Hawaii Archipelago
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Field Guide to the Nonindigenous Marine Fishes of Florida
Field Guide to the Nonindigenous Marine Fishes of Florida Schofield, P. J., J. A. Morris, Jr. and L. Akins Mention of trade names or commercial products does not constitute endorsement or recommendation for their use by the United States goverment. Pamela J. Schofield, Ph.D. U.S. Geological Survey Florida Integrated Science Center 7920 NW 71st Street Gainesville, FL 32653 [email protected] James A. Morris, Jr., Ph.D. National Oceanic and Atmospheric Administration National Ocean Service National Centers for Coastal Ocean Science Center for Coastal Fisheries and Habitat Research 101 Pivers Island Road Beaufort, NC 28516 [email protected] Lad Akins Reef Environmental Education Foundation (REEF) 98300 Overseas Highway Key Largo, FL 33037 [email protected] Suggested Citation: Schofield, P. J., J. A. Morris, Jr. and L. Akins. 2009. Field Guide to Nonindigenous Marine Fishes of Florida. NOAA Technical Memorandum NOS NCCOS 92. Field Guide to Nonindigenous Marine Fishes of Florida Pamela J. Schofield, Ph.D. James A. Morris, Jr., Ph.D. Lad Akins NOAA, National Ocean Service National Centers for Coastal Ocean Science NOAA Technical Memorandum NOS NCCOS 92. September 2009 United States Department of National Oceanic and National Ocean Service Commerce Atmospheric Administration Gary F. Locke Jane Lubchenco John H. Dunnigan Secretary Administrator Assistant Administrator Table of Contents Introduction ................................................................................................ i Methods .....................................................................................................ii -
Review Articles Microparasites of Worldwide Mullets
Annals of Parasitology 2015, 61(4), 229–239 Copyright© 2015 Polish Parasitological Society doi: 10.17420/ap6104.12 Review articles Microparasites of worldwide mullets Mykola Ovcharenko 1,2 1Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warszawa, Poland 2Institute of Biology and Environment Protection, Pomeranian University, Arciszewskiego 22, 76-218 Słupsk, Poland; E-mail: [email protected] ABSTRACT. The present review is focus on parasitic organisms, previously considered as protozoans. Viral, prokaryotic and fungal parasites caused diseases and disorders of worldwide mullets were also observed. Most of the known viruses associated with a high mortality of mullets were detected in Mugil cephalus . Prokaryotic microparasites were registered in M. cephalus , Moolgarda cunnesiu , Liza ramada and Mugil liza . Fungal pathogens were associated with representatives of the genera Aphanomyces , Achlya , Phialemonium , Ichthyophonus . Ichthyophonus sp. can be considered as a potential threat for marine fish aquaculture, especially in culture conditions. A new hyperparasitic microsporidium like organism was recorded in myxozoan Myxobolus parvus infecting grey mullet Liza haematocheilus in the Russian coastal zone of the Sea of Japan. The protozoan representatives of the phyla Dinoflagellata, Euglenozoa, Ciliophora and Apicomplexa were reviewed and analyzed. The review of myxosporean parasites from grey mullets includes 64 species belonging to 13 genera and 9 families infecting 16 fish species Key words: worldwide mullets, microparasites, diseases and disorders Introduction importance of microparasites, infecting mullets based on existing data and original material Separation of microparasites from other obtained during parasitological investigations of parasites based mostly on epidemiological grounds mullets. The six-kingdom system of life, revised by [1,2]. -
MARINE LIFE PROFILE: HAWAIIAN LIMPET SNAIL Classification
Waikïkï Aquarium Education Department MARINE LIFE PROFILE: HAWAIIAN LIMPET SNAIL Hawaiian name: ‘opihi Scientific name: Cellana exarata and others Distribution: Hawaiian Islands Size: up to 3 inches (7.5 cm) Diet: algae Limpets are common snails found on rocky shores throughout the world. But the four species which occur in Hawaii are endemic, found here and no where else! The most common species is the "blackfoot" ‘opihi (Cellana exarata) which occurs on basalt shorelines, from the splash zone high on the shore, seaward to the level of the mean low tide where crust-like pink calcareous algae forms a band on the rocks. Like other snails, limpets have: (1) a head with eyes and tentacles, a mouth on a protrusible proboscis (mouth tube); (2) a broad muscular foot for clinging and crawling; and (3) a soft body mass (containing the internal organs) which is protected by their shell. Living on this part of the shore, the ‘opihi must withstand periods of drying exposure during low tides, as well as heavy surge and pounding waves at high tide. They cling firmly to the rock surface with the muscular foot that acts like a suction cup to keep them from being torn off the rocks. The cap-shaped shell has a low profile and low center of gravity so that the snail presents little resistance to the water as it pounds and pours over the shore. The ribs and grooves in the shell help spread the force of the crashing waves by channeling water down the sides of the shell. Each ‘opihi lives in a shallow depression on the rock that it makes itself, possibly by rasping at the rock with its radula. -
The Native Stream Fishes of Hawaii
Summer 2014 American Currents 2 THE NATIVE STREAM FISHES OF HAWAII Konrad Schmidt St. Paul, MN [email protected] Several years ago at the University of Minnesota a poster The “uniqueness” of these species is due not only to the about Hawaii’s native freshwater fishes caught my eye. I high degree of endemism, but also includes their habitat, life was astonished to learn that for a tropical zone the indige- cycle, and evolutionary adaptations. Hawaii’s watersheds nous freshwater ichthyofauna (traditionally and collectively are typically short and small. The healthiest fish populations known as ‘o’opu) is incredibly rich in uniqueness, but very generally inhabit perennial streams located on the windward poor in species diversity, comprising only four gobies and (northeast) side of islands which are drenched with 100-300 one sleeper. Four of the five are endemic to Hawaii. How- inches of rainfall annually. Frequent and turbid flash floods, ever, recent research suggests the ‘o’opu nākea of Hawaii is called freshets, occur on a regular basis; between events, a distinct species from the Pacific River Goby, and is, there- however, stream visibility can exceed 30 feet. On the lee- fore, also endemic. In addition to these fishes, there are only ward, drier sides, populations do persist in some intermit- two native euryhaline species that venture from the ocean tent streams at higher elevations even though lower reaches into the lower and slower reaches of streams not far above may be dry for months or years. These dynamic streams are their mouths: Hawaiian Flagtail (Kuhlia sandvicensis) and continually and naturally in a state of recovery. -
Section 3.9 Fish
3.9 Fish MARIANA ISLANDS TRAINING AND TESTING FINAL EIS/OEIS MAY 2015 TABLE OF CONTENTS 3.9 FISH .................................................................................................................................. 3.9-1 3.9.1 INTRODUCTION .............................................................................................................................. 3.9-2 3.9.1.1 Endangered Species Act Species ................................................................................................ 3.9-2 3.9.1.2 Taxonomic Groups ..................................................................................................................... 3.9-3 3.9.1.3 Federally Managed Species ....................................................................................................... 3.9-5 3.9.2 AFFECTED ENVIRONMENT ................................................................................................................ 3.9-9 3.9.2.1 Hearing and Vocalization ......................................................................................................... 3.9-10 3.9.2.2 General Threats ....................................................................................................................... 3.9-12 3.9.2.3 Scalloped Hammerhead Shark (Sphyrna lewini) ...................................................................... 3.9-14 3.9.2.4 Jawless Fishes (Orders Myxiniformes and Petromyzontiformes) ............................................ 3.9-15 3.9.2.5 Sharks, Rays, and Chimaeras (Class Chondrichthyes) -
Does Climate Change Bolster the Case for Fishery Reform in Asia? Christopher Costello∗
Does Climate Change Bolster the Case for Fishery Reform in Asia? Christopher Costello∗ I examine the estimated economic, ecological, and food security effects of future fishery management reform in Asia. Without climate change, most Asian fisheries stand to gain substantially from reforms. Optimizing fishery management could increase catch by 24% and profit by 34% over business- as-usual management. These benefits arise from fishing some stocks more conservatively and others more aggressively. Although climate change is expected to reduce carrying capacity in 55% of Asian fisheries, I find that under climate change large benefits from fishery management reform are maintained, though these benefits are heterogeneous. The case for reform remains strong for both catch and profit, though these numbers are slightly lower than in the no-climate change case. These results suggest that, to maximize economic output and food security, Asian fisheries will benefit substantially from the transition to catch shares or other economically rational fishery management institutions, despite the looming effects of climate change. Keywords: Asia, climate change, fisheries, rights-based management JEL codes: Q22, Q28 I. Introduction Global fisheries have diverged sharply over recent decades. High governance, wealthy economies have largely adopted output controls or various forms of catch shares, which has helped fisheries in these economies overcome inefficiencies arising from overfishing (Worm et al. 2009) and capital stuffing (Homans and Wilen 1997), and allowed them to turn the corner toward sustainability (Costello, Gaines, and Lynham 2008) and profitability (Costello et al. 2016). But the world’s largest fishing region, Asia, has instead largely pursued open access and input controls, achieving less long-run fishery management success (World Bank 2017). -
Assessing Abundance and Catch Selectivity of Octopus Cyanea by the Artisanal fishery in Lakshadweep Islands, India
Aquat. Living Resour. 2018, 31, 10 Aquatic © EDP Sciences 2018 https://doi.org/10.1051/alr/2017050 Living Resources Available online at: www.alr-journal.org RESEARCH ARTICLE Assessing abundance and catch selectivity of Octopus cyanea by the artisanal fishery in Lakshadweep islands, India Aditi Nair1,*, Sutirtha Dutta2, Deepak Apte3 and Balasaheb Kulkarni1 1 Department of Zoology, The Institute of Science, 15 Madame Cama Road, Mumbai 400032, Maharashtra, India 2 Wildlife Institute of India, Chandrabani, Dehradun 248001, Uttarakhand, India 3 Bombay Natural History Society, Hornbill House, Mumbai, India Received 5 August 2016 / Accepted 18 December 2017 Handling Editor: Flavia Lucena Fredou Abstract – Subsistence fishery for cephalopods contributes significantly to the local economy of several Asian, African and island states. In addition to being unregulated and undocumented, recent studies indicate that low-scale fisheries can have detrimental effects on marine ecosystems. In the Lakshadweep islands, men, women and children have been involved in spear fishing for octopus for a long time, but there is a paucity of information on the biology and fishery of the octopus species in Indian waters. In this study, we estimated the population abundance, morphometry and sex ratio of Octopus cyanea. Moreover, we examined whether the current octopus spear fishing activity displayed size or sex selectivity, given that larger individuals are easier to spot and brooding females spend more time in crevices. O. cyanea surveys were conducted by snorkeling in the lagoons of Kavaratti and Agatti islands between November 2008 and April 2012. The estimated mean density of O. cyanea was 3 and 2.5 individuals per hectare in Agatti and Kavaratti, respectively. -
Cirrhitidae 3321
click for previous page Perciformes: Percoidei: Cirrhitidae 3321 CIRRHITIDAE Hawkfishes by J.E. Randall iagnostic characters: Oblong fishes (size to about 30 cm), body depth 2 to 4.6 times in standard Dlength. A fringe of cirri on posterior edge of anterior nostril. Two indistinct spines on opercle. A row of canine teeth in jaws, the longest usually anteriorly in upper jaw and half-way back on lower jaw; a band of villiform teeth inside the canines, broader anteriorly (in lower jaw only anteriorly). One or more cirri projecting from tips of interspinous membranes of dorsal fin. Dorsal fin continuous, with X spines and 11 to 17 soft rays, notched between spinous and soft portions; anal fin with III spines and 5 to 7 (usually 6) soft rays; pectoral fins with 14 rays, the lower 5 to 7 rays unbranched and usually enlarged, with the membranes deeply incised; pelvic fins with I spine and 5 soft rays. Principal caudal-fin rays 15. Branchiostegal rays 6. Scales cycloid. Swimbladder absent. Vertebrae 26. Colour: variable with species. cirri lower pectoral-fin rays thickened and unbranched Remarks: The hawkfish family consists of 10 genera and 38 species, 33 of which occur in the Indo-Pacific region; 19 species are found in the Western Central Pacific. Habitat, biology, and fisheries: Cirrhitids are bottom-dwelling fishes of coral reefs or rocky substrata; the majority occur in shallow water. They use their thickened lower pectoral-fin rays to wedge themselves in position in areas subject to surge. All species are carnivorous, feeding mainly on benthic crustaceans. -
Availability and Distribution of Low Flow in Anahola Stream, Kaua I
Prepared in cooperation with the State of Hawaiÿi Department of Hawaiian Home Lands Availability and Distribution of Low Flow in Anahola Stream, Kauaÿi, Hawaiÿi Scientific Investigations Report 2012–5264 U.S. Department of the Interior U.S. Geological Survey Cover: Kalalea Mountains in northeast Kauaÿi, Hawaiÿi. Photographed by Chui Ling Cheng. Availability and Distribution of Low Flow in Anahola Stream, Kauaÿi, Hawaiÿi By Chui Ling Cheng and Reuben H. Wolff Prepared in cooperation with the State of Hawaiÿi Department of Hawaiian Home Lands Scientific Investigations Report 2012–5264 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2012 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod Suggested citation: Cheng, C.L., and Wolff, R.H., 2012, Availability and distribution of low flow in Anahola Stream, Kauaÿi, Hawaiÿi: U.S. Geological Survey Scientific Investigations Report 2012-5264, 32 p. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. -
A Review of the Biology for Pacific Saury, Cololabis Saira in the North
North Pacific Fisheries Commission NPFC-2019-SSC PSSA05-WP13 (Rev. 1) A review of the biology for Pacific saury, Cololabis saira in the North Pacific Ocean Taiki Fuji1*, Satoshi Suyama2, Shin-ichiro Nakayama3, Midori Hashimoto1, Kazuhiro Oshima1 1National Research Institute of Far Seas Fisheries, Japan Fisheries Research and Education Agency 2Tohoku national Fisheries Research Institute, Japan Fisheries Research and Education Agency 3National Research Institute of Fisheries Science, Fisheries Research and Education Agency *Corresponding author’s email address: [email protected] Contents 1. Introduction…………………………………………………………………………………………2 2. Stock identity……………………………………………………………………………………….2 3. Early life history……………………………………………………………………………………2 3-1. Spawning ground………………………………………………………………………………2 3-2. Larval transportation……………………………………………………………………………3 3-3. Recruitment variability………………………………………………………………………….4 4. Feeding habits and predators…………………………………………………………………………4 5. Growth………………………………………………………………………………………………..5 6. Maturation…………………………………………………………………………………………….5 6-1. Spawning pattern, fecundity and spawning duration…………………………………………….5 6-2. Seasonal change of maturity size………………………………...................................................6 6-3. Maturation schedule for each seasonal cohort considering growth and maturation size…………6 6-4. Maturation and environmental factors……………………………………………………………7 6-5. Percentage of matured fish………………………………………………………………………..7 7. Distribution and migration…………………………………………………………………………….7 8. Natural mortality………………………………………………………………………………………9 -
Octopus Consciousness: the Role of Perceptual Richness
Review Octopus Consciousness: The Role of Perceptual Richness Jennifer Mather Department of Psychology, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; [email protected] Abstract: It is always difficult to even advance possible dimensions of consciousness, but Birch et al., 2020 have suggested four possible dimensions and this review discusses the first, perceptual richness, with relation to octopuses. They advance acuity, bandwidth, and categorization power as possible components. It is first necessary to realize that sensory richness does not automatically lead to perceptual richness and this capacity may not be accessed by consciousness. Octopuses do not discriminate light wavelength frequency (color) but rather its plane of polarization, a dimension that we do not understand. Their eyes are laterally placed on the head, leading to monocular vision and head movements that give a sequential rather than simultaneous view of items, possibly consciously planned. Details of control of the rich sensorimotor system of the arms, with 3/5 of the neurons of the nervous system, may normally not be accessed to the brain and thus to consciousness. The chromatophore-based skin appearance system is likely open loop, and not available to the octopus’ vision. Conversely, in a laboratory situation that is not ecologically valid for the octopus, learning about shapes and extents of visual figures was extensive and flexible, likely consciously planned. Similarly, octopuses’ local place in and navigation around space can be guided by light polarization plane and visual landmark location and is learned and monitored. The complex array of chemical cues delivered by water and on surfaces does not fit neatly into the components above and has barely been tested but might easily be described as perceptually rich. -
Comparative Ecology, Morphology, and Population Genetics of Black Triggerfish, Melichthys Niger
W&M ScholarWorks Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects 1991 Comparative Ecology, Morphology, and Population Genetics of Black Triggerfish, Melichthys niger Kathryn D. Kavanagh College of William and Mary - Virginia Institute of Marine Science Follow this and additional works at: https://scholarworks.wm.edu/etd Part of the Genetics Commons, Marine Biology Commons, Oceanography Commons, and the Zoology Commons Recommended Citation Kavanagh, Kathryn D., "Comparative Ecology, Morphology, and Population Genetics of Black Triggerfish, Melichthys niger" (1991). Dissertations, Theses, and Masters Projects. Paper 1539617624. https://dx.doi.org/doi:10.25773/v5-pf9s-f194 This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact [email protected]. COMPARATIVE ECOLOGY, MORPHOLOGY, AND POPULATION GENETICS OF BLACK TRIGGERFISH, MELICHTHYS NIGER A Thesis Presented to The Faculty of the School of Marine Science The College of William and Mary in Virginia In Partial Fulfillment of the Requirements for the Degree of Master of Arts by Kathryn Diane Kavanagh 1991 This thesis is submitted in partial fulfillment the requirements for the degree of Master of Arts Approved, December 1991 John Olney, M.A. Comm e Chairman/Adviso John A. Musick, Ph.D. TABLE OF CONTENTS Page ACKNOWLEDGMENTS.............................................. iv LIST OF TABLES............................................... v LIST OF FIGURES.............................................. vi ABSTRACT.....................................................vii INTRODUCTION................................................. 2 METHODS............. 7 Study sites............................................. 7 Density Estimation, Community Survey, and Behavior... 9 Collection and Storage of Specimens...................