A Possible Glimpse at the Role of Naturally-Occurring Radiation As a Contributing Factor to Genetic Variance Among Populations of Living Organisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Small Molecules in the Venom of the Scorpion Hormurus Waigiensis
biomedicines Article Small Molecules in the Venom of the Scorpion Hormurus waigiensis Edward R. J. Evans 1, Lachlan McIntyre 2, Tobin D. Northfield 3, Norelle L. Daly 1 and David T. Wilson 1,* 1 Centre for Molecular Therapeutics, AITHM, James Cook University, Cairns, QLD 4878, Australia; [email protected] (E.R.J.E.); [email protected] (N.L.D.) 2 Independent Researcher, P.O. Box 78, Bamaga, QLD 4876, Australia; [email protected] 3 Department of Entomology, Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA; [email protected] * Correspondence: [email protected]; Tel.: +61-7-4232-1707 Received: 30 June 2020; Accepted: 28 July 2020; Published: 31 July 2020 Abstract: Despite scorpion stings posing a significant public health issue in particular regions of the world, certain aspects of scorpion venom chemistry remain poorly described. Although there has been extensive research into the identity and activity of scorpion venom peptides, non-peptide small molecules present in the venom have received comparatively little attention. Small molecules can have important functions within venoms; for example, in some spider species the main toxic components of the venom are acylpolyamines. Other molecules can have auxiliary effects that facilitate envenomation, such as purines with hypotensive properties utilised by snakes. In this study, we investigated some non-peptide small molecule constituents of Hormurus waigiensis venom using LC/MS, reversed-phase HPLC, and NMR spectroscopy. We identified adenosine, adenosine monophosphate (AMP), and citric acid within the venom, with low quantities of the amino acids glutamic acid and aspartic acid also being present. -
The Predation of an Adult Colubrid Snake, Sibynophis Triangularis, by the Scorpion Heterometrus Laoticus in the Sakaerat Biosphere Reserve
Captive & Field Herpetology Volume 4 Issue 1 2020 Inverting the Food Web: The Predation of an Adult Colubrid Snake, Sibynophis triangularis, by the Scorpion Heterometrus laoticus in the Sakaerat Biosphere Reserve Jack Christie1, Everett Madsen1, Surachit Waengsothorn1, Max Dolton Jones1, 2,* 1Sakaerat Environmental Research Station, Nakhon Ratchasima, Thailand. 2Suranree University of Technology, Nakhon Ratchasima, Thailand. *Corresponding author, e-mail: [email protected] Abstract: system they occupy, is a well-researched and understood topic (Belovsky & Slade 1993; The predation of vertebrates by large tropical Murkin & Batt 1987; Nordberg et al. 2018). invertebrates is a rare phenomenon in nature, This particularly pertains to the predation of though not unprecedented. Scorpions in invertebrates by larger vertebrate predators. particular are evolutionarily equipped to take However, there are far fewer instances of on such a task. Despite the hunting strategy invertebrates consuming vertebrate prey items and primarily insectivorous diet of scorpions, within the available literature. Scorpions are they are known to opportunistically prey upon primarily fossorial ambush predators, emerging small vertebrate prey such as lizards, frogs and from their burrows and lying in wait at the birds. Herein, we describe the observation of entrance for unsuspecting prey to wander too an adult Asian forest scorpion (Heterometrus close (Williams 1987). Scorpions typically laoticus; Scorpiones; Scorpionidae) predating exhibit an insectivorous diet, with the upon an adult triangle many-toothed snake exception of a few species (Williams 1987), (Sibynophis triangularis; Squamata: and have been known to prey on frogs, birds, Colubridae). Although the opportunistic lizards and even snakes (McCormick & Polis, predation on snakes by scorpions has been 1982). -
Sexual Dimorphism in the Asian Giant Forest Scorpion, Heterometrus Laoticus Couzijn, 1981
NU Science Journal 2007; 4(1): 42 - 52 Sexual Dimorphism in the Asian Giant Forest Scorpion, Heterometrus laoticus Couzijn, 1981 Ubolwan Booncham1*, Duangkhae Sitthicharoenchai2, Art-ong Pradatsundarasar2, Surisak Prasarnpun1 and Kumthorn Thirakhupt2 1Department of Biology, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand 2Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10400 Thailand *Corresponding author. E-mail address: [email protected] ABSTRACT Morphological characters of adult male and adult female giant forest scorpions, Heterometrus laoticus, in a mixed deciduous forest at Phitsanulok Wildlife Conservation Development and Extension Station showed sexual dimorphism. Among the observed characters, carapace width, chela length, chela width, telson length and shape of movable finger of adult male and female scorpions were obviously different. The pectines of males were also significantly longer, and the number of sensilla-bearing teeth in male scorpions was more than in females. Moreover, males had higher density of sensilla on the pectinal teeth than females. During the breeding season, mature males were mobile while mature females were mainly at their burrows. Keywords: Heterometrus laoticus, sexual dimorphism INTRODUCTION Sexual dimorphism is the difference in form between males and females of the same species. Sexual dimorphism, particularly sexual size dimorphism (SSD) has been observed in a large number of animal taxa (Blanckenhorn, 2005; Brown, 1996; David et al., 2003; Esperk and Tammaru, 2006; Herrel et al. 1999; Ozkan et al., 2006; Ranta et al. 1994; Shine, 1989; Walker and Rypstra, 2001 and Wangkulangkul, et al., 2005). Under the influence of natural and sexual selections, males and females often differ in costs and benefits of achieving some particular body sizes (Crowley, 2000; Gaffin and Broenell, 2001; Kladt, 2003; Mattoni, 2005). -
Target-Specificity in Scorpions
Toxins 2017, 9, 312, doi: 10.3390/toxins9100312 S1 of S3 Supplementary Materials: Target‐specificity in scorpions; Comparing lethality of scorpion venoms across arthropods and vertebrates Arie van der Meijden, Bjørn Koch, Tom van der Valk, Leidy J. Vargas‐Muñoz and Sebastian Estrada‐Gómez Table S1. Table with GenBank CO1 accession numbers. Voucher numbers refer to the specimens in the collection of CIBIO/InBio at the University of Porto. Species Voucher Accession number Androctonus australis Sc904 gi379647585 Leiurus quinquestriatus Sc1062 gi379647601 Buthus ibericus Sc112 gi290918312 Grosphus flavopiceus Sc1085 gi379647593 Centruroides gracilis gi71743793 Heterometrus laoticus Sc1084 gi555299473 Pandinus imperator Sc1050 gi379647587 Hadrurus arizonensis Sc1042 gi379647597 Iurus kraepelini Sc866 gi379647589 Table S2. Mean dry venom compound per individual. Several milkings were made per (sub)adult specimen in some cases. Species n Dry venom (mg) mg/milking Androctonus australis 21 23.5 1.12 Leiurus quinquestriatus 51 25.1 0.49 Buthus ibericus 47 41.6 0.89 Centruroides gracilis 42 22.5 0.54 Babycurus jacksoni 38 53.9 1.42 Grosphus grandidieri 19 103.9 5.47 Hadrurus arizonensis 9 75.3 8.37 Iurus sp.* 12 35.2 2.93 Heterometrus laoticus 21 119 5.67 Pandinus imperator 15 72.7 4.85 *2 I. dufoureius, 6 I. kraepelini, 4 I. sp. Toxins 2017, 9, 312, doi: 10.3390/toxins9100312 S2 of S3 Table S3. Toxicological analysis of the venom of Grosphus grandidieri. “Toxic” means that the mice showed symptoms such as: pain, piloerection, excitability, salivation, lacrimation, dyspnea, diarrhea, temporary paralysis, but recovered within 20 h. “Lethal” means that the mice showed some or all the symptoms of intoxication and died within 20 h after injection. -
Caracterização Proteometabolômica Dos Componentes Da Teia Da Aranha Nephila Clavipes Utilizados Na Estratégia De Captura De Presas
UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS BIOLOGIA CELULAR E MOLECULAR Caracterização proteometabolômica dos componentes da teia da aranha Nephila clavipes utilizados na estratégia de captura de presas Franciele Grego Esteves Dissertação apresentada ao Instituto de Biociências do Câmpus de Rio . Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Mestre em Biologia Celular e Molecular. Rio Claro São Paulo - Brasil Março/2017 FRANCIELE GREGO ESTEVES CARACTERIZAÇÃO PROTEOMETABOLÔMICA DOS COMPONENTES DA TEIA DA ARANHA Nephila clavipes UTILIZADOS NA ESTRATÉGIA DE CAPTURA DE PRESA Orientador: Prof. Dr. Mario Sergio Palma Co-Orientador: Dr. José Roberto Aparecido dos Santos-Pinto Dissertação apresentada ao Instituto de Biociências da Universidade Estadual Paulista “Júlio de Mesquita Filho” - Campus de Rio Claro-SP, como parte dos requisitos para obtenção do título de Mestre em Biologia Celular e Molecular. Rio Claro 2017 595.44 Esteves, Franciele Grego E79c Caracterização proteometabolômica dos componentes da teia da aranha Nephila clavipes utilizados na estratégia de captura de presas / Franciele Grego Esteves. - Rio Claro, 2017 221 f. : il., figs., gráfs., tabs., fots. Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientador: Mario Sergio Palma Coorientador: José Roberto Aparecido dos Santos-Pinto 1. Aracnídeo. 2. Seda de aranha. 3. Glândulas de seda. 4. Toxinas. 5. Abordagem proteômica shotgun. 6. Abordagem metabolômica. I. Título. Ficha Catalográfica elaborada pela STATI - Biblioteca da UNESP Campus de Rio Claro/SP Dedico esse trabalho à minha família e aos meus amigos. Agradecimentos AGRADECIMENTOS Agradeço a Deus primeiramente por me fortalecer no dia a dia, por me capacitar a enfrentar os obstáculos e momentos difíceis da vida. -
DANIEL I. HEMBREE Education Professional Experience
DANIEL I. HEMBREE Ohio University Department of Geological Sciences 316 Clippinger Laboratories, Athens, OH 45701 740-597-1495 [email protected] Education Ph.D. Geology 2005 UNIVERSITY OF KANSAS, LAWRENCE, KS Dissertation: Biogenic Structures of Modern and Fossil Continental Organisms: Using Trace Fossil Morphology to Interpret Paleoenvironment, Paleoecology, and Paleoclimate Advisors: Stephen T. Hasiotis, Robert H. Goldstein, Roger L. Kaesler, Larry D. Martin, Linda Trueb M.S. Geology 2002 UNIVERSITY OF KANSAS, LAWRENCE, KS Thesis: Paleontology and Ichnology of an Ephemeral Lacustrine Deposit within the Middle Speiser Shale, Eskridge, KS Advisors: Larry D. Martin, Robert H. Goldstein, Roger L. Kaesler B.S. Geology 1999 UNIVERSITY OF NEW ORLEANS, NEW ORLEANS, LA Undergraduate thesis: A reexamination of Confuciusornis sanctus Advisor: Kraig Derstler Professional Experience 2018-present Professor DEPARTMENT OF GEOLOGICAL SCIENCES Ohio University, Athens, OH 2012-2018 Associate Professor DEPARTMENT OF GEOLOGICAL SCIENCES Ohio University, Athens, OH 2007-2012 Assistant Professor DEPARTMENT OF GEOLOGICAL SCIENCES Ohio University, Athens, OH 2006-2007 Instructor DEPARTMENT OF GEOLOGICAL SCIENCES Ohio University, Athens, OH 2005-2006 Postdoctoral Research Associate DEPARTMENT OF GEOLOGICAL SCIENCES Ohio University, Athens, OH 2000-2001 Coordinator of Laboratories DEPARTMENT OF GEOLOGY University of Kansas, Lawrence, KS 1999-2000, Graduate Teaching Assistant 2001-2002, DEPARTMENT OF GEOLOGY 2004-2005 University of Kansas, Lawrence, KS External Research Grants and Fellowships Awarded National Geographic Society, “Investigation of the Soils and Burrowing Biota of the Sonoran Desert: Improving the Recognition of Semi-Arid Ecosystems in Deep Time,” 12/1/14-12/1/15, $16,530, co- PIs Brian Platt (University of Mississippi), Ilya Buynevich (Temple University), Jon Smith (Kansas Geological Survey). -
Anticoagulant Activity of Low-Molecular Weight Compounds from Heterometrus Laoticus Scorpion Venom
toxins Article Anticoagulant Activity of Low-Molecular Weight Compounds from Heterometrus laoticus Scorpion Venom Thien Vu Tran 1,2, Anh Ngoc Hoang 1, Trang Thuy Thi Nguyen 3, Trung Van Phung 4, Khoa Cuu Nguyen 1, Alexey V. Osipov 5, Igor A. Ivanov 5, Victor I. Tsetlin 5 and Yuri N. Utkin 5,* ID 1 Institute of Applied Materials Science, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam; [email protected] (T.V.T.); [email protected] (A.N.H.); [email protected] (K.C.N.) 2 Vietnam Academy of Science and Technology, Graduate University of Science and Technology, Ho Chi Minh City 700000, Vietnam 3 Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam; [email protected] 4 Istitute of Chemical Technology, Vietnam Academy of Science and Technology, Ho Chi Minh City 700000, Vietnam; [email protected] 5 Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; [email protected] (A.V.O.); [email protected] (I.A.I.); [email protected] (V.I.T.) * Correspondence: [email protected] or [email protected]; Tel.: +7-495-336-6522 Academic Editor: Steve Peigneur Received: 9 September 2017; Accepted: 21 October 2017; Published: 26 October 2017 Abstract: Scorpion venoms are complex polypeptide mixtures, the ion channel blockers and antimicrobial peptides being the best studied components. The coagulopathic properties of scorpion venoms are poorly studied and the data about substances exhibiting these properties are very limited. During research on the Heterometrus laoticus scorpion venom, we have isolated low-molecular compounds with anticoagulant activity. -
BMC Genomics Biomed Central
BMC Genomics BioMed Central Research article Open Access Transcriptome analysis of the venom gland of the scorpion Scorpiops jendeki: implication for the evolution of the scorpion venom arsenal Yibao Ma†, Ruiming Zhao†, Yawen He, Songryong Li, Jun Liu, Yingliang Wu, Zhijian Cao* and Wenxin Li* Address: State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, PR China Email: Yibao Ma - [email protected]; Ruiming Zhao - [email protected]; Yawen He - [email protected]; Songryong Li - [email protected]; Jun Liu - [email protected]; Yingliang Wu - [email protected]; Zhijian Cao* - [email protected]; Wenxin Li* - [email protected] * Corresponding authors †Equal contributors Published: 1 July 2009 Received: 26 February 2009 Accepted: 1 July 2009 BMC Genomics 2009, 10:290 doi:10.1186/1471-2164-10-290 This article is available from: http://www.biomedcentral.com/1471-2164/10/290 © 2009 Ma et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: The family Euscorpiidae, which covers Europe, Asia, Africa, and America, is one of the most widely distributed scorpion groups. However, no studies have been conducted on the venom of a Euscorpiidae species yet. In this work, we performed a transcriptomic approach for characterizing the venom components from a Euscorpiidae scorpion, Scorpiops jendeki. Results: There are ten known types of venom peptides and proteins obtained from Scorpiops jendeki. -
Arachnides 88
ARACHNIDES BULLETIN DE TERRARIOPHILIE ET DE RECHERCHES DE L’A.P.C.I. (Association Pour la Connaissance des Invertébrés) 88 2019 Arachnides, 2019, 88 NOUVEAUX TAXA DE SCORPIONS POUR 2018 G. DUPRE Nouveaux genres et nouvelles espèces. BOTHRIURIDAE (5 espèces nouvelles) Brachistosternus gayi Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus philippii Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Chili) Brachistosternus misti Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus contisuyu Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) Brachistosternus anandrovestigia Ojanguren-Affilastro, Pizarro-Araya & Ochoa, 2018 (Pérou) BUTHIDAE (2 genres nouveaux, 41 espèces nouvelles) Anomalobuthus krivotchatskyi Teruel, Kovarik & Fet, 2018 (Ouzbékistan, Kazakhstan) Anomalobuthus lowei Teruel, Kovarik & Fet, 2018 (Kazakhstan) Anomalobuthus pavlovskyi Teruel, Kovarik & Fet, 2018 (Turkmenistan, Kazakhstan) Ananteris kalina Ythier, 2018b (Guyane) Barbaracurus Kovarik, Lowe & St'ahlavsky, 2018a Barbaracurus winklerorum Kovarik, Lowe & St'ahlavsky, 2018a (Oman) Barbaracurus yemenensis Kovarik, Lowe & St'ahlavsky, 2018a (Yémen) Butheolus harrisoni Lowe, 2018 (Oman) Buthus boussaadi Lourenço, Chichi & Sadine, 2018 (Algérie) Compsobuthus air Lourenço & Rossi, 2018 (Niger) Compsobuthus maidensis Kovarik, 2018b (Somaliland) Gint childsi Kovarik, 2018c (Kénya) Gint amoudensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, 2018 (Somaliland) Gint gubanensis Kovarik, Lowe, Just, Awale, Elmi & St'ahlavsky, -
Defensive Behavior Is Associated with Morphology and Performance in Scorpions
Choose Your Weapon: Defensive Behavior Is Associated with Morphology and Performance in Scorpions Arie van der Meijden1*, Pedro Lobo Coelho1, Pedro Sousa1, Anthony Herrel2 1 CIBIO, Centro de Investigac¸a˜o em Biodiversidade e Recursos Gene´ticos, Campus Agra´rio de Vaira˜o, Vaira˜o, Portugal, 2 UMR 7179, Muse´um National d9Histoire Naturelle, De´partement d9Ecologie et de Gestion de la Biodiversite´, Paris, France Abstract Morphology can be adaptive through its effect on performance of an organism. The effect of performance may, however, be modulated by behavior; an organism may choose a behavioral option that does not fully utilize its maximum performance. Behavior may therefore be decoupled from morphology and performance. To gain insight into the relationships between these levels of organization, we combined morphological data on defensive structures with measures of defensive performance, and their utilization in defensive behavior. Scorpion species show significant variation in the morphology and performance of their main defensive structures; their chelae (pincers) and the metasoma (‘‘tail’’) carrying the stinger. Our data show that size-corrected pinch force varies to almost two orders of magnitude among species, and is correlated with chela morphology. Chela and metasoma morphology are also correlated to the LD50 of the venom, corroborating the anecdotal rule that dangerously venomous scorpions can be recognized by their chelae and metasoma. Analyses of phylogenetic independent contrasts show that correlations between several aspects of chela and metasoma morphology, performance and behavior are present. These correlations suggest co-evolution of behavior with morphology and performance. Path analysis found a performance variable (pinch force) to partially mediate the relationship between morphology (chela aspect ratio) and behavior (defensive stinger usage). -
Small Molecules in the Venom of the Scorpion Hormurus Waigiensis
biomedicines Article Small Molecules in the Venom of the Scorpion Hormurus waigiensis Edward R. J. Evans 1, Lachlan McIntyre 2, Tobin D. Northfield 3, Norelle L. Daly 1 and David T. Wilson 1,* 1 Centre for Molecular Therapeutics, AITHM, James Cook University, Cairns, QLD 4878, Australia; [email protected] (E.R.J.E.); [email protected] (N.L.D.) 2 Independent Researcher, P.O. Box 78, Bamaga, QLD 4876, Australia; [email protected] 3 Department of Entomology, Tree Fruit Research and Extension Center, Washington State University, Wenatchee, WA 98801, USA; [email protected] * Correspondence: [email protected]; Tel.: +61-7-4232-1707 Received: 30 June 2020; Accepted: 28 July 2020; Published: 31 July 2020 Abstract: Despite scorpion stings posing a significant public health issue in particular regions of the world, certain aspects of scorpion venom chemistry remain poorly described. Although there has been extensive research into the identity and activity of scorpion venom peptides, non-peptide small molecules present in the venom have received comparatively little attention. Small molecules can have important functions within venoms; for example, in some spider species the main toxic components of the venom are acylpolyamines. Other molecules can have auxiliary effects that facilitate envenomation, such as purines with hypotensive properties utilised by snakes. In this study, we investigated some non-peptide small molecule constituents of Hormurus waigiensis venom using LC/MS, reversed-phase HPLC, and NMR spectroscopy. We identified adenosine, adenosine monophosphate (AMP), and citric acid within the venom, with low quantities of the amino acids glutamic acid and aspartic acid also being present. -
A Review of Synonyms and Subspecies in the Genus Opistophthalmus C.L. Koch (Scorpiones: Scorpionidae)
A review of synonyms and subspecies in the genus Opistophthalmus C.L. Koch (Scorpiones: Scorpionidae) L. Prendini Percy FitzPatrick Institute, University of Cape Town, Rondebosch, 7701 South Africa E-mail: [email protected] The synonyms and subspecies attributed to species of Opistophthalmus C.L. Koch, 1837 (Scorpiones: Scorpionidae) are reviewed, based mostly upon examination of type material. Four species and seven subspecies are synonymized, five species are reinstated, and six subspecies (three of which were originally described as species) are elevated to the rank of species, bringing the total number of species recognized in the genus to 59. A list of the 34 synonyms accepted for the species of Opistophthalmus is appended. New synonyms: O. austerus monticola Hewitt, 1927 = O. austerus Karsch, 1879; O. ecristatus Pocock, 1899 = O. boehmi (Kraepelin, 1896); O. karrooensis rugosus Lawrence, 1946 = O. karrooensis Purcell, 1898; O. laticauda crinita Lawrence, 1955 = O. pallipes C.L. Koch, 1842; O. latimanus austeroides Hewitt, 1914 = O. latimanus C.L. Koch, 1841; O. latimanus kalaharicus Hewitt, 1935 = O. pugnax Thorell, 1876; O. lundensis Monard, 1937 = O. wahlbergii (Thorell, 1876); O. pilosus Werner, 1936 = O. flavescens Purcell, 1898; O. pugnax natalensis Hewitt, 1915 = O. praedo Thorell, 1876; O. wahlbergi robustus Newlands, 1969 = O. wahlbergii (Thorell, 1876); O. werneri Lamoral & Reynders, 1975 = O. flavescens Purcell, 1898. Removed from synonymy: O. chaperi Simon, 1880; O. latro Thorell, 1876; O. luciranus Lawrence, 1959; O. praedo Thorell, 1876; O. scabrifrons Hewitt, 1918. Subspecies elevated to species: O. fuscipes Purcell, 1898; O. keilandsi Hewitt, 1914; O. lawrencei Newlands, 1969; O. leipoldti Purcell, 1898; O.