An Equational Re-Engineering of Set Theories

Total Page:16

File Type:pdf, Size:1020Kb

An Equational Re-Engineering of Set Theories An equational reengineering of set theories y z Andrea Formisano Eugenio Omo deo AugustNovember Abstract New successes in dealing with set theories by means of stateoftheart theorem provers may ensue from terse and concise axiomatizations such as can b e moulded in the framework of the fully equational TarskiGivant map calculus In this pap er we carry out this task in detail setting the ground for a number of exp eriments Key words Set theory relation algebras rstorder theoremproving algebraic logic Introduction Like other mature elds of mathematics Set Theory deserves sustained eorts that bring to light richer and richer decidable fragments of it general inference rules for reasoning in it eective pro of strategies based on its domainknowledge and so forth Advances in this sp ecialized area of automated reasoning tend in spite of their steadi ness to b e slow compared to the overall progress in the eld Many exp eriments with set theories have hence b een carried out with standard theoremproving systems Still to day such exp eriments p ose considerable stress on stateoftheart theorem provers or demand man to give much guidance to pro of assistants they therefore constitute ideal b enchmarks Moreover in view of the p ervasiveness of Set Theory they are likely when successful in something tough to have a strong echo amidst computer scientists and mathematicians Even for those who are striving to develop something entirely ad hoc in the challenging arena of set theories it is imp ortant to assess what can to day b e achieved by unsp ecialized pro of metho ds and where the contextspecic b ottlenecks of Set Theory precisely reside In its most p opular rstorder version namely the ZermeloFraenkelSkolem axiomatic system ZF set theory very much like Peano arithmetic presents an immediate obstacle it do es not admit a nite axiomatization This is why the von NeumannGodelBernays theory GB of sets and classes is sometimes preferred to it as a basis for exp erimentation Various authors eg have b een able to retain the traits of ZF by resorting to higherorder features of sp ecic theoremprovers such as Isab elle In this pap er we will pursue a minimalist approach to prop ose a purely equational formulation of b oth ZF and nite set theory Our approach heavily relies on but we go into much ner detail with the axioms ending in such a concise formulation as to oer a go o d starting p oint for exp erimentation with Otter say or with a more markedly equational theoremprover Our formulation of the axioms is based on the formalism L of which is equational and devoid of variables but somewhat out of standards Work partially supp orted by the CNR of Italy co ordinated pro ject SETA and by MURST Tecniche sp eciali p er la sp ecica lanalisi la verica la sintesi e la trasformazione di programmi y University La Sapienza of Rome Dept of Computer Science formisandimiuniudit z University of LAquila Dept of Pure and Applied Mathematics omodeounivaqit Luckily L can easily b e emulated through a rstorder system simply by treating the metavariables that o ccur in the schematic formulation of its axioms b oth the logical ones and those endowed with a genuinely settheoretic content as if they were rstorder variables In practice this means treating ZF as if it were an extension of the theory of relation algebras we can express it through a nite number of axioms b ecause variables are not supp osed to range over sets but over the dyadic relations on the universe of sets Taken in its entirety Set Theory oers a panorama of alternatives cf px that is it consists of axiomatic systems not equivalent and sometimes antithetic cf to one another This is why we will not pro duce the axioms of just one theory and will also touch the theme of individuals ultimate entities entering in the formation of sets Future work will expand the material of this pap er into a to olkit for assembling set theories of all kindsafter we have singled out through exp eriments formulations of the axioms that work decidedly b etter than others Syntax and semantics of L L is a ground equational language where one can state prop erties of dyadic relations maps as we will call them over an unsp ecied yet xed domain U of discourse In this pap er the map whose prop erties we intend to sp ecify is the membership relation over the class U of all sets The language L consists of map equalities QR where Q and R are map expressions Denition Map expressions are al l terms of the fol lowing signature 1 symbol l n y degree priority 1 Of these n y will b e used as leftasso ciative inx op erators as a p ostx as a line topping its argument 2 op erator and For an interpretation of L one must x along with a nonempty U a subset of 2 U U U Then each map expression P comes to designate a sp ecic map P and Def accordingly any equality QR b etween map expressions turns out to b e either true or false on the basis of the following evaluation rules 2 l U fa a a in U g Def Def Def QR f a b Q a b R g Def 2 Q R f a b U a b Q if and only if a b R g Def 2 QR f a b U there are cs in U for which a c Q and c b R g Def 1 Q f b a a b Q g Def Of the op erators and constants in the signature of L only a few deserve b eing re garded as primitive constructs indeed we choose to regard as derived constructs the ones for which we gave no evaluation rule as well as others that we will tacitly add to the signature P P l P yQ P Q Def Def P n Q P Q funPart P P n P Def Def P nQ P Q etc Def The interpretation of L obviously extends to the new constructs eg 2 P yQ f a b U for all c in U either a c P or c b Q g Def funPart P fa b P a c P for any c bg Def so that funPart P P will mean P is a partial function very much like Fun P to b e seen b elow Through abbreviating denitions we can also dene shortening notation for map equal ities that follow certain patterns eg 1 Fun P P P n Total P P ll Def Def so that Total P states that for all a in U there is at least one pair a b in P One often strives to sp ecify the class C of interpretations that are of interest in some application through a collection of equalities that must b e true in every of C The task we are undertaking here is of this nature our aim is to capture through simple map equalities the interpretations of that comply with standard ZermeloFraenkel theory on the one hand a theory of nite sets ultimately based on individuals on the other hand In part the game consists in expressing in L common settheoretic notions To start with something obvious 1 Def Def Def where each stands for one of l 0 1 n 0 1 n i Def To see something slightly more sophisticated Examples With resp ect to an interpretation one says that a intersects b if a and b have some element in common ie there is a c for which c a and c b A map 2 expression P such that P f a b U a intersects b g is Likewise one can dene in L the relation a includes b ie no element of b fails to The expression translates the relation a b elong to a by the map expression is strictly included in b and so on Let a splits b mean that every element of a intersects b and that no two elements of a intersect each other These conditions translate into the map expression dened as follows splits y ( )l Def 2 Secondly the reconstruction of set theory within L consists in restating ordinary axioms and subsequently theorems through map equalities Example One of the many ways of stating the muchdebated axiom of choice under adequately strong remaining axioms is by claiming that when a splits some b there is a c which is also split by a and which does not strictly include any other set split by a Formally splitslsplits n splits Ch Total where the second and third o ccurrence of splits could b e replaced by y 1 To relate the original version of this axiom in with ours notice that a set a splits S some b if and only if a consists of pairwise disjoint sets and accordingly a splits a Moreover an inclusionminimal c split by a must have a singleton intersection with each d in a otherwise of two elements in c d either one could b e removed from c conversely S if c is included in a and has a singleton intersection with each d in a then none of its elements e can b e removed else c n feg would no longer intersect the d in a to which e b elongs 2 In the third place we are to prove theorems ab out sets by equational reasoning moving from the equational sp ecication of the set axioms To discuss this p oint we must refer to an inferential apparatus for L we hence delay this discussion to much later cf Sec For alternative versions of this axiom cf p Extensionality subset sumset and p owerset axioms Two derived constructs and r will b e of great help in stating the prop erties of mem b ership simply P r P P nP P Def Def Plainly a Q b and ar R b will hold in an interpretation if and only if resp ectively all those c in U for which aQ c holds are elements of b in the sense that c b the elements of b are precisely those c in U for which aR c holds Our rst axiom extensionality states that sets are the same whose elements are the same E r A useful strenghtening of this axiom is the scheme Fun r P where P ranges over all map expressions Two rather elementary p ostulates the powerset axiom and the sumset axiom state that for any set a there is a set whose elements comprise all sets included in a and there
Recommended publications
  • “The Church-Turing “Thesis” As a Special Corollary of Gödel's
    “The Church-Turing “Thesis” as a Special Corollary of Gödel’s Completeness Theorem,” in Computability: Turing, Gödel, Church, and Beyond, B. J. Copeland, C. Posy, and O. Shagrir (eds.), MIT Press (Cambridge), 2013, pp. 77-104. Saul A. Kripke This is the published version of the book chapter indicated above, which can be obtained from the publisher at https://mitpress.mit.edu/books/computability. It is reproduced here by permission of the publisher who holds the copyright. © The MIT Press The Church-Turing “ Thesis ” as a Special Corollary of G ö del ’ s 4 Completeness Theorem 1 Saul A. Kripke Traditionally, many writers, following Kleene (1952) , thought of the Church-Turing thesis as unprovable by its nature but having various strong arguments in its favor, including Turing ’ s analysis of human computation. More recently, the beauty, power, and obvious fundamental importance of this analysis — what Turing (1936) calls “ argument I ” — has led some writers to give an almost exclusive emphasis on this argument as the unique justification for the Church-Turing thesis. In this chapter I advocate an alternative justification, essentially presupposed by Turing himself in what he calls “ argument II. ” The idea is that computation is a special form of math- ematical deduction. Assuming the steps of the deduction can be stated in a first- order language, the Church-Turing thesis follows as a special case of G ö del ’ s completeness theorem (first-order algorithm theorem). I propose this idea as an alternative foundation for the Church-Turing thesis, both for human and machine computation. Clearly the relevant assumptions are justified for computations pres- ently known.
    [Show full text]
  • Computability and Incompleteness Fact Sheets
    Computability and Incompleteness Fact Sheets Computability Definition. A Turing machine is given by: A finite set of symbols, s1; : : : ; sm (including a \blank" symbol) • A finite set of states, q1; : : : ; qn (including a special \start" state) • A finite set of instructions, each of the form • If in state qi scanning symbol sj, perform act A and go to state qk where A is either \move right," \move left," or \write symbol sl." The notion of a \computation" of a Turing machine can be described in terms of the data above. From now on, when I write \let f be a function from strings to strings," I mean that there is a finite set of symbols Σ such that f is a function from strings of symbols in Σ to strings of symbols in Σ. I will also adopt the analogous convention for sets. Definition. Let f be a function from strings to strings. Then f is computable (or recursive) if there is a Turing machine M that works as follows: when M is started with its input head at the beginning of the string x (on an otherwise blank tape), it eventually halts with its head at the beginning of the string f(x). Definition. Let S be a set of strings. Then S is computable (or decidable, or recursive) if there is a Turing machine M that works as follows: when M is started with its input head at the beginning of the string x, then if x is in S, then M eventually halts, with its head on a special \yes" • symbol; and if x is not in S, then M eventually halts, with its head on a special • \no" symbol.
    [Show full text]
  • CS 173 Lecture 13: Bijections and Data Types
    CS 173 Lecture 13: Bijections and Data Types Jos´eMeseguer University of Illinois at Urbana-Champaign 1 More on Bijections Bijecive Functions and Cardinality. If A and B are finite sets we know that f : A Ñ B is bijective iff |A| “ |B|. If A and B are infinite sets we can define that they have the same cardinality, written |A| “ |B| iff there is a bijective function. f : A Ñ B. This agrees with our intuition since, as f is in particular surjective, we can use f : A Ñ B to \list1" all elements of B by elements of A. The reason why writing |A| “ |B| makes sense is that, since f : A Ñ B is also bijective, we can also use f ´1 : B Ñ A to \list" all elements of A by elements of B. Therefore, this captures the notion of A and B having the \same degree of infinity," since their elements can be put into a bijective correspondence (also called a one-to-one and onto correspondence) with each other. We will also use the notation A – B as a shorthand for the existence of a bijective function f : A Ñ B. Of course, then A – B iff |A| “ |B|, but the two notations emphasize sligtly different, though equivalent, intuitions. Namely, A – B emphasizes the idea that A and B can be placed in bijective correspondence, whereas |A| “ |B| emphasizes the idea that A and B have the same cardinality. In summary, the notations |A| “ |B| and A – B mean, by definition: A – B ôdef |A| “ |B| ôdef Df P rAÑBspf bijectiveq Arrow Notation and Arrow Composition.
    [Show full text]
  • Realisability for Infinitary Intuitionistic Set Theory 11
    REALISABILITY FOR INFINITARY INTUITIONISTIC SET THEORY MERLIN CARL1, LORENZO GALEOTTI2, AND ROBERT PASSMANN3 Abstract. We introduce a realisability semantics for infinitary intuitionistic set theory that is based on Ordinal Turing Machines (OTMs). We show that our notion of OTM-realisability is sound with respect to certain systems of infinitary intuitionistic logic, and that all axioms of infinitary Kripke- Platek set theory are realised. As an application of our technique, we show that the propositional admissible rules of (finitary) intuitionistic Kripke-Platek set theory are exactly the admissible rules of intuitionistic propositional logic. 1. Introduction Realisability formalises that a statement can be established effectively or explicitly: for example, in order to realise a statement of the form ∀x∃yϕ, one needs to come up with a uniform method of obtaining a suitable y from any given x. Such a method is often taken to be a Turing program. Realisability originated as a formalisation of intuitionistic semantics. Indeed, it turned out to be well-chosen in this respect: the Curry-Howard-isomorphism shows that proofs in intuitionistic arithmetic correspond—in an effective way—to programs realising the statements they prove, see, e.g, van Oosten’s book [18] for a general introduction to realisability. From a certain perspective, however, Turing programs are quite limited as a formalisation of the concept of effective method. Hodges [9] argued that mathematicians rely (at least implicitly) on a concept of effectivity that goes far beyond Turing computability, allowing effective procedures to apply to transfinite and uncountable objects. Koepke’s [15] Ordinal Turing Machines (OTMs) provide a natural approach for modelling transfinite effectivity.
    [Show full text]
  • Algebraic Aspects of the Computably Enumerable Degrees
    Proc. Natl. Acad. Sci. USA Vol. 92, pp. 617-621, January 1995 Mathematics Algebraic aspects of the computably enumerable degrees (computability theory/recursive function theory/computably enumerable sets/Turing computability/degrees of unsolvability) THEODORE A. SLAMAN AND ROBERT I. SOARE Department of Mathematics, University of Chicago, Chicago, IL 60637 Communicated by Robert M. Solovay, University of California, Berkeley, CA, July 19, 1994 ABSTRACT A set A of nonnegative integers is computably equivalently represented by the set of Diophantine equations enumerable (c.e.), also called recursively enumerable (r.e.), if with integer coefficients and integer solutions, the word there is a computable method to list its elements. The class of problem for finitely presented groups, and a variety of other sets B which contain the same information as A under Turing unsolvable problems in mathematics and computer science. computability (<T) is the (Turing) degree ofA, and a degree is Friedberg (5) and independently Mucnik (6) solved Post's c.e. if it contains a c.e. set. The extension ofembedding problem problem by producing a noncomputable incomplete c.e. set. for the c.e. degrees Qk = (R, <, 0, 0') asks, given finite partially Their method is now known as the finite injury priority ordered sets P C Q with least and greatest elements, whether method. Restated now for c.e. degrees, the Friedberg-Mucnik every embedding ofP into Rk can be extended to an embedding theorem is the first and easiest extension of embedding result of Q into Rt. Many of the most significant theorems giving an for the well-known partial ordering of the c.e.
    [Show full text]
  • Set Theory in Computer Science a Gentle Introduction to Mathematical Modeling I
    Set Theory in Computer Science A Gentle Introduction to Mathematical Modeling I Jose´ Meseguer University of Illinois at Urbana-Champaign Urbana, IL 61801, USA c Jose´ Meseguer, 2008–2010; all rights reserved. February 28, 2011 2 Contents 1 Motivation 7 2 Set Theory as an Axiomatic Theory 11 3 The Empty Set, Extensionality, and Separation 15 3.1 The Empty Set . 15 3.2 Extensionality . 15 3.3 The Failed Attempt of Comprehension . 16 3.4 Separation . 17 4 Pairing, Unions, Powersets, and Infinity 19 4.1 Pairing . 19 4.2 Unions . 21 4.3 Powersets . 24 4.4 Infinity . 26 5 Case Study: A Computable Model of Hereditarily Finite Sets 29 5.1 HF-Sets in Maude . 30 5.2 Terms, Equations, and Term Rewriting . 33 5.3 Confluence, Termination, and Sufficient Completeness . 36 5.4 A Computable Model of HF-Sets . 39 5.5 HF-Sets as a Universe for Finitary Mathematics . 43 5.6 HF-Sets with Atoms . 47 6 Relations, Functions, and Function Sets 51 6.1 Relations and Functions . 51 6.2 Formula, Assignment, and Lambda Notations . 52 6.3 Images . 54 6.4 Composing Relations and Functions . 56 6.5 Abstract Products and Disjoint Unions . 59 6.6 Relating Function Sets . 62 7 Simple and Primitive Recursion, and the Peano Axioms 65 7.1 Simple Recursion . 65 7.2 Primitive Recursion . 67 7.3 The Peano Axioms . 69 8 Case Study: The Peano Language 71 9 Binary Relations on a Set 73 9.1 Directed and Undirected Graphs . 73 9.2 Transition Systems and Automata .
    [Show full text]
  • An Introduction to Computability Theory
    AN INTRODUCTION TO COMPUTABILITY THEORY CINDY CHUNG Abstract. This paper will give an introduction to the fundamentals of com- putability theory. Based on Robert Soare's textbook, The Art of Turing Computability: Theory and Applications, we examine concepts including the Halting problem, properties of Turing jumps and degrees, and Post's Theo- rem.1 In the paper, we will assume the reader has a conceptual understanding of computer programs. Contents 1. Basic Computability 1 2. The Halting Problem 2 3. Post's Theorem: Jumps and Quantifiers 3 3.1. Arithmetical Hierarchy 3 3.2. Degrees and Jumps 4 3.3. The Zero-Jump, 00 5 3.4. Post's Theorem 5 Acknowledgments 8 References 8 1. Basic Computability Definition 1.1. An algorithm is a procedure capable of being carried out by a computer program. It accepts various forms of numerical inputs including numbers and finite strings of numbers. Computability theory is a branch of mathematical logic that focuses on algo- rithms, formally known in this area as computable functions, and studies the degree, or level of computability that can be attributed to various sets (these concepts will be formally defined and elaborated upon below). This field was founded in the 1930s by many mathematicians including the logicians: Alan Turing, Stephen Kleene, Alonzo Church, and Emil Post. Turing first pioneered computability theory when he introduced the fundamental concept of the a-machine which is now known as the Turing machine (this concept will be intuitively defined below) in his 1936 pa- per, On computable numbers, with an application to the Entscheidungsproblem[7].
    [Show full text]
  • Effective Descriptive Set Theory
    Effective Descriptive Set Theory Andrew Marks December 14, 2019 1 1 These notes introduce the effective (lightface) Borel, Σ1 and Π1 sets. This study uses ideas and tools from descriptive set theory and computability theory. Our central motivation is in applications of the effective theory to theorems of classical (boldface) descriptive set theory, especially techniques which have no classical analogues. These notes have many errors and are very incomplete. Some important topics not covered include: • The Harrington-Shore-Slaman theorem [HSS] which implies many of the theorems of Section 3. • Steel forcing (see [BD, N, Mo, St78]) • Nonstandard model arguments • Barwise compactness, Jensen's model existence theorem • α-recursion theory • Recent beautiful work of the \French School": Debs, Saint-Raymond, Lecompte, Louveau, etc. These notes are from a class I taught in spring 2019. Thanks to Adam Day, Thomas Gilton, Kirill Gura, Alexander Kastner, Alexander Kechris, Derek Levinson, Antonio Montalb´an,Dean Menezes and Riley Thornton, for helpful conversations and comments on earlier versions of these notes. 1 Contents 1 1 1 1 Characterizing Σ1, ∆1, and Π1 sets 4 1 1.1 Σn formulas, closure properties, and universal sets . .4 1.2 Boldface vs lightface sets and relativization . .5 1 1.3 Normal forms for Σ1 formulas . .5 1.4 Ranking trees and Spector boundedness . .7 1 1.5 ∆1 = effectively Borel . .9 1.6 Computable ordinals, hyperarithmetic sets . 11 1 1.7 ∆1 = hyperarithmetic . 14 x 1 1.8 The hyperjump, !1 , and the analogy between c.e. and Π1 .... 15 2 Basic tools 18 2.1 Existence proofs via completeness results .
    [Show full text]
  • Approximation of Subsets of Natural Numbers by Ce Sets
    Approximation of subsets of natural numbers by c.e. sets Mohsen Mansouri1, Farzad Didehvar1,2 Abstract The approximation of natural numbers subsets has always been one of the fundamental issues in computability theory. Computable approximation, ∆2 − approximation. As well as introducing the generically computable sets have been some efforts for this purpose. In this paper, a type of approximation for natural numbers subsets by computably enumerable sets will be examined. For an infinite and non-c.e set, 푊푖 will be an 퐴. 푚푎푥푖푚푎푙 (maximal inside A) if 푊푖 ⊂ 퐴 is infinite and ∀푗(푊푖 ⊆ 푊푗 ⊆ 퐴) → ∆(푊푖, 푊푗) < ∞, where Δ is the symmetric difference of the two sets. In this study, the natural numbers subsets will be examined from the maximal subset contents point of view, and we will categorize them on this basis. We will study c.regular sets that are non-c.e. and include a maximal set inside themselves, and c.irregular sets that are non- c.e. and non-immune sets which do not include maximal sets. Finally, we study the graph of relationship between c.e. subsets of c.irregular sets. 1. Introduction In this paper, a type of approximation would be studied for natural numbers subsets by computably enumerable sets. Most methods in computability theory are trying to approximate the natural numbers subsets or examine how close a set is to being computable, so that after the computable sets, the most important sets are those that can be approximated by a computable sequence [1]. A computable approximation for approximating c.e. sets, Δ2-approximation, or trial and error method for approximating sets 퐴 ≤푇 0′ (when we have 퐴 = lim 퐴푠) as well as the 훴3-approximation are some examples of these s Methods.
    [Show full text]
  • The Entscheidungsproblem and Alan Turing
    The Entscheidungsproblem and Alan Turing Author: Laurel Brodkorb Advisor: Dr. Rachel Epstein Georgia College and State University December 18, 2019 1 Abstract Computability Theory is a branch of mathematics that was developed by Alonzo Church, Kurt G¨odel,and Alan Turing during the 1930s. This paper explores their work to formally define what it means for something to be computable. Most importantly, this paper gives an in-depth look at Turing's 1936 paper, \On Computable Numbers, with an Application to the Entscheidungsproblem." It further explores Turing's life and impact. 2 Historic Background Before 1930, not much was defined about computability theory because it was an unexplored field (Soare 4). From the late 1930s to the early 1940s, mathematicians worked to develop formal definitions of computable functions and sets, and applying those definitions to solve logic problems, but these problems were not new. It was not until the 1800s that mathematicians began to set an axiomatic system of math. This created problems like how to define computability. In the 1800s, Cantor defined what we call today \naive set theory" which was inconsistent. During the height of his mathematical period, Hilbert defended Cantor but suggested an axiomatic system be established, and characterized the Entscheidungsproblem as the \fundamental problem of mathemat- ical logic" (Soare 227). The Entscheidungsproblem was proposed by David Hilbert and Wilhelm Ackerman in 1928. The Entscheidungsproblem, or Decision Problem, states that given all the axioms of math, there is an algorithm that can tell if a proposition is provable. During the 1930s, Alonzo Church, Stephen Kleene, Kurt G¨odel,and Alan Turing worked to formalize how we compute anything from real numbers to sets of functions to solve the Entscheidungsproblem.
    [Show full text]
  • Index Sets of Some Computable Groups
    Index Sets of some Computable Groups Author: Abigail Raz Advisor: Professor Karen Lange May 2014 A Thesis Submitted To the Department of Mathematics Of Wellesley College In Partial Fulfillment Of the Prerequisite for Honors c 2014 Abigail Raz 1 Acknowledgements I would first like to thank my advisor Professor Karen Lange. She has quite literally taught me everything I know about computability. She has helped me develop as not only a math researcher, but also a writer and presenter. I would also like to thank NSF grant DMS-1100604 for funding summer research that was instrumental in helping me complete this thesis. I would also like to thank my entire thesis committee, Professor Diesl and Professor Shuchat of the math department and Professor McGowan of the philosophy department. Special thanks to Professor Diesl for meeting with me multiple times this semester to discuss my thesis research. In addition, I would like to thank all of my professors in the Wellesley math department for sharing with me their knowledge and passion for math. I also have to thank all of my amazing friends in the math department for their constant support throughout this process, and for the past four years. Together we have made it through seemingly endless problem sets and our transitions to the world of math research. Finally, I would like to thank all of my friends and family who have shaped my time here at Wellesley. Thanks to my father who first inspired my love of math, and my mother and sister who have consistently supported me and put up with all of my math talk.
    [Show full text]
  • Arxiv:1806.10363V1 [Math.LO]
    MEASURING THE COMPLEXITY OF REDUCTIONS BETWEEN EQUIVALENCE RELATIONS EKATERINA FOKINA, DINO ROSSEGGER, AND LUCA SAN MAURO Abstract. Computable reducibility is a well-established notion that allows to compare the complexity of various equivalence relations over the natural numbers. We generalize computable reducibility by introducing degree spectra of reducibility and bi-reducibility. These spectra provide a natural way of measuring the complexity of reductions between equivalence relations. We prove that any upward closed collection of Turing degrees with a countable basis can be realised as a reducibility spectrum or as a bi-reducibility spectrum. We show also that there is a reducibility spectrum of computably enumerable equivalence relations with no countable basis and a reducibility spectrum of computably enumerable equivalence relations which is downward dense, thus has no basis. 1. Introduction Computable reducibility is a long-standing notion that has proven to be fruit- ful for ranking the complexity of equivalence relations over the set ω of natural numbers. The following definition is the relativised version of the one commonly considered in the literature. Definition 1.1. Let R and S be two equivalence relations on ω, and let d be a Turing degree. R is d-computably reducible to S (notation: R ≤d S), if there is a d-computable function f such that, for all natural numbers x, y, the following holds xRy ⇔ f(x)Sf(y). If R ≤d S and S ≤d R, we write R ≡d S, and we say that R and S are bi-reducible by d. The case d = 0 has been thoroughly explored.
    [Show full text]