentsthatthealkoxideanion(originating from a carbonate) is liable to add to the πallyl fragment. Consequently, this type of

10 (a) Mbaye, M. D.; Renaud, J. L.; Demerseman, B.; Bruneau, C. Chem. Commun. 2004 , 18701871.. (b) Onitsuka,K.;Okuda,H.;Sasai,H. Angew. Chem. Int. Ed. 2008 , 47 ,14541457.(c)Ueno,S.;Hartwig,J.F. Angew. Chem. Int. Ed. 2008 , 47 ,19281931. 11 Austeri,M.;Linder,D.;Lacour,J. Chem. Eur. J. 2008 , 14 ,57375741.

90 Chap. 5: Applications to “Classical”Allylic Substitution transformationswith Onucleophilesdeservesfurtherstudiesandworkiscurrentlygoingon inthegrouptobroadenthescopeofthismethodologyinthecontextof Onucleophiles.

5.6. Conclusion

Thecatalyticcombinationdescribedinthepreviouschapter(4b +L18f )appearstohavea scopewiderthanthe Carroll rearrangement.Inorderforthereactionstoproceedsatisfyingly, analternativecocatalystbasedonlithiumsaltshadtobeused.Usinglithiummethoxideas cocatalyst, the scope of nucleophiles could be broadened to the field of activated prenucleophiles but several limitations still remain. The combination of 4b and L18f also proved tobeefficient with carbamatesand carbonates; the latter class of molecules being muchmoresuitableforthedescribedstrategy.Assuchfurtherworkonthe“rearrangement” ofcarbonatesiscurrentlybeingundertakeninthelaboratory.

91 Chap. 6: General Conclusion & Outlook

6. General Conclusion & Outlook

Before I came here I was confused about this subject. Having listened to your lecture I am still confused. But on a higher level… Enrico Fermi (1901-1954)

6.1. Conclusion

The objective of this work was to further develop the chemistry of ruthenium-catalyzed Carroll rearrangement reactions previously reported by Tunge 1 and by our group.2 As shown in the introductory chapter 2, the field of allylic substitution reactions is extremely varied, but ruthenium catalyzed reactions remain little studied.

In the third chapter, we have shown that readily-accessible pyridine mono-oxazolines were ligands very well suited for the CpRu-catalyzed Carroll rearrangement reactions. Ligand L18f appeared especially appropriate for this transformation since excellent regioselectivities (up to > 99:1) good enantioselectivities (up to ca. 80 %) and improved reactivities (up to 20 times faster than the first-generation pyridine imine ligands) could be obtained.

The aim of the fourth chapter was to better understand the transformation and especially its mechanism. Many reactions were performed in an attempt to characterize the different steps of the mechanism. It was unfortunately not possible to directly prove the nature of the different intermediates but mechanistic evidence were gathered and analyzed, sufficient to afford a plausible mechanistic rational. The reaction seems to proceed following a pathway very similar to what is described for palladium catalyzed allylic alkylation reactions.

As a follow-up to this mechanistic rational, a co-catalytic strategy based on magnesium salts was developed and successfully applied to the Carroll rearrangement. Enhanced reactivities were achieved allowing the reaction to be performed at lower temperature (room temperature) and with consequently better enantioselectivity.

The fifth chapter describes the application of the catalytic combinations to intermolecular allylic substitution reactions. They appeared well suited, when used in conjunction with a lithium salt, for “base free” alkylation reactions. Good regioselectivities (generally around 9:1

1 (a) Burger, E. C.; Tunge, J. A. Org. Lett. 2004 , 6, 2603-2605. (b) Burger, E. C.; Tunge, J. A. Chem. Commun. 2005 , 2835-2837. 2 (a) Constant, S.; Tortoioli, S.; Muller, J.; Lacour, J. Angew. Chem. Int. Ed. 2007 , 46 , 2082-2085. (b) Constant, S.; Tortoioli, S.; Muller, J.; Linder, D.; Buron, F.; Lacour, J. Angew. Chem. Int. Ed. 2007 , 46 , 8979-8982.

- 92 - Chap. 6: General Conclusion & Outlook in favour of the branched regioisomer) were obtained for a wide variety of classical activated prenucleophiles. The problem of low diastereoselectivity (generally around 1:1) of the branched product still remains largely unsolved.

The same asymmetric protocol could also be applied to the decarboxylative “rearrangement” of cinnamyl carbamates and carbonates. The reactions of N-based substrates are problematic since neither chemoselectivity (double alkylation reactions) nor regioselectivity could be controlled satisfyingly. The cinnamyl aryl carbonates were much better substrates and good regio and enantioselectivities were obtained.

6 Overall the straightforward combination of air-stable [CpRu( η -napht)][PF 6] with simple-to- make ligand L18f allowed the reactions to be performed under easy experimental conditions. Ligand L18f appeared to be very interesting due to the simplicity in its synthesis but more interestingly due to the fact that both enantiomers of the starting indenyl aminoalcohol are commercially available for a moderate price ((+)- or (–)-aminoindanol 5g ~ 200 CHF). 3

6.2. Outlook

As shown in the different parts of this manuscript, the catalytic combinations described herein still suffers from a few limitations mainly in terms of reactivity and enantioselectivity. Due to simplicity of the catalytic system there still remain a lot of room for structural improvements.

Firstly, except for the unsuccessful attempts to use Cp*Ru complexes, no structural variations have been made to the roof of the half sandwich precatalytic complex. Firstly, as a more electron rich roof seems to be beneficial for the reactivity and selectivity (especially in the endo / exo isomerism of the π-allyl complex) of allylation reactions as reported by Pregosin 4 and by Trost,5 it seems appropriate to substitute the Cp moiety with some electron donating groups ( Scheme 6-1 (a) ). The Cp* appeared too bulky for a combination with L18f , as such di- or tri-substituted Cp’ moieties could be appropriate ( C2 symmetrical Cp’ should be privileged to avoid planar chirality of subsequent complex).

Another strategy could be to substitute the Cp ring with a group able to activate the ketoester moiety in a similar way to the co-catalytic approach. For example structures similar to

3 Senanayake, C. H. Aldrichim. Acta 1998 , 31 , 3-15. 4 Hermatschweiler, R.; Fernandez, I.; Pregosin, P. S.; Breher, F. Organometallics 2006 , 25 , 1440-1447. 5 Trost, B. M.; Older, C. M. Organometallics 2002 , 21 , 2544-2546.

- 93 - Chap. 6: General Conclusion & Outlook

Shvo’s 6 catalyst, bearing a hydroxy group on the Cp Scheme 6-1 (b) , could serve as a useful structural scaffold in this context. Many different variations have been published and successfully applied in the context of chemoenzymatic dynamic kinetic resolutions of amines and alcohols. 7

H O O O Ru Ru Ru Ru O (a) Ar (b) Scheme 6-1: Possible structural variations on the roof of the ruthenium half sandwich complex.

The other straightforward modifications concern the N,N-ligand. Indeed, since the chirality at the metal centre was only poorly controlled by ligand L18f in many CpRu(N,N’)X complexes, it would be interesting to enhance the steric hindrance between the Cp ring and the ortho -substituent of the indenyl moiety ( Scheme 6-2). Two feasible strategies emerge: (a) introduce a more bulky R group and (b) vary the distance between the Cp and the R group by making a bigger middle ring (n = 1, 2 or 3).

R R

N N N N

O O n (a) (b) Scheme 6-2: Possible structural variations on the N,N-pymox ligand.

Cl O O O O Cl Cl

[CpRu(MeCN)3][PF6] (10 mol%) O Cl O L (10 mol%) N O O P THF, 60 °C N O O O Cl 1a 2a 3a MeO MeO MeO PHENPHAT Cl Cl Cl

Entry Ligand Time Conv. b:l c

1 bpy 2 h > 97 % > 97:3 2 phen 1h30 > 97 % > 97:3 3 PHENPHAT 45 min > 97 % > 97:3

a Fresh 4a (10 mol%), ligand L18 (10 mol%), THF, 60 °C, c(1a ) 0.5 M; the results being the average of at least two runs; b ratios of branched ( 2) to linear (3) products were determined at complete conversion by 1H NMR (400 MHz). Table 6-1: Ligand screening. a

6 Shvo, Y.; Czarkie, D.; Rahamim, Y.; Chodosh, D. F. J. Am. Chem. Soc. 1986 , 108 , 7400-7402. 7 (a) Paetzold, J.; Bäckvall, J. E. J. Am. Chem. Soc. 2005 , 127 , 17620-17621. (b) Prabhakaran, R. Synlett 2004 , 2048-2049. (c) Samec, J. S. M.; Ell, A. H.; Aberg, J. B.; Privalov, T.; Eriksson, L.; Bäckvall, J. E. J. Am. Chem. Soc. 2006 , 128 , 14293-14305.

- 94 - Chap. 6: General Conclusion & Outlook

Finally, early screening reactions were performed to determine the optimal geometry of the ligand ( Table 6-1). It appeared that 1,10-phenantroline (phen) was performing quite faster than 2,2’-bypyridine (bpy); probably because of the better planarity of the phenantroline. The use of anionic ligands like PHENPHAT, a hexacoordinated phosphate anion bearing a phenantroline, seemed to be very beneficial to the kinetics of the reaction. Several structural modifications of the N,N-ligand thus seem promising ( Scheme 6-3): (a) oxazines from homologation of natural amino acids or different phenol derived amines, 8 (b) flatening the ligand as for example in a bridged imidazole structure or (c) using a pymox ligand bearing and anionic moiety like a hexacoordinated phosphate for instance.

Cl Cl N N R R Cl O O N N N N O Cl O P O N n O O O (b) (c) (a) Cl Cl

Cl Cl Scheme 6-3: Possible structural variations on the N,N-ligand.

In addition, Kitamura has shown that pyridine or quinoline carboxylates represent a family of ligands ( Scheme 6-4 (a) ), which, in conjunction with a CpRu source, provide very active catalysts for the deallylation of allylic ethers to provide the corresponding free alcohols. 9 Recently Bruneau showed that this class of ligands were, in conjunction with a Cp*Ru source, providing efficient catalysts for classical allylic substitution reactions. 10 As such oxazoline- carboxylates as in case (b) or oxazoline-alkoxides as in case (c) (Scheme 6-4) seem to have a strong potential since they combine similar structural features to the pymox ligands with inherent anionic properties. Work is currently being carried out in the laboratory to assess the scope of such ligands in the context of Carroll rearrangement and more classical allylic substitution. In addition, since the carboxylic acid can also be used, it seems possible to apply this family of chiral ligands to allylic substitution under acidic conditions as described by Pregosin. 11

8 Bernardinelli, G.; Fernandez, D.; Gosmini, R.; Meier, P.; Ripa, A.; Schupfer, P.; Treptow, B.; Kündig, E. P. Chirality 2000 , 12 , 529-539. 9 (a) Saburi, H.; Tanaka, S.; Kitamura, M. Angew. Chem. Int. Ed. 2005 , 44 , 1730-1732. (b) Tanaka, S.; Saburi, H.; Ishibashi, Y.; Kitamura, M. Org. Lett. 2004 , 6, 1873-1875. (c) Tanaka, S.; Saburi, H.; Kitamura, M. Adv. Synth. Cat. 2006 , 348 , 375-378. 10 Zhang, H. J.; Demersernan, B.; Toupet, L.; Xi, Z. F.; Bruneau, C. Adv. Synth. Cat. 2008 , 350 , 1601-1609. 11 Zaitsev, A. B.; Gruber, S.; Pluss, P. A.; Pregosin, P. S.; Veiros, L. F.; Worle, M. J. Am. Chem. Soc. 2008 , 130 , 11604-11605.

- 95 - Chap. 6: General Conclusion & Outlook

N O R N O R N O or R' O O O O R' (a) (b) (c) Scheme 6-4: Possible structural scaffold for new N,O-ligand.

During his postdoctoral stay, Dr. Simone Tortoioli developed an enantioselective decarboxylative rearrangement of activated cinnamyl esters thus proving that the strategy used in the Carroll rearrangement can be widened to other transferable groups ( Scheme 6-2). A careful study of these reactivities should allow determining the scope of Ru-catalyzed enantioselective decarboxylative allylations of nucleophiles, but the preliminary results are promising as far as activated esters are concerned.

O

X [CpRu(MeCN)3][PF6] (10 mol%) X X O L* (10 mol%) OMe

THF, 60 °C N N L*

Entry Ligand Time Conv. ee

1 Ts b,c 24 h 53 % 25 % d 2 CN c 17 h > 97 % 60 % e

e 3 NO 2 4 h > 97 % 72 %

a Fresh 4a (10 mol%), ligand L* (10 mol%), THF, 60 °C, c(1a ) 0.5 M; the results being the average of at least two runs; b 10 mol% of DBU were used as co- catalyst; c bis-allylated product was also obtained in a 1:1 ratio; d Chiralpak IA (Hexane / iPrOH 90/10, 0.5 mL.min -1, 23 °C; e Chiralpak IB (Hexane / iPrOH 95/5, 0.5 mL.min -1, 23 °C. Table 6-2: Transferable groups.a

- 96 - Chap. 7: Experimental Part

7. Experimental Part

A tidy laboratory means a lazy chemist. Jöns Jacob Berzelius

7.1. Generalities

AllreactionswerecarriedoutunderdryN 2orArbymeansofaninertgas/vacuumdouble manifoldlineandstandardSchlenktechniqueswithmagneticstirring,unlessotherwisestated. Dry toluene, dichloromethane, hexane, diethylether and tetrahydrofuran were obtained by filtration through appropriate activatedalumina drying columns. Analytical thinlayer chromatography (TLC) was performed with Merck SIL G/UV 254 plates. Unless otherwise stated, column chromatography (Fluka silicagel 60, 40 m or Fluka basic alumina type 5016A)wasperformedinairandunderpressure(0.10.3bar).NMRspectrawererecordedon BrukerARX300orAMX400orARX500atroomtemperatureunlessotherwisestated. 1H

NMR:chemicalshiftsaregiveninppmrelativetoMe 4Siwiththesolventresonanceusedas 31 13 theinternalstandard. PNMR:chemicalshiftswerereportedinppmrelativetoH 3PO 4. C

NMR:chemicalshiftsweregiveninppmrelativetoMe 4Si,withthesolventresonanceused astheinternalstandard.Assignmentsmayhavebeenachieved using DEPT, COSY and/or NOESYexperiments.IRspectrawererecordedwithaPerkinElmer1650FTIRspectrometer usingadiamondATRGoldenGatesampling.Meltingpoints(M.p.)weremeasuredinopen capillary tubes on a Stuart Scientific SMP3 melting point apparatus and are uncorrected. Electrospray mass spectra (ESIMS) were obtained onaFinniganSSQ 7000spectrometer. GCMSwereobtainedspectraona Hewlett Packard 6890 GCchromatographcoupledwith an Agilent 5973 Network mass selective detector.HPLC analyses were performed on an Agilent 1100 apparatus (binary pump, autosampler, column thermostat and diode array detector). Chiral stationary phase (CSP) chromatography was performed on a Hewlett Packard 6890 GCchromatographusingaHydrodex βcolumn(25mx0.25mm,He)withan autosampler and a FID detector. Retention times ( tR) are given in minutes (min). Unless otherwise stated, all chemicals were obtained from Fluka, Aldrich, Pressure Chemicals or Acrosandusedasreceivedorpurifiedaccordingtostandardliteratureprocedures. 1

rd 1 D.D.Perrin,W.L.F.Armarego, Purification of Laboratory Chemicals ,3 ed.,PergamonPress:Oxford, 1988 .

97 Chap. 7: Experimental Part 7.2. Synthesis of substrates of type 1.

General procedure for the synthesis of cinnamyl acetoacetates of type 1 βketoesters1a to 1l werepreparedbyDMAPcatalyzedadditionofthecorrespondingallylic alcohols to diketene;2 compounds 1a ,3 1b,3 1c,3 1d,3 1f,3 1h ,4 1i ,5 1j,6 1l ,7 1m ,8 1n,3 1q 9 havingspectralcharacteristicsidenticaltothosedescribedalreadyintheliterature.

(E)-3-(4-nitrophenyl)allyl 3-oxobutanoate or 1e: pale yellow solid (86 %); 1H NMR (CDCl ,400MHz):δ=8.19(d, J =8.8Hz,2H),7.53(d, J =8.8 O O 3 Hz,2H),6.74(d, J =16.0Hz,1H),6.45(dt, J =16.0Hz, J =6.0 O Hz,1H), 4.85 (d, J = 6.0 Hz, 2H), 3.55 (s, 2H), 2.30 (s, 3H); 13 1 C{ H} NMR (CDCl 3,100MHz):δ=200.3(C),166.7(C),147.3

O2N (C),142.5(C),131.8(CH),127.5(CH),127.2(CH),124.1(CH),

65.1 (CH 2), 50.0 (CH 2), 30.3 (CH 3); M.p. : 5456 °C. HR-MS (ESI): m/z calculated for

C13 H13 NO 45 Na286.0685,found286.0675.

1 (Z)-4-methoxycinnamyl 3-oxobutanoate or 1g: colourless oil (79 %); H NMR (CDCl 3, 400 MHz):7.21 (d, J =8.7Hz,1H),6.96(dd, J =8.7 Hz, J =2.1 Hz,1H),6.68(d, J =11.8Hz,1H),5.76(dt, J =11.8Hz, J =6.7Hz, MeO O 1H),4.96(d, J =6.7Hz,1H),3.87(s,3H),3.54(s,2H),2.33(s,3H ); O 13 1 C{ H} NMR (CDCl 3, 100 MHz): δ = 200.5(C),167.0(C),159.1 O (C),133.2(CH),1130.1(CH),128.5(C),123.3(C),113.9(CH),62.4

(CH 2), 55.3 (CH 3), 50.1 (CH 2), 30.2 (CH 3). HR-MS (ESI): m/ zcalculatedforC14 H16 O4Na 271.0946, found 271.0940 .

2 Collado, I.; Pedregal, C.; Mazon, A.; Espinosa, J. F.; BlancoUrgoiti, J.; Schoepp, D. D.; Wright, R. A.; Johnson,B.G.;Kingston,A.E. J. Med. Chem. 2002 , 45 ,36193629 3Burger,E.C.;Tunge,J.A. Org. Lett. 2004 , 6,26032605. 4Doyle,M.P.;Austin,R.E.;Bailey,A.S.;Dwyer,M.P.;Dyatkin,A.B.;Kalinin,A.V.;Kwan,M.M.Y.; Liras,S.;Oalmann,C.J.;Pieters,R.J.;Protopopova,M.N.;Raab,C.E.;Roos,G.H.P.;Zhou,Q.L.;Martin,S. F. J. Am. Chem. Soc. 1995 , 117 ,57635775. 5Uneyama,H.;Niwa,S.;Onishi,T.Wo9849144, 1998 . 6Nalesnik,T.E.;Fish,J.G.;Horgan,S.W.;Orchin,M. J. Org. Chem. 1981 , 46 ,19871990. 7Gilchrist,T.L.;SanchezRomero,O.A.;Wasson,R.C. J. Chem. Soc., Perkin Trans. 1 1989 ,353359. 8Balaji,B.S.;Sasidharan,M.;Kumar,R.;Chanda,B. Chem. Commun. 1996 ,707708. 9Galliford,C.V.;Scheidt,K.A. Chem. Commun. 2008 ,19261928.

98 Chap. 7: Experimental Part 1 Cinnamyl-2,2-dimethyl-3-oxobutanoate or 1o: pale yellow oil, H NMR (CDCl 3, 500 O O MHz): δ=7.40(m,2H),7.33(m,2H),7.28(m,1H),6.67(d, J =15.8Hz,1H),6.27(dt, J =15.8Hz, J =6.5Hz,1H),4.79 O (d, J =6.5Hz,2H),2.18(s,3H),1.40(s,6H ); 13 C{1H} NMR

(CDCl 3,125MHz):δ= 205.7(C),173.4(C),136.0(C),134.8 (CH),128.6(CH),128.2(CH),126.6(CH),122.4(CH),65.8

(CH 2), 55.8 (C), 25.8 (CH 3), 21.9 (CH 3). HR-MS (ESI): m/ z calculated for C15H18O3Na 269.1148, found 269.1156 .

1 Cinnamyl-4-methyl-3-oxopentanoate or 1p:paleyellowoil, H NMR (CDCl 3,500MHz): O O δ=7.39(m,2H),7.34(m,2H),7.28(m,1H),6.67(d, J = 15.9Hz,1H),6.29(dt, J =15.9Hz, J =6.3Hz,1H),4.80 O (d, J =6.3Hz,2H),3.56(s,2H),2.74(h, J =6.8Hz,1H ), 13 1 1.15(d, J =6.8Hz,1H ); C{ H} NMR (CDCl 3,125MHz): δ= 206.6(C),167.4(C),136.3(C),134.9(C),128.8(CH),

128.4(CH),126.9(CH),122.8(CH),66.1(CH 3),47.26(CH 2),41.5(CH),18.2(CH 3). HR-

MS (ESI):m/ zcalculatedforC15H18O3Na 269.1158, found 269.1151 .

1 (E)-3-methyl-3-phenylallyl 3-oxobutanoate or 1k: paleyellowoil, H NMR (CDCl 3,400 O O MHz): δ=7.35(m,5H),5.95(t, J =7.0Hz,1H),4.91(d, J = 7.0Hz,2H),3.53(s,2H),2.32(s,3H),2.17(s,3H ); 13 C{1H} O NMR (CDCl 3,100MHz):δ= 200.6(C),167.2(C),142.4(C), 141.0(C),128.4(CH),127.7(CH),125.9(CH),120.6 (CH),

62.5(CH 2),50.1(CH 3),30.2(CH 3),16.3(CH 3). HR-MS (ESI): m/ zcalculatedforC14 H16 O3Na 255.0991, found 255.0987 .

(E)-1,1-dideutero-3-(4-methoxyphenyl)allyl 3-oxobutanoate or 1u: pale yellow oil, 1H O O NMR (CDCl 3,400MHz): δ=7.43(d, J =8.8Hz,2H), 6.93 (d, J =8.8Hz,2H),6.70(d, J = 15.9Hz, 1H), O 6.23 (d, J = 15.9Hz,1H),3.81 (s, 3H),2.25 (s, 3H), D 13 1 D 1.66 (s, 2H); C{ H} NMR (CDCl 3, 100 MHz): δ = MeO 200.8(C),167.2(C),159.9(C),135.1(CH),128.9(C),

128.1(CH),120.1(CH),114.2(CH),66.1(CD 2),55.5(CH 3),50.3(CH 2),30.5(CH 3). HR-

MS (ESI): m/ zcalculatedforC14 H14 D2O4Na 273.1066, found273.1177 .

99 Chap. 7: Experimental Part (E)-3-methyl-3-phenylallyl 2,2-dideutero-3-oxobutanoate or 1v: paleyellowoil,1H NMR O O (CDCl 3,400MHz): δ=7.43(d, J =8.6Hz,2H),6.93 (d, J =8.6Hz,2H),6.70(d, J =15.9Hz,1H),6.23(td, O D D J =15.9Hz, J =6.6Hz,1H),4.75(d, J =6.6Hz,1H), 13 1 3.82(s,3H),2.25(s,3H); C{ H} NMR (CDCl 3,100 MeO MHz):δ= 200.8(C),167.2(C),159.9(C),135.0(CH),

128.9 (C), 128.1 (CH), 120.2 (CH), 114.3 (CH), 66.5 (CH 2), 55.5 (CH 3), 50.3 10 (CD 2/CHD/CH 2),30.5(CH 3). HR-MS (ESI): m/ zcalculatedforC14 H14 D2O4Na 273.1066, found273.1055; m/ zcalculatedforC14 H15 DO 4Na 272.1003, found 272.1010; m/ zcalculated forC14 H16 DO 4Na 271.0940, found271.0953 .

(E)-3-deutero-3-methyl-3-phenylallyl 3-oxobutanoate or 1w: pale yellow oil, 1H NMR O O (CDCl 3,400MHz): δ=7.43(d, J =8.8Hz,2H),6.93 (d, J =8.8Hz,2H),6.23(m, 1H),4.77(d, J =6.6Hz, DO 1H),3.82(s,3H),2.25(s,3H),1.66(s,2H); 13 C{1H} NMR (CDCl 3, 100 MHz): δ = 200.8 (C), 167.2 (C), MeO 159.9 (C), 134.6 (CD), 128.9 (C), 128.2 (CH), 120.1

(CH), 114.1 (CH), 66.5 (CH 2), 55.5 (CH 3), 50.3 (CH 2), 30.5 (CH 3). HR-MS (ESI): m/ z calculatedforC14 H15 DO 4Na 272.1003, found272.1000 .

7.3. Synthesis of products of type 2.

CpRu-catalyzed Carroll rearrangement – Improved procedure . Typicalprocedure.Ina2mLscrewcapvialequippedwithamagneticstirringbar,[CpRu( η6 naphthalene)][PF 6](6.6mg,0.015mmol,2.5mol%)and L18f(4.3mg,0.018mmol,3mol%) weredissolvedin0.3mLdryTHF.Thevialwasflushedwithargonandcapped.Aftera1h heating at 60 °C, allyl βketoester 1a (150 mg, 0.6 mmol) was added in oneportion and heatingwascontinuedfor6h.Thecooledreaction mixturewasdilutedwith1.5mLofa mixtureofetherandpentane(60:40).Afterprecipitation,themetalsaltswerefilteredoffona shortSiO 2column(0.5cmx4cm,elutionether:pentane60:40);thesolventsbeingthen evaporatedunderreducedpressuretoaffordthecrudereactionmixtureasapaleyellowoil.

10 TheeluentusedinESIHRMSisacidic(aceticacid)andassuchinducesaproton/deuteriumscramblingatthe enolizabledeuteratedposition.

100 Chap. 7: Experimental Part CpRu-catalyzed Carroll rearrangement – Co-catalytic procedure .

Typicalprocedure.Ina2mLscrewcapvialequippedwithamagneticstirringbar,[CpRu( η6 naphthalene)][PF 6](5.3mg,0.012mmol,2mol%)and L18f(3.3mg,0.014mmol,2.4mol%) weredissolvedin0.3mLdryTHF.Thevialwasflushedwithargonandcapped.Aftera1h heatingat60°C,thesolutionwascooleddowntoR.T.andallyl βketoester 1a (150mg,0.6 mmol)wasaddedinoneportionfollowedbyMg(OTf) 2(1.9mg,0.006mmol,1mol%)and stirringwascontinuedfor24h.Thereactionmixturewasdilutedwith1.5mLofamixtureof etherandpentane(60:40).Afterprecipitation,themetalsaltswerefilteredoffonashort

SiO 2 column (0.5 cm x 4 cm, elution ether : pentane 60 : 40); the solvents being then evaporatedunderreducedpressuretoaffordthecrudereactionmixtureasapaleyellowoil.

Compounds 2a ,11 2b,11 2c,11 2d,11 2e,12 2f,11 2l ,13 2m ,14 2n ,11 2o ,15 2p ,16 2q ,1716 areidentical tothosedescribedalreadyintheliterature.

1 4-(4-methoxyphenyl)- hex-5-en-2-one or 2a:paleyellowoil, H NMR (400MHz,CDCl 3):

O δ=7.14(d, J =6.5Hz,2H),6.87(d, J =6.5Hz,2H),5.97(ddd, J = 17Hz, J =10.3Hz, J =7Hz,1H),5.06(d, J =10.3Hz,1H),5.02 (d, J =17Hz,1H),3.88(q, J =7Hz,1H),3.80(s,3H),2.87(dd, J = 16Hz, J =7Hz,1H),2.81(dd, J =7Hz,16Hz,1H),2.10(s,3H); MeO 13 C{1H} NMR (100MHz): δ =207.7 (C), 158.6 (C),141.3 (CH),

135.2(CH)129.0(CH),114.7(CH2),114.4(CH),55.7(CH 3),49.5(CH 2),44.2(CH),31.1

(CH 3); Low Res GC-MS : m/ zcalculatedforC16H16O2204, found 204.

11 Burger,E.C.;Tunge,J.A. Org. Lett. 2004 , 6,26032605. 12 Burger,E.C.;Tunge,J.A. Chem. Commun. 2005 ,28352837. 13 Daub,G.W.;Edwards,J.P.;Okada,C.R.;Allen,J.W.;Maxey,C.T.;Wells,M.S.;Goldstein,A.S.;Dibley, M.J.;Wang,C.J.;Ostercamp,D.P.;Chung,S.;Cunningham,P.S.;Berliner,M.A. J. Org. Chem. 1997 , 62 , 19761985. 14 Daub,G.W.;Griffith,D.A. Tetrahedron Lett. 1986 , 27 ,63116314. 15 Daub,G.W.;McCoy,M.A.;Sanchez,M.G.;Carter,J.S. J. Org. Chem. 1983 , 48 ,38763883. 16 Weix,D.J.;Hartwig,J.F. J. Am. Chem. Soc. 2007 , 129 ,77207721. 17 Graening,T.;Hartwig,J.F. J. Am. Chem.Soc. 2005 , 127 ,1719217193.

101 Chap. 7: Experimental Part 1 4-(2-methoxyphenyl)- hex-5-en-2-one or 2b:paleyellowoil, H NMR (400MHz,CDCl 3):

O δ=7.19(m,2H),6.90(d,2H),6.04(ddd, J =17Hz,11Hz,7Hz,1H),5.07 (d, J =11Hz,1H),5.04(d, J =17Hz,1H),4.32(q, J =7Hz,1H),3.86(s, 3H),2.89(dd, J =16Hz,7Hz,1H),2.83(dd, J =16Hz,7Hz,1H)2.14(s, 3H); 13 C{1H} NMR (100 MHz): δ = 208.1 (C), 157.1 (C), 140.2 ( CH),

OMe 131.5(CH)128.5(CH),128.1(CH),121.1(CH),115.0(CH 2),111.2(CH),

55.8 (CH 3), 48.6 (CH 2), 38.9 (CH), 30.6 (CH 3); Low Res GC-MS : m/ z calculated for

C16H16O2204, found 204.

1 4-phenyl-hex-5-en-2-one or 2c:paleyellowoil, H NMR (400MHz,CDCl 3): δ=7.28(m,

O 5H),5.99(ddd, J =17Hz, J =11Hz, J =7Hz,1H),5.08(d, J =11Hz, 1H),5.04(d, J =17Hz,1H),3.94(q, J =7Hz,1H),2.91(dd, J =16Hz,7 Hz,1H),2.84(dd, J =16Hz, J =7Hz,1H)2.12(s,3H); 13 C{1H} NMR

(100MHz,CDCl 3): δ=207.50(C),143.19(C),140.94(CH),129.04(CH),

128.01(CH),127.03(CH),115.04(CH 2),49.40(CH 2),44.95(CH),31.10

(CH 3); Low Res GC-MS : m/ zcalculatedforC12H14O174, found 174.

1 4-(4-chlorophenyl)- hex-5-en-2-one or 2d:paleyellowoil, H NMR (400MHz,CDCl 3): δ

O =7.28(d, J =8Hz,2H),7.18(d, J =8Hz,2H),5.94(ddd, J =17Hz, J =10.3Hz, J =7Hz,1H),5.09(d, J =10.3Hz,1H),5.02(d, J =17 Hz,1H),3.92(q, J =7Hz,1H),2.89(dd, J =16Hz, J =7Hz,1H), 2.81(dd, J =16Hz, J =7Hz,1H),2.12(s,3H); 13 C{1H} NMR (100

Cl MHz,CDCl 3): δ=207.0(C),141.7(C),140.5(CH),132.7(C)129.5

(CH),129.1(CH),115.4(CH 2),49.2(CH 2),44.1(CH),31.1(CH 3); Low Res GC-MS : m/ z calculatedforC12H13ClO208, found 208.

1 4-(4-nitrophenyl)- hex-5-en-2-one or 2e:paleyellowoil, H NMR (400MHz,CDCl 3): δ=

O 8.10(d, J =9Hz,2H),7.31(d, J =9Hz,2H),5.87(ddd, J =17Hz, J = 10Hz, J = 7Hz,1H),5.07(d, J =10Hz,1H),4.98(d, J =17Hz,1H), 3.98(q, J =7Hz,1H),2.88(dd, J =17Hz, J = 7Hz,1H),2.80(dd, J = 13 1 17Hz, J = 7Hz,1H),2.05(s,3H). C{ H} NMR (100MHz,CDCl 3):

O2N δ=205.76(C),150.6(C),146.7(C),139.1(CH),128.6(CH),124.1

(CH),116.0(CH 2),48.52(CH 2),43.94(CH),30.63(CH 3); Low Res GC-MS : m/ zcalculatedfor

C12H13NO 3219, found 219 .

102 Chap. 7: Experimental Part 4-(benzo[ d][1,3]dioxol-5-yl)hex-5-en-2-one or 2f: pale yellow oil, 1H NMR (400 MHz,

O CDCl 3): δ=6.72(m,3H),5.95(ddd, J =17Hz, J =10Hz, J =7Hz, 1H),5.96(s,2H)5.06(d, J =10Hz,1H),5.02(d, J =17Hz,1H),3.85 (q, J =7Hz,1H),2.85(dd, J =7Hz, J =16Hz,1H),2.79(dd, J =16 13 1 Hz, J =7Hz,1H),2.11(s,3H); C{ H} NMR (100MHz,CDCl 3): δ= O 207.5 (C), 148.2 (C), 146.5 (C), 141.0 (CH), 137.0 (C) 121.0 (CH), O 114.8 (CH 2), 108.7 (CH), 108.4 (CH), 101.3 (CH 2), 49.4 (CH 2), 44.6

(CH),31.1(CH 3); Low Res GC-MS : m/ zcalculatedforC13H14O3218, found 218.

1 3-methyl-4-phenylhex-5-en-2-one or 2l:paleyellowoil, H NMR (400MHz,CDCl 3): δ= O 7.25(m,5H),5.95(ddd, J =17Hz, J =10Hz, J =7Hz,1H),5.10(d, J = 10Hz,1H),5.00(d, J =17Hz,1H),3.45(q, J =7Hz,1H),2.95(m,1H), 2.18/1.90(s/s,3H),1.10/0.87(d/d,3H, J =7Hz); 13 C{1H} NMR wasnot

measured; Low Res GC-MS : m/ zcalculatedforC13H16O188, found 188.

1 2-(1-phenylallyl)cyclopentanone or 2m:paleyellowoil, H NMR (400MHz,CDCl 3): δ= 6.72(m,3H),5.95(ddd, J =17Hz,10Hz,7Hz,1H),5.96(s,2H)5.06(d, O J =10Hz,1H),5.02(d, J =17Hz,1H),3.85(q, J =7Hz,1H),2.85(dd, J =7Hz,16Hz,1H),2.79(dd, J =7Hz,16Hz,1H),2.11(s,3H); 13 C{1H}

NMR (100MHz,CDCl 3): δ=207.5(C),148.2(C),146.5(C),141.0(CH),

137.0(C)121.0(CH),114.8(CH 2),108.7(CH),108.4(CH),101.3(CH 2),

49.4(CH 2),44.6(CH),31.1(CH 3);Low Res GC-MS : m/ zcalculatedforC14H16O200, found 200.

1 2-(1-phenylallyl)cyclohexanone or 2n:paleyellowoil, H NMR (400MHz,CDCl 3): Major

Diastereomer:δ= 7.27(m,5H maj ),6.07(ddd, J =7Hz, J =10Hz, J =17

Hz,1H maj ),5.06(m,2H maj ),3.75(t, J =9Hz,1H maj ),2.82(bm,1H maj )2.46 O 1.24(m,6H maj );MinorDiastereomer:δ=7.27(m,5H min ),5.99(ddd, J =7

Hz, J =10Hz,17Hz,1H min ),5.06(m,2H min),3.83(t, J =9Hz,1H min ), 13 1 2.82 (bm, 1H min ) 1.84 (bm, 6H min ). C{ H} NMR (100 MHz, CDCl 3): Major and Minor δ = 213.15; 212.17 (C), 143.67/142.07 (C), 140.52/139.64 (CH),

128.98/128.85 (CH), 128.24 (CH), 126.94/126.66 (CH), 116.65/115.34 (CH 2), 55.80/55.65

(CH), 49.76/49.44 (CH), 42.76/42.51 (CH 2), 32.35/32.03 (CH 2), 28.96/28.80 (CH 2),

24.80/24.14(CH 2); Low Res GC-MS : m/ zcalculatedforC15H18O214, found 214.

103 Chap. 7: Experimental Part 1 3,3-dimethyl-4-phenylhex-5-en-2-one or 2o:paleyellowoil, H NMR (400MHz,CDCl 3): δ=7.27(m,5H),6.12(ddd, J =17Hz,10Hz,7Hz,1H),5.12(dd, J=16 O Hz, J =10Hz,1H),5.06(dd, J=16Hz, J =10Hz,1H),3.60(d,1H, J= 10Hz),2.05(s,3H),1.13(s,3H),1.08(s,3H); 13 C{1H} NMR wasnot

measured; Low Res GC-MS : m/ zcalculatedforC14H18O202, found 202.

1 2-methyl-5-phenylhept-6-en-3-one or 2p: paleyellowoil, H NMR (400MHz,CDCl 3): δ=

O 7.317.28(m,2H),7.227.19(m,3H),5.98(ddd, J =17Hz, J =10.5 Hz, J =7Hz,1H),5.005.06(m,2H),3.96(q, J =7Hz,1H),2.90(dd, J =17, J =7Hz,1H),2.84(dd, J =17,7Hz,1H),2.50(sept, J =7Hz, 1H),1.05(d, J =7Hz,3H),0.98(d,J =7Hz,3H); 13 C{1H} NMR (100

MHz,CDCl 3): δ=212.7(C),143.1(C),140.7(CH),128.5(CH),127.6

(CH),126.5(CH),114.5(CH 2),45.8(CH 2),44.2(CH),41.3(CH),17.9(CH 3),17.7(CH 3);

Low Res GC-MS : m/ zcalculatedforC14H18O202, found 202.

1 1,3-diphenylpent-4-en-1-one or 2q: paleyellowoil, H NMR (400MHz,CDCl 3): δ=7.94

O (m,2H),7.56(m,1H),7.45(m,2H),7.347.18(m,5H),6.06(ddd, J =17.2Hz, J =10.4Hz, J =6.8Hz,1H),5.14(dt, J =10.4Hz, J =1.3 Hz,1H),5.04(dt, J =17.2Hz, J =1.3Hz,1H),4.15(q, J =6.8Hz, 1H),3.44(dd, J=16.7Hz, J =7.6Hz,1H),3.38(dd, J=16.7Hz, J 13 1 = 6.6 Hz, 1H); C{ H} NMR (100 MHz, CDCl 3): δ = 198.2 (C), 143.1(C),140.6(CH),137.1(C),133.0(CH),128.6(CH),128.5(CH),128.0(CH),127.7

(CH),126.5(CH),114.7(CH 2),44.5(CH),44.0(CH 2); Low Res GC-MS : m/ zcalculatedfor

C17H16O236, found 236.

4-(4-methoxyphenyl)-6,6-dideutero-hex-5-en-2-one or 2u: pale yellow oil, 1H NMR O (CDCl 3,400MHz): δ=7.13(d, J =8.8Hz,2H),6.85(d, J = 8.8Hz,2H),5.95(m,1H),3.85(q, J = 7.3Hz,1H),3.79 (s, D 3H),2.86(dd,J =16.0Hz, J =7.3Hz,1H),2.78(dd, J =16.0 D 13 1 Hz, J =7.3Hz,1H),2.08(s,3H ); C{ H} NMR (CDCl 3,100 MeO MHz):δ= 207.6(C),158.4(C),140.9(CH),135.0(C),128.8

(CH),114.2(CH),113.9(CD2), 55.5 (CH 3), 49.3 (CH 2), 43.9 (CH), 30.9 (CH 3). Low Res

GC-MS : m/ zcalculatedforC13 H14 D2O2206, found 206 .

104 Chap. 7: Experimental Part 3,3-dideutoro-4-(4-methoxyphenyl)hex-5-en-2-one or 2v: pale yellow oil, 1H NMR O (CDCl 3,400MHz): δ=7.13(d, J =8.7Hz,2H),6.84(d, J =8.7 D Hz,2H),5.95(ddd,J =18.3Hz, J =9.0Hz, J =6.7Hz,1H),5.05 D (td, J =9.3Hz, J =1.3Hz,1H),4.98(td, J =18.3Hz, J =1.3Hz, 1H),3.85(d, J =6.7Hz,1H),3.79(s,3H),2.08(s,3H ); 13 C{1H} MeO NMR (CDCl 3, 100 MHz): δ = 207.6 (C), 158.5 (C), 141.1 (CH),

135.0 (C), 128.8 (CH), 114.5 (CH 2), 114.2 (CH), 55.5 (CH 3), 49.4 (CD 2/CHD/CH 2), 44.0

(CH),30.9(CH 3).Low Res GC-MS :m/ zcalculatedforC13 H14 D2O2206, found 206 .

1 4-deutoro-4-(4-methoxyphenyl)hex-5-en-2-one or 2w: pale yellow oil, H NMR (CDCl 3, O 400MHz): δ=7.11(d, J =8.7Hz,2H),6.84(d, J =8.7Hz,2H), 5.93(dd, J =17.0Hz, J =10.3Hz,1H),5.03(td, J =10.3Hz, J = D 1.3Hz,1H),4.98(td, J =17.0Hz, J =1.3Hz,1H),3.78(s,3H), 2.85(d, J =21.4Hz,1H),2.76(d, J =21.4Hz,1H),2.08(s,3H); 13 1 MeO C{ H} NMR (CDCl 3,100MHz):δ= 207.6(C),158.4(C),141.1

(CH),134.9(C),128.8(CH),114.5(CH 2),114.2(CH),55.5(CH 3),49.3(CH 2),43.6(CD),

30.9(CH 3).Low Res GC-MS : m/ zcalculatedforC13 H15 DO 2205, found 205.

105 Chap. 7: Experimental Part 7.4. CSP-separation of products of type 2.

a Entry Product tR(min) tR(min) Method

1 2a 55.9 57.6 A 2 2b 16.7 17.9 B 3 2c 11.0 11.3 A 4 2d 41.9 43.5 A 5 2e 27.2 5.89 C 6 2f 15.3 16.2 D 7 2l b 32.9 33.6 A 8 2l c 37.9 38.1 A 9 3ld 50.9 53.4 A

10 2m b 70.6 71.1 A 11 2m c 81.6 85.8 A 12 3md 125.0 126.2 A 13 2n b 77.5 82.2 A 14 2n c 86.0 87.1 A 15 3nd 73.0 80.1 A 16 2o 19.6 20.1 A 17 2p 10.0 18.1 E 18 2q 16.2 17.7 F 19 2u 55.9 57.6 A 20 2v 55.9 57.6 A 21 2w 55.9 57.6 A

a A: CSPGC (Chiraldex Hydrodex β–3P), Tinj 250 °C, P = 0.596 bar; 130 °C, isotherm; B: CSPHPLC (ChiralcelODH),Hexane: iPrOH,97:3,0.8mL.min 1,23°C; C:CSPHPLC(ChiralpakIA),Hexane: i PrOH,96:04,0.5mL.min 1,23°C; D:CSPHPLC(ChiralpakIB),Hexane:THF,85:15,0.4mL.min 1,23 °C; E:CSPHPLC(ChiralcelODH),Hexane: iPrOH,99:1,0.6mL.min 1,23°C. F:CSPHPLC(Chiralcel ODH), Hexane : iPrOH, 98 : 2, 0.5 mL.min 1, 23 °C. b first eluted branched isomer of 2. c second eluted branchedisomerof 2.c linearregioisomerof 2. Table 7-1:Chiralstationaryphaseseparationofenantiomersoftype 2.

106 Chap. 7: Experimental Part 7.5. GC-separation of products of type 2 and 3.

a Entry Product tR(2)(min) tR(3)(min) Method

1 a 17.7 19.9 A 2 b 17.5 28.4 A 3 c 18.0 22.5 A 4 d 22.9 27.0 A 5 e 20.1 22.1 A 6 f 18.9 28.6 A 7 l 18.9 b 19.2 c 23.5 A

8 m 17.9 b 18.1 c 19.9 A 9 n 19.1 b 19.3 c 21.3 A 10 o 21.2 24.6 A 11 p 21.3 25.8 A 12 q 31.3 35.4 A 13 u 17.8 26.9 A 14 v 17.8 26.9 A 15 w 17.8 26.9 A

a 1 A:GCMS:(HP5MS),T inj 250°C,P=0.48bar;60°C,isotherm5minthentemperaturegradient10°C.min until320°C,isotherm5min.b firstelutedbranchedisomerof 2. c secondelutedbranchedisomerof 2. Table 7-2:GCMSseparationofregioisomersoftype 2and 3.

7.6. Synthesis of metal precatalysts of type 4.

Bothcomplexes 4a and 4b werepreparedaccordingtothemethodofKündig. 18 Synthesis of 4b – purification procedure .

Typical procedure. 3 g of crude [CpRuNapht][PF 6] were dissolved in 60 mL of technical

CH 2Cl 2(darkorangesolution)andfilteredthroughaplugofwellpackedcelite(4x5cm) which was washed with CH 2Cl 2 until washingsbecomecolorless. TheDCM solution was concentratedtoc.a.10mLandsubsequentlydroppedin100mLtechnicaldiethyletherunder vigorousstirringtoyieldalighttancoloredprecipitatewhichwasfilteredofonaBüchner filterandwashedwithpentane(3x20mL).Thelightcreamsolidobtainedisdriedunder highvacuumandstoredinadarkglassvialforweeks(2.95gnearlyquantitative).

18 Kündig,E.P.;Monnier,F.R. Adv. Synth. Catal. 2004 , 346 ,901904.

107 Chap. 7: Experimental Part 5 6 1 [Ru( ηηη -C5H5)( ηηη -C10 H8)][PF 6] or 4b: pale yellow solid; H NMR PF6 (acetoned6,400MHz): δ=7.92–7.89(m,2H),7.73–7.70(m,2H), Ru 7.25–7.24(m,2H),6.48–6.47(m,2H),5.15(s,5H); 13 C{1H} NMR

(acetoned6, 100 MHz): δ = 131.5, 129.3, 97.2, 85.9, 83.9, 79.7 31 1 P{ H} NMR (162MHz,acetoned6):δ=144.1(sept,PF 6); Low Res MS (ESI) : m/z =295; M.p. :155–160°C(dec.).

PF6 5 1 [Ru( ηηη -C5H5)(CH 3CN) 3][PF 6] or 4a: yellow solid; H NMR 13 1 Ru (acetoned6,400MHz): δ=4.25(s,5H),2.44(s,9H); C{ H} NMR NCMe (acetoned ,100MHz):δ=125.9,68.6,2.4. MeCN NCMe 6

7.7. Synthesis of ligands of type L18.

General procedure for the synthesis of ligands of type L18 Oxazoline based ligands L18a to L18j were prepared by condensing the appropriate aminoalcoholontothecorrespondingnitrile;19 compounds L18a,L18b, L18c, L18d, L18e, L18f and L18n have spectral characteristics identical to those described already in the literature. 20

Alternative synthesis of ligands of type L18 .

Typical procedure. Ina50mLroundbottomedflaskequippedwithamagneticstirringbar,a refluxcondenserandarubberseptum,2cyanopyridine(1040mg,10mmol,1equiv.)and sodiummethoxide(54mg,1mmol,10mol%)weredissolvedin25mLmethanol.Theflask was flushed withargon andcapped.Aftera 3hheating at reflux, the solution was cooled downtoR.T.andthesolventwasremovedunderreducedpressurebyrotatoryevaporation andthenunderhighvacuum.Thesolidresiduewasdilutedwith2mLofglacialaceticacid. (1 R,2 S)1amino2,3dihydro1Hinden2ol (1492 mg, 1equiv.) was added portion wise to allowprogressivesolubilizationoftheaminoalcohol.Thereactionwascappedandstirringat

19 Bolm,C.;Weickhardt,K.;Zehnder,M.;Ranff,T. Chem. Ber. 1991 , 124 ,11731180. 20 Brunner,H.;Klankermayer,J.;Zabel,M. Organometallics 2002 , 21 ,57465756.Brunner,H.;Obermann,U. Chem. Ber. 1989 , 122 ,499507.Brunner,H.;Obermann,U.;Wimmer,P. Organometallics 1989 , 8,821826. Davies,D.L.;Fawcett,J.;Garratt,S.A.;Russell,D.R. Organometallics 2001 , 20 ,30293034.Davies,D.L.; Fawcett,J.;Garratt,S.A.;Russell,D.R. Dalton Trans. 2004 ,36293634.Takeuchi,D.;Yasuda,A.;Okada,T.; Kuwabara,J.;Osakada,K.;Tomooka,K. Helv. Chim. Acta 2006 , 89 ,15741588

108 Chap. 7: Experimental Part R.T.wasallowedfor24h.Thereactionmixturewaspouredinto15mLofwatertoafford precipitationwhichwasfilteredoffandwashedwith2x5mLofwater(whitesolid,1890mg, 80%).Incaseofcontaminationwithremainingaminoalcoholcolumnchromatographycan beperformedtoobtainanalyticallypureproduct(SiO 2,EtOAc).

(3a R,8a S)-2-(pyrazin-2-yl)-8,8a-dihydro-3aH-indeno[1,2-d]oxazole or L18g: white solid; 1 H NMR (CDCl 3,400MHz): δ=9.26(bs,1H),8.65(bs,2H), O 7.60(bs,1H),7.27(m,4H),5.86(d, J =7.5Hz,2H),5.62(dt, J N N =7.5Hz, J =6.6Hz,1H),5.62(dd, J =7.5Hz, J =6.6Hz,1H), N 3.58(dd, J =6.6Hz, J =18.1Hz,1H),3.47(d, J =18.1Hz,1H ); 13 1 C{ H} NMR (CDCl 3,100MHz):δ= 161.6(C),146.5(CH),145.6(CH),144.3(CH),142.8 (C),141.3(C),139.8(C),129.0(CH),127.9(CH),126.0(CH),125.6(CH),84.4(CH)77.5

(CH), 39.9 (CH 2); M.p.: 121123 °C; HR-MS (ESI): m/ z calculated for C14 H12 N3O

20 238.0974, found 238.0979;[α]D =+232(CH 2Cl 2,C=0.10). (3a R,8a S)-2-(pyrimidin-2-yl)-8,8a-dihydro-3aH-indeno[1,2- O d]oxazole or L18h: whitesolid;1H NMR (CDCl ,400MHz): δ= N 3 N 8.87(d, J =4.8Hz,2H),7.63(bs,1H),7.38(t, J =4.8Hz,1H), N 7.27(m,4H),5.89(d, J =7.8Hz,2H),5.66(m,1H),3.58(m, 13 1 2H); C{ H} NMR (CDCl 3, 100 MHz): δ = 162.1 (C), 157.8 (CH), 156.2 (C), 141.2 (C), 139.9(C),129.0(CH),127.8(CH),126.2(CH),125.5(CH), 122.3(CH), 84.9 (CH)77.5

(CH), 39.9 (CH 2); M.p.: 163164 °C; HR-MS (ESI): m/ z calculated for C14 H12 N3O

20 238.0974, found 238.0970;[α]D =+244(CH 2Cl 2,C=0.10). (3a R,8a S)-2-(4-methylpyridin-2-yl)-8,8a-dihydro-3aH- O 1 indeno[1,2-d]oxazole or L18i: whitesolid; H NMR (CDCl 3, N 400MHz): δ=8.54(d, J =5.0Hz,1H),7.91(bs,1H),7.60 N (bs,1H),7.27(m,4H),7.18(d, J =4.5Hz,1H),5.80(d, J = 13 1 7.8Hz,1H),5.60(m,1H),3.50(m, 2H),2.38(s,3H ); C{ H} NMR (CDCl 3,100MHz):δ= 163.7(C),149.7(CH),148.2(C),146.8(C),141.7(C),140.0(C),128.8(CH),127.7(CH),

126.7(CH),125.9(CH),125.6(CH),125.2(CH),84.2 (CH) 77.2 (CH), 39.9 (CH 2), 21.2

(CH 3); M.p.: 109110 °C; HR-MS (ESI): m/ z calculated for C 16 H15 N3O 251.1158, found

α 20 251.1170;[ ]D =+187(CH 2Cl 2,C=0.10).

109 Chap. 7: Experimental Part (3a R,8a S)-2-(5-methylpyridin-2-yl)-8,8a-dihydro-3aH- O 1 indeno[1,2-d]oxazole or L18j: whitesolid; H NMR (CDCl 3, N 400MHz): δ=8.51(bs,1H),7.96(d, J =7.8Hz,1H),7.60 N (bs,1H),7.52(d, J =7.8Hz,1H),7.28(m,4H),5.80(d, J = 13 1 7.7Hz,2H),5.60(m,1H),3.50(m,2H),2.37(s,3H ); C{ H} NMR (CDCl 3,100MHz):δ= 163.6(C),150.38(CH),144.3(C),141.7(C),140.0(C),137.2(CH),136.1(C),128.8(CH),

127.7(CH),126.0(CH),125.6(CH),124.0(C),84.2(CH)77.1(CH),39.9(CH 2),18.8(CH 3);

M.p.: 124125 °C;HR-MS (ESI):m/ zcalculatedforC16 H15 N3O 251.1178, found 251.1170;

α 20 [ ]D =+226(CH 2Cl 2,C=0.10).

7.8. Synthesis of products of type 15.

CpRu-catalyzed allylic alkylation – Co-catalytic procedure . Typicalprocedure.Ina2mLscrewcapvialequippedwithamagneticstirringbar,[CpRu( η6 naphthalene)][PF 6](5.3mg,0.012mmol,2mol%)and L18f(3.6mg,0.014mmol,2.4mol%) weredissolvedin0.6mLdryTHF.Thevialwasflushedwithargonandcapped.Aftera1h heatingat60°C,thesolutionwascooleddowntoR.T.andcinnamylcarbonate1a (115mg, 0.6mmol)wasaddedinoneportionfollowedbylithiummethoxide(0.25mg,0.006mmol,1 mol%)andethylacetoacetate(84 L,0.66mmol,1.1equiv.)andstirringwascontinuedfor 24hat60°C.Thecooledreactionmixturewasdilutedwith1.5mLofamixtureofetherand pentane(60:40).Afterprecipitation,themetalsaltswerefilteredonashortSiO 2column(0.5 cmx4cm,elutionether:pentane60:40);thesolventsbeingthenevaporatedunderreduced pressuretoaffordthecrudereactionmixtureasapaleyellowoil.

Compounds 15a,21 15b,22 15c, 15d,23 15e,22 15f,23 15g , 15h ,24 15i ,25 15j ,26 15k,27 15l ,15m, 15n and 15owereobtainedasmixturesofisomersthatcouldnotbeseparatedbycolumn chromatography.Assuchthe 1HNMRspectrasignalscouldnotbeassignedaccuratelyand areconsequentlynotreported.Themassspectrumobtainedineachcaseallowedhoweverthe

21 Polet,D.;Alexakis,A.;TissotCroset,K.;Corminboeuf,C.;Ditrich,K. Chem. Eur. J. 2006 ,12 ,35963609. 22 Zhang,S.W.;Mitsudo,T.;Kondo,T.;Watanabe,Y. J. Organomet. Chem. 1993 , 450 ,197207. 23 Renaud,J.L.;Bruneau,C.;Demerseman,B. Synlett 2003 ,408410. 24 Luo,B.H.;Guan,H.P.;Hu,C.M. J. Org. Chem. 1997 , 62,41744175. 25 Antonioletti,R.;Bovicelli,P.;Malancona,S. Tetrahedron 2002 , 58 ,589596. 26 Faller,J.W.;Lambert,C.;Mazzieri,M.R. J. Organomet. Chem. 1990 , 383 ,161177. 27 He,H.;Zheng,X.J.;Yi,U.;Dai,L.X.;You,S.L. Org. Lett. 2007 , 9,43394341.

110 Chap. 7: Experimental Part unequivocalstructureattribution(throughfragmentationpatternanalysis)andisomericratio measurements.

7.9. GC-separation of regioisomers of 15.

a Entry Product tR(15 )(min) tR(16 )(min) tR(17)(min) Method 1 a 17.5b 17.7c 19.9 nd. A 2 b 18.2b 18.4c 20.5 nd. A 3 c 18.5b 18.7c 20.8 nd. A 4 d 18.7b 19.1c 21.1 nd. A 5 e 21.8 b 21.9 c 23.7 nd. A 6 f 20.8 d 22.8 nd. A 7 g 19.1b 19.1c 20.8 nd. A 8 h 15.6b 15.8c 18.0 nd. A 9 i 23.6b 23.8c 25.7 nd. A 10 j 18.1 20.2 26.4 A 11 k 19.4 21.5 27.1 A 12 l 20.5 22.6 nd. A

13 m 18.4 d 20.4 24.7 e26.5 f 26.6 g A 14 n 18.7 b 18.9c 20.9 nd. A 15 o 20.6b 21.0c 23.3 nd. A

a 1 A:GCMS:(HP5MS),T inj 250°C,P=0.48bar;60°C,isotherm5minthentemperaturegradient10°C.min until320 °C, isotherm 5 min. b first eluted branched isomer of 15 . c second eluted branched isomer of 15 . d absence ofpeakseparation for branched isomers of15 . e firstelutedbranchedisomerof 17 . f second eluted branchedisomerof 15. g thirdelutedbranchedisomerof 15 . Table 7-2:GCMSseparationofregioisomersoftype 15 , 16 and 17. 7.10. Synthesis of carbamates of type 23.

Compounds 23a ,28 23b ,29 23c and 23d were synthesized according to literature procedures startingfromcommerciallyavailablecinnamylalcoholandcarbamoylchlorides.

7.11. Synthesis and reactivity of substrate 25.

Substrate 24 wassynthesizedaccordingtoaliteratureprocedurefromcommerciallyavailable cinnamyl alcohol and trichloroacetonitrile. 30 Substrate 25 was reacted in the presence of a rutheniumcatalyst under “standard Carroll rearrangement conditions” (see § 7.3).ratios of theisomericproducts 25 31 weredeterminedbyintegrationofnonoverlappingsignalsofthe

28 Overman,L.E.;Campbell,C.B.;Knoll,F.M. J. Am. Chem. Soc. 1978 , 100 ,48224834. 29 MellegaardWaetzig,S.R.;Rayabarapu,D.K.;Tunge,J.A. Synlett 2005 ,27592762. 30 Bachi,M.D.;Korshin,E.E.;Hoos,R.;Szpilman,A.M.;Ploypradith,P.;Xie,S.J.;Shapiro,T.A.;Posner,G. H. J. Med. Chem. 2003 , 46 ,25162533. 31 Watson,M.P.;Overman,L.E.;Bergman,R.G. J. Am. Chem. Soc. 2007 , 129 ,50315044.

111 Chap. 7: Experimental Part 1HNMRspectrum.Ananalyticallypuresampleofbranched 24awasobtainedbypreparative 32 TLCpurification(SiO 2,CH 2Cl 2)forCSPHPLCseparation.

7.12. Synthesis and reactivity of carbonates 27.

Synthesis of cinnamyl aryl carbonates of type 27.33

Typical procedure: phenyl chloroformate (1.5 mL, 12 mmol) was added dropwise to a solutionofcinnamylalcohol(1340mg,10mmol)dissolvedindichloromethane(10mL)and pyridine(2mL)at0°C.Thereactionmixturewasallowedtowarmatroomtemperatureand it was stirred until all the allylic alcohol was consumed (TLC monitoring). Typically, the reactions took more than 12 hours. The crude reaction mixture was then treated with an saturatedaqueousammonium chloride solution (10 mL). The organic layer was separated, andtheaqueouslayerextractedwithdiethylether(2x10mL).Thecombinedorganiclayers were washed with water, separated, and dried over sodium sulfate. Concentration under reducedpressurefollowedbypurificationbyflashcolumnchromatography(SiO 2)gavethe desiredproduct 26a .

1 cinnamyl phenyl carbonate or 27a: colorlessoil, H NMR (400MHz,CDCl 3):δ=7.44

O 7.16(m,10H),6.75(d, J =16Hz,1H),6.35(td, J =16Hz, J =6.5Hz, 1H),4.89(bd, J =6.5Hz,2H);13 C{1H} NMR (100 MHz) δ=153.5(C), O O 151.1(C),135.8(C),135.3(CH),129.5(CH),129.4 (CH), 128.6 (CH),

128.2(CH),126.7(CH),125.4(CH),121.8(CH),120.9(CH),69(CH 2).

1 4-chlorocinnamyl phenyl carbonate or 27b: colorlessoil, H NMR (400MHz,CDCl 3):δ=

7.57.35(m,7H),7.257.2(m,2H),6.75(d, J=15Hz,1H),6.4(td, J O 13 1 =15Hz, J =7Hz,1H),4.9(d, J =7Hz,2H); C{ H} NMR (100 O O MHz,CDCl 3) δ=154.7(C),152.2(C),135.3(C),135.1(C),130.5 (CH),129.8(CH),128.9(CH),127.3(CH),127.1(CH), 123.5(CH),

Cl 122.0 (CH), 69.5 (CH 2); HR-MS (ESI) m/z calculated for

C16 H13 O3ClNa311.0451,found311.0450.

32 65%eemeasuredbyCSPHPLC(ChiralcelODH),Hexane: iPrOH,99.5:0.5,0.8mL/min,23°C. 33 InspiredbyMatsuhashi,H.;Asai,S.;Hirabayashi,K.;Hatanaka,Y.;Mori,A.;Hiyama,T. Bull. Chem. Soc. Jpn. 1997 , 70 ,19431952

112 Chap. 7: Experimental Part 1 3-(4-nitrophenyl)allyl phenyl carbonate or 27c: colorlessoil. H NMR (400MHz,CDCl 3): δ=8.308.20(m,2H),7.657.60(m,2H),7.57.40(m,3H),7.25 O 3 7.20(m,2H),6.85(d, J=17Hz,1H),6.55(td, J=17Hz, J(HH) =7 O O 13 1 Hz, 1H), 5.0 (dd, J = 7 Hz, J =1Hz,2H); C{ H} NMR (100

MHz,CDCl 3) δ=154.0(C),152.1(C),148.5(C),143.4(C),133.4

O2N (CH),130.6(CH),128.3(CH),127.8(CH),127.3(CH),125.0(CH),

121.9(CH), 68.8 (CH 2); HR-MS (ESI) m/z calculated for C 16 H13 O5NNa 322.0691, found 322.0679.

1 cinnamyl p-tolyl carbonate or 27d: colorlessoil. H NMR (400MHz,CDCl 3):δ=7.55 7.48(m,2H),7.457.35(m,3H),7.257.20(m,2H),7.157.05(m, H3C O 2H),6.80(d, J =16Hz,1H),6.40(td, J =16Hz, J =6Hz,1H), 13 1 O O 4.95 (dd, J = 16 Hz, J = 1 Hz, 2H); C{ H} NMR (100 MHz,

CDCl 3):δ=154.9(C),150.1(C),136.8(C),136.5(C),131.0(CH), 129.7(CH),129.4(CH),127.8(CH),122.9(CH),121.7(CH),69.7

(CH 2),21.2(CH 3); HR-MS (ESI)m/zcalculatedforC 17 H16 O3Na291.0999found291.0997.

CpRu catalyzed catalytic etherification of the allyl carbonates 27.34

General procedure: ina2mLvialunderdinitrogenatmosphere,[RuCp(MeCN) 3][PF 6] 1a (6.3mg,14.4 mol,10mol%)andpymoxligand L18f (3.4mg,10mol%)weredissolvedin 300 LofanhydrousTHF.Theresultingdeepredsolutionwasstirredfor5minutesatroom temperature before the addition of theallyl aryl carbonates 27 (0.144 mmol). The reaction wasstirredunderN 2at25°CuntilnotraceofthestartingmaterialcouldbeseenonTLC

(SiO 2,Et 2O:Pentane,8:2).Thereactionmixturewasdilutedwith1.5mLofa8:2mixture ofetherandpentane.TheprecipitatedmetalsaltswerefilteredonashortSiO 2column(0.5 cm x 4 cm, elution ether : pentane, 8 : 2): The solvents were evaporated under reduced pressuretoaffordthecrudereactionmixtureasapaleyellowoilwhichwasanalyzedby 1H NMRandCSPHPLC.

Compounds 28a,35 28b,35 28c36 and 28d35 were identical to those described already in the literature.

34 Austeri,M.;Linder,D.;Lacour,J. Chem. Eur. J. 2008 , 14 ,57375741. 35 Onitsuka,K.;Okuda,H.;Sasai,H. Angew. Chem. Int. Ed. 2008 , 47 ,14541457.

113 Chap. 7: Experimental Part 1 (1-phenoxyallyl)benzene or 28a: paleyellowoil, H NMR (400MHz,CDCl 3): δ=7.41(d, J =7.2Hz,2H),7.35(t, J =7.5Hz,2H),7.307.20(m,3H),6.956.89(m, 3H),6.10(ddd, J =17.2, J =10.4, J =6Hz,1H),5.63(d, J =6Hz,1H), O 5.34(d, J =17.2Hz,1H),5.25(d, J =10.4Hz,1H);13 C{1H} NMR (100

MHz, CDCl 3) δ = 157.9 (C), 140.1 (C), 138.0 (CH), 129.3 (CH), 128.6

(CH),127.8(CH),126.6(CH),121.0(CH),116.5(CH2),116.2(CH),80.8 (CH).

1 1-chloro-4-(1-phenoxyallyl)benzene or 28b: paleyellowoil, H NMR (400MHz,CDCl 3): 7.367.30(m,4H),7.267.20(m,2H),6.976.89(m,3H),6.04(ddd, J =17.2Hz, J =10.4Hz, J =5.9Hz,1H),5.61(d, J =5.9Hz,1H),5.34 O (dt, J =17.2Hz, J =1.3Hz,1H),5.27(dt, J =10.4Hz, J =1.3Hz, 13 1 1H); C{ H} NMR (100 MHz, CDCl 3) δ = 157.7 (C), 138.7 (C),

Cl 137.6 (C), 133.6, 129.4 (CH), 128.8 (CH), 128.0 (CH), 121.2 (CH)

116.9(CH 2),116.2(CH),80.1(CH).

1 1-nitro-4-(1-phenoxyallyl)benzene or 28c: paleyellowoil. H NMR (400MHz,CDCl 3): δ= 8.258.20(m,2H),7.627.58(m,2H),7.297.22(m,2H),6.986.89 (m,3H),6.06(ddd, J =17.1Hz, J =10.3Hz, J =5.9Hz,1H),5.73 O (d, J =5.9Hz,1H),5.38(ddm, J =10.3, J =17.1Hz,2H); 13 C{1H}

NMR (100MHz,CDCl 3) δ=157.1(C),147.3(C),136.6(C),129.4

O2N (CH), 127.2 (CH), 123.8 (CH), 121.5 (CH), 117.9 (CH2), 116.0 (CH),79.9(CH).

1-methyl-4-(1-phenylallyloxy)benzene or 28d: pale yellow oil. 1H NMR (400 MHz,

CDCl 3): δ7.357.32(m,2H),7.307.25(m,2H),7.227.18(m,2H), H3C 7.95(d, J =8.8Hz,2H),6.76(d, J =8.8Hz,2H),6.03(ddd, J =17.2 O Hz, J =10.4Hz, J =6.0Hz,1H),5.53(d, J =6.0Hz,1H),5.28(dt,J =17.2Hz, J =1.3Hz,1H),5.19(dt, J =10.4Hz, J =1.3Hz,1H), 13 1 2.22 (s, 3H); C{ H} NMR (100 MHz, CDCl 3): δ = 155.8 (C), 140.3(C),138.1(C),130.2(CH),129.8(CH),128.6(CH),127.8(CH),126.6(CH),116.4

(CH 2),116.1(CH),81.0(CH),20.5(CH3).

36 Fischer,C.;Defieber,C.;Suzuki,T.;Carreira,E.M. J. Am. Chem. Soc. 2004 , 126 ,16281629.

114