GEN III Microplatetm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exploring Small-Scale Chemostats to Scale up Microbial Processes: 3-Hydroxypropionic Acid Production in S
Lawrence Berkeley National Laboratory Recent Work Title Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae. Permalink https://escholarship.org/uc/item/43h8866j Journal Microbial cell factories, 18(1) ISSN 1475-2859 Authors Lis, Alicia V Schneider, Konstantin Weber, Jost et al. Publication Date 2019-03-11 DOI 10.1186/s12934-019-1101-5 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Lis et al. Microb Cell Fact (2019) 18:50 https://doi.org/10.1186/s12934-019-1101-5 Microbial Cell Factories RESEARCH Open Access Exploring small-scale chemostats to scale up microbial processes: 3-hydroxypropionic acid production in S. cerevisiae Alicia V. Lis1, Konstantin Schneider1,2, Jost Weber1,3, Jay D. Keasling1,4,5,6,7, Michael Krogh Jensen1 and Tobias Klein1,2* Abstract Background: The physiological characterization of microorganisms provides valuable information for bioprocess development. Chemostat cultivations are a powerful tool for this purpose, as they allow defned changes to one single parameter at a time, which is most commonly the growth rate. The subsequent establishment of a steady state then permits constant variables enabling the acquisition of reproducible data sets for comparing microbial perfor- mance under diferent conditions. We performed physiological characterizations of a 3-hydroxypropionic acid (3-HP) producing Saccharomyces cerevisiae strain in a miniaturized and parallelized chemostat cultivation system. The physi- ological conditions under investigation were various growth rates controlled by diferent nutrient limitations (C, N, P). Based on the cultivation parameters obtained subsequent fed-batch cultivations were designed. Results: We report technical advancements of a small-scale chemostat cultivation system and its applicability for reliable strain screening under diferent physiological conditions, i.e. -
Oristm Cell Migration Assay – Tricoated
TM Oris Cell Migration Assay – TriCoated Product No.: CMATR1 & CMATR5 96-well, 2-D Assay for Investigating Cell Migration of Adherent Cell Lines on Three Coated Surfaces PROTOCOL & INSTRUCTIONS Table of Contents I. INTRODUCTION .................................................................................................. 2 II. ORISTM PLATE DIMENSIONS .............................................................................. 3 III. MATERIALS PROVIDED ...................................................................................... 3 IV. MATERIALS REQUIRED ...................................................................................... 3 V. CELL MIGRATION ASSAY – TRICOATED PROTOCOL .................................... 4 VI. DATA ACQUISITION ............................................................................................ 6 VII. ORDERING INFORMATION ................................................................................ 7 VIII. TERMS & CONDITIONS ...................................................................................... 7 Appendix I: Determining Optimal Cell Seeding Concentration ............................. 8 Appendix II: Determining Optimal Fluorescence Microplate Reader Settings ...... 8 Platypus Technologies, LLC 5520 Nobel Drive, Suite 100, Madison, WI 53711 Toll Free: 866.3296.4455 Phone: 608.237.1270 Fax: 608.237.1271 www.platypustech.com SP0034.06 Oris™ CELL MIGRATION ASSAY – TRICOATED I. INTRODUCTION The Oris™ Cell Migration Assay – TriCoated is a reproducible, sensitive, and flexible -
Detection of Acid-Producing Bacteria Nachweis Von Säureproduzierenden Bakterien Détection De Bactéries Produisant Des Acides
(19) TZZ ¥ _T (11) EP 2 443 249 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12Q 1/04 (2006.01) G01N 33/84 (2006.01) 19.11.2014 Bulletin 2014/47 (86) International application number: (21) Application number: 10790013.6 PCT/US2010/038569 (22) Date of filing: 15.06.2010 (87) International publication number: WO 2010/147918 (23.12.2010 Gazette 2010/51) (54) DETECTION OF ACID-PRODUCING BACTERIA NACHWEIS VON SÄUREPRODUZIERENDEN BAKTERIEN DÉTECTION DE BACTÉRIES PRODUISANT DES ACIDES (84) Designated Contracting States: (74) Representative: Isarpatent AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Patent- und Rechtsanwälte GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Friedrichstrasse 31 PL PT RO SE SI SK SM TR 80801 München (DE) (30) Priority: 15.06.2009 US 187107 P (56) References cited: 15.03.2010 US 314140 P US-A- 4 528 269 US-A- 5 098 832 US-A- 5 164 301 US-A- 5 601 998 (43) Date of publication of application: US-A- 5 601 998 US-A- 5 786 167 25.04.2012 Bulletin 2012/17 US-B2- 6 756 225 US-B2- 7 150 977 (73) Proprietor: 3M Innovative Properties Company • DARUKARADHYA J ET AL: "Selective Saint Paul, MN 55133-3427 (US) enumeration of Lactobacillus acidophilus, Bifidobacterium spp., starter lactic acid bacteria (72) Inventors: and non-starter lactic acid bacteria from Cheddar • YOUNG, Robert, F. cheese", INTERNATIONAL DAIRY JOURNAL, Saint Paul, Minnesota 55133-3427 (US) ELSEVIER APPLIED SCIENCE, BARKING, GB, • MACH, Patrick, A. -
Chemostat Culture for Yeast Experimental Evolution
Downloaded from http://cshprotocols.cshlp.org/ at Cold Spring Harbor Laboratory Library on August 9, 2017 - Published by Cold Spring Harbor Laboratory Press Protocol Chemostat Culture for Yeast Experimental Evolution Celia Payen and Maitreya J. Dunham1 Department of Genome Sciences, University of Washington, Seattle, Washington 98195 Experimental evolution is one approach used to address a broad range of questions related to evolution and adaptation to strong selection pressures. Experimental evolution of diverse microbial and viral systems has routinely been used to study new traits and behaviors and also to dissect mechanisms of rapid evolution. This protocol describes the practical aspects of experimental evolution with yeast grown in chemostats, including the setup of the experiment and sampling methods as well as best laboratory and record-keeping practices. MATERIALS It is essential that you consult the appropriate Material Safety Data Sheets and your institution’s Environmental Health and Safety Office for proper handling of equipment and hazardous material used in this protocol. Reagents Defined minimal medium appropriate for the experiment For examples, see Protocol: Assembly of a Mini-Chemostat Array (Miller et al. 2015). Ethanol (95%) Glycerol (20% and 50%; sterile) Yeast strain of interest Equipment Agar plates (appropriate for chosen strain) Chemostat array Assemble the apparatus as described in Miller et al. (2013) and Protocol: Assembly of a Mini-Chemostat Array (Miller et al. 2015). Cryo deep-freeze labels Cryogenic vials Culture tubes Cytometer (BD Accuri C6) Glass beads, 4 mm (sterile; for plating yeast cells) Glass cylinder Kimwipes 1Correspondence: [email protected] © 2017 Cold Spring Harbor Laboratory Press Cite this protocol as Cold Spring Harb Protoc; doi:10.1101/pdb.prot089011 559 Downloaded from http://cshprotocols.cshlp.org/ at Cold Spring Harbor Laboratory Library on August 9, 2017 - Published by Cold Spring Harbor Laboratory Press C. -
Microbiology Laboratory Exercises Third Edition 2020
MICROBIOLOGY Laboratory Exercises Third Edition Keddis & Rauschenbach 2020 Photo Credits (in order of contribution): Diane Davis, Ines Rauschenbach & Ramaydalis Keddis Acknowledgements: Many thanks to those in the Department of Biochemistry and Microbiology, Rutgers University, who have through the years inspired our enthusiasm for the science and teaching of microbiology, with special thanks to Diane Davis, Douglas Eveleigh and Max Häggblom. Safety: The experiments included in this manual have been deemed safe by the authors when all necessary safety precautions are met. The authors recommend maintaining biosafety level 2 in the laboratory setting and using risk level 1 organisms for all exercises. License: This work is licensed under a Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License Microbiology Laboratory Exercises Third Edition 2020 Ramaydalis Keddis, Ph.D. Ines Rauschenbach, Ph.D. Department of Biochemistry and Microbiology Rutgers, The State University of New Jersey CONTENTS PAGE Introduction Schedule ii Best Laboratory Practices Iii Working in a Microbiology Laboratory iv Exercises Preparation of a Culture Medium 1 Culturing and Handling Microorganisms 3 Isolation of a Pure Culture 5 Counting Bacterial Populations 8 Controlling Microorganisms 10 Disinfectants 10 Antimicrobial Agents: Susceptibility Testing 12 Hand Washing 14 The Lethal Effects of Ultraviolet Light 15 Selection of Fungi from Air 17 Microscopy 21 Morphology and Staining of Bacteria 26 Microbial Metabolism 30 Enzyme Assay 32 Metabolic -
BACTERIAL and PHAGE INTERACTIONS INFLUENCING Vibrio Parahaemolyticus ECOLOGY
University of New Hampshire University of New Hampshire Scholars' Repository Master's Theses and Capstones Student Scholarship Spring 2016 BACTERIAL AND PHAGE INTERACTIONS INFLUENCING Vibrio parahaemolyticus ECOLOGY Ashley L. Marcinkiewicz University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/thesis Recommended Citation Marcinkiewicz, Ashley L., "BACTERIAL AND PHAGE INTERACTIONS INFLUENCING Vibrio parahaemolyticus ECOLOGY" (2016). Master's Theses and Capstones. 852. https://scholars.unh.edu/thesis/852 This Thesis is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Master's Theses and Capstones by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. BACTERIAL AND PHAGE INTERACTIONS INFLUENCING Vibrio parahaemolyticus ECOLOGY BY ASHLEY MARCINKIEWICZ Bachelor of Arts, Wells College, 2011 THESIS Submitted to the University of New Hampshire In Partial Fulfillment of The Requirements for the Degree of Master of Science in Microbiology May, 2016 This thesis has been examined and approved in partial fulfillment of the requirements for the degree of Masters of Science in Microbiology by: Thesis Director, Cheryl A. Whistler Associate Professor of Molecular, Cellular, and Biomedical Sciences Stephen H. Jones Research Associate Professor of Natural Resources and the Environment Jeffrey T. Foster Assistant Professor of Molecular, Cellular, and Biomedical Sciences On April 15th, 2016 Original approved signatures are on file with the University of New Hampshire Graduate School. iii TABLE OF CONTENTS ACKNOWLEDGEMENTS………………………………………………………... vi LIST OF TABLES………………………………………………………………… vii LIST OF FIGURES…….………………………………………………………….. viii ABSTRACT………………………………………………………………………. -
Download Author Version (PDF)
Environmental Science: Nano CdS Nanoparticles in Soil Induce Metabolic Reprogramming in Broad Bean (Vicia faba L.) Roots and Leaves Journal: Environmental Science: Nano Manuscript ID EN-ART-08-2019-000933.R1 Article Type: Paper Page 1 of 36 Environmental Science: Nano 1 2 3 4 The rapid development of nanotechnology has raised concern regarding the 5 6 7 environmental toxicity of nanoparticles (NPs). However, little is known about the 8 9 molecular mechanisms underlying NP toxicity in plants. Understanding toxic 10 11 12 mechanisms in organisms at molecular level, especially in crop plants, is important for 13 14 their sustainable use and development. In this study, although none of the phenotypic 15 16 17 parameters of broad bean plants (photosynthetic pigments contents, biomass, and lipid 18 19 20 peroxidation) were overtly impacted in response to CdS-NPs in soil during 28 d of 21 22 exposure, metabolomics revealed marked and statistically significant alterations in the 23 24 25 metabolite profiles of plant roots and leaves. The reprogramming of antioxidant 26 27 metabolite production presumably reflected the molecular defense response of the 28 29 30 plants to CdS-NPs stress. The sensitive responses of flavone, putrescine and 31 32 33 noradrenaline in the leaves suggests the use of these compounds in legumes as 34 35 biomarkers of oxidative stress induced by the presence of CdS-NPs in soil. 36 37 38 Metabolomics might thus be a suitable approach for the early detection of soil 39 40 contamination by Cd. In the plants, the reprogramming of carbon and nitrogen 41 42 43 metabolism (including sugars, organic acids, amino acids, and N-containing 44 45 46 compounds) alleviated the toxicity of CdS-NPs, which may have been caused by free 47 48 Cd2+ ions or perhaps by a particle-specific response. -
Increasing the Reproducibility of Serial Dilutions
Increasing the Reproducibility of Serial Dilutions Michael Beier* Abstract Pipetting serial dilutions reproducibly can be difficult because it is a time consuming and consequently error prone methodology, especially in 384 well plates. Based upon the assumption that your pipettes are properly maintained and calibrated, the human influence has the largest impact on pipetting results. Observing good pipetting practice helps immensely to improve reproducibility and accuracy. In this article we focus on a selection of good pipetting techniques, which if maintained offer the best chance of increasing and maintaining the reproducibility of your serial dilutions. Mixing is a key component of dilution protocols and in this article we additionally discuss different mixing parameters to help you achieve a homogenous sample. To maximize consistency of dilution assays, automating the process offers many benefits. For ensuring highly reproducible serial dilutions we outline what features an automated pipetting system should have and introduce the VIAFLO ASSIST – a product purpose designed for this task. Introduction to good pipetting practice Good pipetting practice describes guidelines covering the basic techniques to ensure that the pipettes are used in an optimal and reproducible manner. Before preparing your assay, you should perform a pre-wet of your pipette tips. Do this by aspirating and dispensing the full volume 2-3 times. This procedure not only equilibrates temperature differences between liquid and tip but also humidifies the dead air space inside the pipette and tip. Neglecting to perform a pre-wet can result in a smaller delivery volume in the first few dispenses, thereby introducing errors into your subsequent dilution steps. -
Maintenance of Bacterial Strains
Maintenance of Bacterial Strains Short-term growth and maintenance The simplest method for obtaining strains is to order them from a microbiological supply company. Presque Isle, Ward, and Carolina Biological (see “Resources” page of the Microbes Web site: www.umsl.edu/~microbes) are economical sources of strains that are commonly used in the classroom. Another possible source is a local college or university that teaches a microbiology lab course. If they have strains already prepared for their class, they will probably be willing to provide you with a culture. This is probably not a reasonable ongoing source of strains, but can be useful in an emergency. For short-term maintenance and use, it is best to streak bacteria on some type of rich agar petri plate, such as nutrient agar. Label and date the plate on the bottom of the plate. Streak from the source culture using good sterile technique. The quadrant streak method (see the article on quadrant streaking) is good for obtaining well-isolated colonies. Incubate the plate only until good colonies have formed. Do not leave the culture in the incubator beyond that time, or the cells will die on the plate. Store the plate in the refrigerator. It will keep for about a month. For class use, it is best to streak a fresh plate 2-3 days before the strain will be needed for class. Use the fresh plate as the source of cultures for the class. For broth cultures for a class, it is best to grow a larger volume culture in a flask (if possible, with shaking) overnight and then dispense aliquots of the master culture into sterile test tubes using a sterile pipette. -
Evos Cell Imaging Analysis Systems
Imaging, labeling, and detection solutions Microscopy | High-content analysis | Cell counting | Plate reading Minimizing the complexities of cellular analysis Our cellular analysis product portfolio combines the strengths of Invitrogen™ fluorescent reagents and a complete line of versatile analysis instrumentation. Select from a line of heavily peer-referenced platforms to make the discoveries that catalyze advances toward your research goals of tomorrow. Invitrogen™ EVOS™ imaging systems Our comprehensive imaging portfolio includes: • Cell imaging systems • Automated cell counting systems • High-content analysis systems Invitrogen™ Countess™ cell counters • Cell imaging reagents • Microplate readers All of our analysis systems are designed to work together— Thermo Scientific™ CellInsight™ from the initial cell culture check to more complex analyses. high-content analysis systems Discover more about your samples with automated cell counting, long-term live-cell imaging, automated multiwell plate scanning, and phenotypic screening. Thermo Scientific™ Varioskan™ LUX multimode plate reader Contents Microscopy Compact and portable imaging systems 4 EVOS imaging systems at a glance 5 EVOS M7000 Imaging System 6 Live-cell imaging with the Onstage Incubator 8 Image analysis with Celleste software 10 EVOS M5000 Imaging System 12 EVOS FLoid Imaging Station 14 EVOS XL Core Imaging System 15 EVOS vessel holders and stage plates 16 The power of LED illumination 17 EVOS objectives 18 Fluorophore selection guide 20 High-content analysis CellInsight high-content analysis platforms 22 CellInsight CX7 LZR High-Content Analysis Platform 24 CellInsight CX5 High-Content Screening Platform 25 HCS Studio Cell Analysis Software 26 Store Image and Database Management Software 27 Cell counting Countess II Automated Cell Counters 28 Plate reading Microplate readers 30 Microscopy Compact and portable imaging systems Now you can have an easy-to-use cell imaging platform From intimate hands-on demonstrations to presentations of where you want it and when you want it. -
Electronic Supplementary Information
Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2019 Electronic Supplementary Information Poly(ionic liquid)s as a Distinct Receptor Material to Create Highly- Integrated Sensing Platform for Efficiently Identifying a Myriad of Saccharides Wanlin Zhang, Yao Li, Yun Liang, Ning Gao, Chengcheng Liu, Shiqiang Wang, Xianpeng Yin, and Guangtao Li* *Corresponding authors: Guangtao Li ([email protected]) S1 Contents 1. Experimental Section (Page S4-S6) Materials and Characterization (Page S4) Experimental Details (Page S4-S6) 2. Figures and Tables (Page S7-S40) Fig. S1 SEM image of silica colloidal crystal spheres and PIL inverse opal spheres. (Page S7) Fig. S2 Adsorption isotherm of PIL inverse opal. (Page S7) Fig. S3 Dynamic mechanical analysis and thermal gravimetric analysis of PIL materials. (Page S7) Fig. S4 Chemical structures of 23 saccharides. (Page S8) Fig. S5 The counteranion exchange of PIL photonic spheres from Br- to DCA. (Page S9) Fig. S6 Reflection and emission spectra of spheres for saccharides. (Page S9) Table S1 The jack-knifed classification on single-sphere array for 23 saccharides. (Page S10) Fig. S7 Lower detection concentration at 10 mM of the single-sphere array. (Page S11) Fig. S8 Lower detection concentration at 1 mM of the single-sphere array. (Page S12) Fig. S9 PIL sphere exhibiting great pH robustness within the biological pH range. (Page S12) Fig. S10 Exploring the tolerance of PIL spheres to different conditions. (Page S13) Fig. S11 Exploring the reusability of PIL spheres. (Page S14) Fig. S12 Responses of spheres to sugar alcohols. (Page S15) Fig. -
Sporulation Evolution and Specialization in Bacillus
bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Research article From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile Paula Ramos-Silva1*, Mónica Serrano2, Adriano O. Henriques2 1Instituto Gulbenkian de Ciência, Oeiras, Portugal 2Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal *Corresponding author: Present address: Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands Phone: 0031 717519283 Email: [email protected] (Paula Ramos-Silva) Running title: Sporulation from root to tips Keywords: sporulation, bacterial genome evolution, horizontal gene transfer, taxon- specific genes, Bacillus subtilis, Clostridioides difficile 1 bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of a highly resistant, dormant spore. Spores allow environmental persistence, dissemination and for pathogens, are infection vehicles. In both the model Bacillus subtilis, an aerobic species, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes.