Death Receptor 5 Displayed on Extracellular Vesicles Decreases

Total Page:16

File Type:pdf, Size:1020Kb

Death Receptor 5 Displayed on Extracellular Vesicles Decreases University of Groningen Death Receptor 5 Displayed on Extracellular Vesicles Decreases TRAIL Sensitivity of Colon Cancer Cells Setroikromo, Rita; Zhang, Baojie; Reis, Carlos R; Mistry, Rima H; Quax, Wim J Published in: Frontiers in Cell and Developmental Biology DOI: 10.3389/fcell.2020.00318 IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2020 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Setroikromo, R., Zhang, B., Reis, C. R., Mistry, R. H., & Quax, W. J. (2020). Death Receptor 5 Displayed on Extracellular Vesicles Decreases TRAIL Sensitivity of Colon Cancer Cells. Frontiers in Cell and Developmental Biology, 8, 318. [318]. https://doi.org/10.3389/fcell.2020.00318 Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. fcell-08-00318 May 15, 2020 Time: 17:18 # 1 ORIGINAL RESEARCH published: 19 May 2020 doi: 10.3389/fcell.2020.00318 Death Receptor 5 Displayed on Extracellular Vesicles Decreases TRAIL Sensitivity of Colon Cancer Cells Rita Setroikromo†, Baojie Zhang†, Carlos R. Reis, Rima H. Mistry and Wim J. Quax* Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Netherlands Tumor necrosis factor–related apoptosis inducing ligand (TRAIL) is considered to be a promising antitumor drug because of its selective proapoptotic properties on tumor cells. However, the clinical application of TRAIL is until now limited because of the resistance of several cancer cells, which can occur at various levels in the TRAIL signaling pathway. The role of decoy receptors that can side-track TRAIL, thereby Edited by: Olivier Micheau, preventing the formation of an activated death receptor, has been extensively studied. In Université de Bourgogne, France this study, we have focused on extracellular vesicles (EVs) that are known to play a role Reviewed by: in cell-to-cell communication and that can be released by donor cells into the medium Marine Eduard Gasparian, Institute of Bioorganic Chemistry transferring their components to recipient cells. TRAIL-induced apoptotic signaling is (RAS), Russia triggered upon the binding of two death receptors, DR4 and DR5. Here, we found Ladislav Andera, that DR5 but not DR4 is present in the conditioned medium (CM)–derived from various Institute of Molecular Genetics (ASCR), Czechia cancer cells. Moreover, we observed that DR5 was exposed on EVs and can act as *Correspondence: “decoy receptor” for binding to TRAIL. This results in a strongly reduced number of Wim J. Quax apoptotic cells upon treatment with DR5-specific TRAIL variant DHER in CM. This [email protected] reduction happened with EVs containing either the long or short isoform of DR5. Taken †These authors have contributed equally to this work together, we demonstrated that colon rectal tumor cells can secrete DR5-coated EVs, and this can cause TRAIL resistance. This is to our knowledge a novel finding and Specialty section: provides new insights into understanding TRAIL sensitivity. This article was submitted to Signaling, Keywords: extracellular vesicles, DR5, TRAIL, apoptosis, conditioned medium, receptor–ligand trafficking a section of the journal Frontiers in Cell and Developmental Biology INTRODUCTION Received: 24 January 2020 Accepted: 09 April 2020 The secretion of extracellular vesicles (EVs) is an evolutionally conserved process spanning Published: 19 May 2020 from bacteria to humans and plants (Rivera et al., 2010; Van Niel et al., 2018; Cui et al., Citation: 2019). The significance of EVs on the one hand relates to their capacity to eliminate unwanted Setroikromo R, Zhang B, Reis CR, components from the cell and on the other hand to their capability to communicate with Mistry RH and Quax WJ (2020) Death other cells by exchanging components–from DNA to protein–and thereby influencing the signal Receptor 5 Displayed on Extracellular Vesicles Decreases TRAIL Sensitivity transduction pathways of target cells (Colombo et al., 2014; Yáñez-Mó et al., 2015). They are of Colon Cancer Cells. highly heterogeneous and can be broadly divided into two main categories based on their Front. Cell Dev. Biol. 8:318. biogenesis and characterizations (Colombo et al., 2014; Van Niel et al., 2018). The term exosomes doi: 10.3389/fcell.2020.00318 (30–100 nm) was first used to describe the EVs released by reticulocytes during differentiation Frontiers in Cell and Developmental Biology| www.frontiersin.org 1 May 2020| Volume 8| Article 318 fcell-08-00318 May 15, 2020 Time: 17:18 # 2 Setroikromo et al. DR5-Coated Vesicles as Decoy Receptors (Johnstone et al., 1987). It originates from inward budding of MATERIALS AND METHODS endosome membrane creating the so-called cargo-containing intraluminal vesicle (ILV) inside the early endosome. These Cell Lines and Culture Conditions early endosomes can either be directed to the lysosomes or Human colorectal carcinoma cell lines (Colo205, HCT 116, fused together and mature to the late multivesicular endosomes and DLD-1), human Burkitt lymphoma B cell line (BJAB), (MVEs). MVEs when fused with cell membrane can release and the Chinese hamster ovary cell line (CHO) were cultured their cargo-containing ILV in the extracellular space, and these in RPMI1640 medium supplemented with 10% fetal bovine small vesicles are called exosomes (McGough and Vincent, serum, 100 U/mL penicillin, and 100 mg/mL streptomycin in 2016). The other group of EVs is named microvesicles (50– ◦ a humidified incubator at 37 C with 5% CO2. All materials 1,000 nm, up to 10 mm), which are directly formed after budding mentioned above were purchased from Thermo Fisher Scientific or fission of plasma membrane in response to diverse cell (Waltham, MA, United States). BJAB cell lines, the wild-type cells stimulation; this includes the apoptotic bodies. Owing to their BJAB (BJAB WT), BJAB overexpressing DR5 (BJAB DR5), and varied compositions, increasing evidence shows that EVs act as a deficient DR5 short isoform (BJAB DR5s DEF) were kindly signaling vesicles not only in normal cell homeostasis but also in provided by Dr. Andrew Thornburn (University of Colorado many pathological conditions (Cocucci et al., 2009). Health Sciences Centre, Aurora, CO, United States). CHO cell Cancer is a diverse group of diseases caused by proliferating lines, the wild-type cells (CHO WT), a mutant overexpressing cells traditionally treated with chemotherapy and/or DR5 long isoform (CHO TV1), and a mutant overexpressing radiotherapy. These, however, also give harmful side effects to DR5 short isoform (CHO TV2) were provided by Organon healthy cells. More preferred therapeutics are being developed in (Oss, Netherlands). such a way that they selectively target cancer cells and treatment with tumor necrosis factor–related apoptosis inducing ligand Reagents (TRAIL) is considered to be promising because of its naturally Soluble (aa 114–281) wild-type TRAIL (TRAIL WT), DR4- proapoptotic properties specifically directed to cancer cells specific TRAIL variant (4C7), and DR5-specific TRAIL variant (Wong et al., 2019). Binding of TRAIL to two death receptors (DHER) were constructed and produced as previously described (DR4 and DR5) triggers the recruitment of Fas-associated (Van Der Sloot et al., 2006; Reis et al., 2010). death domain and subsequent pro–caspase-8. This complex, also known as death-inducing signaling complex (DISC), will Collecting Conditioned Medium and initiate downstream caspase-dependent apoptotic signaling and eventually leads to cell death (Nagata, 1997). Although cancer Isolation of EVs cells are more prone to TRAIL-induced cell death than normal Cells were cultured at the concentration of 150,000 cells/mL in exosome-free medium for 48 h in humidified incubator cells, this signaling pathway can be interrupted by many other ◦ factors that lead to resistance in several cancer cells. For instance, at 37 C with 5% carbon dioxide. Medium was collected and three decoy receptors (DcR1, DcR2, and OPG) can also bind spun down at 250 g for 10 min to discard the floating cells. to TRAIL and thereby decrease the availability of free TRAIL This supernatant is from now on called conditioned medium for the binding to the death receptors, leading to inhibition of (CM). EVs were isolated by differential centrifugation strategy: apoptosis (Mahalingam et al., 2009). Despite the importance first, sedimentation of CM at 3,000 g for 15 min; second, of this classical ligand–receptor binding to induce apoptosis, sedimentation of the supernatant at 17,000 g for 20 min; and ligand-induced receptor internalization, and/or intercellular finally with ultracentrifugation at 30,000 g for 3 h. From the last run, the pellet was used as EVs and resuspended in phosphate- receptor trafficking are also important for adequate transduction ◦ of the apoptosis signaling. Likewise, nuclear localization of buffered saline (PBS) and stored at −80 C. DR5 by importin b1 decreases TRAIL-induced cell death in human tumor cells (Kojima et al., 2011).
Recommended publications
  • CD40L TNF-Related Factors BAFF, APRIL, and Lymphocytic Leukemia
    Published May 16, 2012, doi:10.4049/jimmunol.1102066 The Journal of Immunology Stromal Endothelial Cells Establish a Bidirectional Crosstalk with Chronic Lymphocytic Leukemia Cells through the TNF-Related Factors BAFF, APRIL, and CD40L Montserrat Cols,* Carolina M. Barra,† Bing He,* Irene Puga,† Weifeng Xu,* April Chiu,‡ Wayne Tam,x Daniel M. Knowles,x Stacey R. Dillon,{ John P. Leonard,‖ Richard R. Furman,‖ Kang Chen,* and Andrea Cerutti*,†,# Chronic lymphocytic leukemia (CLL) is a clonal B cell disorder of unknown origin. Accessory signals from the microenvironment are critical for the survival, expansion, and progression of malignant B cells. We found that the CLL stroma included microvascular endothelial cells (MVECs) expressing BAFF and APRIL, two TNF family members related to the T cell-associated B cell-stimulating molecule CD40L. Constitutive release of soluble BAFF and APRIL increased upon engagement of CD40 on MVECs by CD40L aberrantly expressed on CLL cells. In addition to enhancing MVEC expression of CD40, leukemic CD40L induced cleavases that elicited intracellular processing of pro-BAFF and pro-APRIL proteins in MVECs. The resulting soluble BAFF and APRIL proteins delivered survival, activation, Ig gene remodeling, and differentiation signals by stimulating CLL cells through TACI, BAFF-R, and BCMA receptors. BAFF and APRIL further amplified CLL cell survival by upregulating the expression of leukemic CD40L. Inhibition of TACI, BCMA, and BAFF-R expression on CLL cells; abrogation of CD40 expression in MVECs; or suppression of BAFF and APRIL cleavases in MVECs reduced the survival and diversification of malignant B cells. These data indicate that BAFF, APRIL, and CD40L form a CLL-enhancing bidirectional signaling network linking neoplastic B cells with the microvascular stroma.
    [Show full text]
  • RANKL As a Novel EMT Marker 858 Cell Research (2008) 18:858-870
    npg RANKL as a novel EMT marker 858 Cell Research (2008) 18:858-870. npg © 2008 IBCB, SIBS, CAS All rights reserved 1001-0602/08 $ 30.00 ORIGINAL ARTICLE www.nature.com/cr Receptor activator of NF-κB Ligand (RANKL) expression is associated with epithelial to mesenchymal transition in human prostate cancer cells Valerie A Odero-Marah1, Ruoxiang Wang1, Gina Chu1, Majd Zayzafoon2, Jianchun Xu1, Chunmeng Shi1, Fray F Marshall1, Haiyen E Zhau1, Leland WK Chung1 1Molecular Urology and Therapeutics Program, Department of Urology and Winship Cancer Institute, Emory University School of Medicine, 1365B Clifton Road, NE, Atlanta, GA 30322, USA; 2Department of Pathology, University of Alabamn, Birmingham, AL 35294, USA Epithelial-mesenchymal transition (EMT) in cancer describes the phenotypic and behavioral changes of cancer cells from indolent to virulent forms with increased migratory, invasive and metastatic potential. EMT can be induced by soluble proteins like transforming growth factor β1 (TGFβ1) and transcription factors including Snail and Slug. We uti- lized the ARCaPE/ARCaPM prostate cancer progression model and LNCaP clones stably overexpressing Snail to identify novel markers associated with EMT. Compared to ARCaPE cells, the highly tumorigenic mesenchymal ARCaPM and ARCaPM1 variant cells displayed a higher incidence of bone metastasis after intracardiac administration in SCID mice. ARCaPM and ARCaPM1 expressed mesenchymal stromal markers of vimentin and N-cadherin in addition to elevated levels of Receptor Activator of NF-κB Ligand (RANKL). We observed that both epidermal growth factor (EGF) plus TGFβ1 treatment and Snail overexpression induced EMT in ARCaPE and LNCaP cells, and EMT was associated with increased expression of RANKL protein.
    [Show full text]
  • CD137 Microbead Kit CD137 Microbead + Cells
    CD137 MicroBead Kit human Order no. 130-093-476 Contents 1.2 Background information 1. Description The activation-induced antigen CD137 (4-1BB) is a 30 kDa glycoprotein of the tumor necrosis factor (TNF) receptor 1.1 Principle of the MACS® Separation + + superfamily. It is mainly expressed on activated CD4 and CD8 1.2 Background information T cells, activated B cells, and natural killer cells, but can also be 1.3 Applications found on resting monocytes and dendritic cells. As a costimulatory molecule, CD137 is involved in the activation 1.4 Reagent and instrument requirements and survival of CD4, CD8, and NK cells. Its engagement enhances 2. Protocol expansion of T cells and activates them to secrete cytokines. CD137 has been described to be a suitable marker for antigen- 2.1 Sample preparation specific activation of human CD8+ T cells, as CD137 is not expressed 2.2 Magnetic labeling on resting CD8+ T cells and its expression is reliably induced after 2.3 Magnetic separation 24 hours of stimulation.¹,² 3. Example of a separation using the CD137 MicroBead Kit 1.3 Applications 4. References ● Enrichment of CD137+ T cells for phenotypical and functional 5. Appendix characterization. ● Enrichment of activated antigen-specific T cells after antigen- Warnings specific stimulation. Reagents contain sodium azide. Under acidic conditions sodium 1.4 Reagent and instrument requirements azide yields hydrazoic acid, which is extremely toxic. Azide ● compounds should be diluted with running water before discarding. Buffer: Prepare a solution containing phosphate-buffered These precautions are recommended to avoid deposits in plumbing saline (PBS), pH 7.2, 0.5% bovine serum albumin (BSA), where explosive conditions may develop.
    [Show full text]
  • Human B Cell Isolation Product Selection Diagram
    Human B Cell Isolation Product Selection Explore the infographic below to find the correct human B cell isolation product for your application. 1. Your Starting Sample Whole Peripheral Blood/Buffy Coat PBMCs/Leukapheresis Pack 2. Cell Separation Platform Immunodensity Cell Separation Immunomagnetic Cell Separation Immunomagnetic Cell Separation 3. Product Line RosetteSep™ EasySep™ EasySep™ Sequential Selection Negative Selection Negative Selection Positive Selection Negative Selection Positive Selection 4. Selection Method (Positive + Negative) iRosetteSep™ HLA iEasySep™ Direct HLA i, iiEasySep™ HLA iEasySep™ HLA B Cell viEasySep™ Human CD19 EasySep™ Human IgG+ B Cell Enrichment Cocktail B Cell Isolation Kit Chimerism Whole Blood Enrichment Kit Positive Selection Kit II Memory B Cell Isolation (15064HLA)1, 2, 3 (89684) / EasySep™ Direct B Cell Positive Selection (19054HLA)1, 2 (17854)1, 2 Kit (17868)1 (optional), 2' HLA Crossmatch B Cell Kit (17886)1, 2 Isolation Kit (19684 - 1, 2 RosetteSep™ Human available in the US only) iiiEasySep™ Human B Cell viEasySep™ Release EasySep™ Human Memory 5. Cell Isolation Kits B Cell Enrichment Cocktail i, iiEasySep™ HLA Enrichment Kit Human CD19 Positive B Cell Isolation Kit 1, 2, 3 1, 2 1, 2 1 (optional), 2 Catalog #s shown in ( ) (15024) Chimerism Whole Blood (19054) Selection Kit (17754) (17864) EasySep™ Direct Human CD19 Positive Selection B-CLL Cell Isolation Kit Kit (17874)1, 2 1, 2, 3, 4 *RosetteSep™ Human (19664) iiiEasySep™ Human B Cell EasySep™ Human CD138 Multiple Myeloma Cell Isolation Kit
    [Show full text]
  • (CS-ⅣA-Be), a Novel IL-6R Antagonist, Inhibits IL-6/STAT3
    Author Manuscript Published OnlineFirst on February 29, 2016; DOI: 10.1158/1535-7163.MCT-15-0551 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Chikusetsusaponin Ⅳa butyl ester (CS-Ⅳa-Be), a novel IL-6R antagonist, inhibits IL-6/STAT3 signaling pathway and induces cancer cell apoptosis Jie Yang 1, 2, Shihui Qian 2, Xueting Cai 1, 2, Wuguang Lu 1, 2, Chunping Hu 1, 2, * Xiaoyan Sun1, 2, Yang Yang1, 2, Qiang Yu 3, S. Paul Gao 4, Peng Cao 1, 2 1. Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China 2. Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China 3. Shanghai Institute of Materia Medical, Chinese Academy of Sciences, Shanghai, 201203, China 4. Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY10065, USA Running title: CS-Ⅳa-Be, a novel IL-6R antagonist, inhibits IL-6/STAT3 Keywords: Chikusetsusaponin Ⅳ a butyl ester (CS- Ⅳ a-Be), STAT3, IL-6R, antagonist, cancer Grant support: P. Cao received Jiangsu Province Funds for Distinguished Young Scientists (BK20140049) grant, J. Yang received National Natural Science Foundation of China (No. 81403151) grant, and X.Y. Sun received National Natural Science Foundation of China (No. 81202576) grant. Corresponding author: Peng Cao Institute: Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China Mailing address: 100#, Shizi Street, Hongshan Road, Nanjing, Jiangsu, China Tel: +86-25-85608666 Fax: +86-25-85608666 Email address: [email protected] The first co-authors: Jie Yang and Shihui Qian The authors disclose no potential conflicts of interest.
    [Show full text]
  • BCMA-Targeted Immunotherapy for Multiple Myeloma Bo Yu1, Tianbo Jiang2 and Delong Liu2*
    Yu et al. Journal of Hematology & Oncology (2020) 13:125 https://doi.org/10.1186/s13045-020-00962-7 REVIEW Open Access BCMA-targeted immunotherapy for multiple myeloma Bo Yu1, Tianbo Jiang2 and Delong Liu2* Abstract B cell maturation antigen (BCMA) is a novel treatment target for multiple myeloma (MM) due to its highly selective expression in malignant plasma cells (PCs). Multiple BCMA-targeted therapeutics, including antibody-drug conjugates (ADC), chimeric antigen receptor (CAR)-T cells, and bispecific T cell engagers (BiTE), have achieved remarkable clinical response in patients with relapsed and refractory MM. Belantamab mafodotin-blmf (GSK2857916), a BCMA-targeted ADC, has just been approved for highly refractory MM. In this article, we summarized the molecular and physiological properties of BCMA as well as BCMA-targeted immunotherapeutic agents in different stages of clinical development. Keywords: B cell maturation antigen, BCMA, Belantamab mafodotin, CAR-T, Antibody-drug conjugate, Bispecific T cell engager Introduction B cell maturation antigen (BCMA) Recent advances in novel therapeutics such as prote- BCMA is encoded by a 2.92-kb TNFRSF17 gene located asome inhibitors (PI) and immunomodulatory drugs on the short arm of chromosome 16 (16p13.13) and (IMiD) have significantly improved the treatment out- composed of 3 exons separated by 2 introns (Fig. 1). comes in patients with multiple myeloma (MM) [1–8]. BCMA is a 184 amino acid and 20.2-kDa type III trans- However, most MM patients eventually relapse due to membrane glycoprotein, with the extracellular N the development of drug resistance [9]. In addition, terminus containing a conserved motif of 6 cysteines many of the current popular target antigens, such as [18–21].
    [Show full text]
  • Antagonist Antibodies Against Various Forms of BAFF: Trimer, 60-Mer, and Membrane-Bound S
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2016/07/19/jpet.116.236075.DC1 1521-0103/359/1/37–44$25.00 http://dx.doi.org/10.1124/jpet.116.236075 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 359:37–44, October 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Unexpected Potency Differences between B-Cell–Activating Factor (BAFF) Antagonist Antibodies against Various Forms of BAFF: Trimer, 60-Mer, and Membrane-Bound s Amy M. Nicoletti, Cynthia Hess Kenny, Ashraf M. Khalil, Qi Pan, Kerry L. M. Ralph, Julie Ritchie, Sathyadevi Venkataramani, David H. Presky, Scott M. DeWire, and Scott R. Brodeur Immune Modulation and Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut Received June 20, 2016; accepted July 18, 2016 Downloaded from ABSTRACT Therapeutic agents antagonizing B-cell–activating factor/B- human B-cell proliferation assay and in nuclear factor kB reporter lymphocyte stimulator (BAFF/BLyS) are currently in clinical assay systems in Chinese hamster ovary cells expressing BAFF development for autoimmune diseases; belimumab is the first receptors and transmembrane activator and calcium-modulator Food and Drug Administration–approved drug in more than and cyclophilin ligand interactor (TACI). In contrast to the mouse jpet.aspetjournals.org 50 years for the treatment of lupus. As a member of the tumor system, we find that BAFF trimer activates the human TACI necrosis factor superfamily, BAFF promotes B-cell survival and receptor. Further, we profiled the activities of two clinically ad- homeostasis and is overexpressed in patients with systemic vanced BAFF antagonist antibodies, belimumab and tabalumab.
    [Show full text]
  • Circadian Phase-Specific Degradation of the F-Box Protein ZTL Is Mediated by the Proteasome
    Circadian phase-specific degradation of the F-box protein ZTL is mediated by the proteasome Woe-Yeon Kim*, Ruishuang Geng*, and David E. Somers† Department of Plant Biology͞Plant Biotechnology Center, Ohio State University, Columbus, OH 43210 Edited by Maarten J. Chrispeels, University of California at San Diego, La Jolla, CA, and approved February 3, 2003 (received for review November 14, 2002) Critical to the maintenance of circadian rhythmicity is the cyclic Materials and Methods expression of at least some components of the central oscillator. Plant and Cell Culture Growth and Maintenance. Arabidopsis High-amplitude cycling of mRNA and protein abundance, protein suspension-cultured cells were grown in 50 ml of Gamborg B5 ͞ phosphorylation and nuclear cytoplasmic shuttling have all been medium (Sigma) supplemented with 1.1 mg͞liter 2,4-D and 0.5 implicated in the maintenance of circadian period. Here we use a g͞liter MES at 22°C under continuous fluorescent white light (60 newly characterized Arabidopsis suspension cell culture to estab- ␮mol mϪ2⅐sϪ1). Cells were subcultured every 7 days at a 10-fold lish that the rhythmic changes in the levels of the clock-associated dilution with fresh medium. For circadian studies, 15 ml of F-box protein, ZTL, are posttranscriptionally controlled through 8-day-old cultures were diluted to 50 ml with fresh medium, different circadian phase-specific degradation rates. This proteol- grown in constant light for 1 day, then shifted to 12͞12 h ysis is proteasome dependent, implicating ZTL itself as substrate light͞dark cycles for 2 or 3 days before onset of treatments. for ubiquitination.
    [Show full text]
  • TACI:Fc Scavenging B Cell Activating Factor (BAFF) Alleviates Ovalbumin-Induced Bronchial Asthma in Mice
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 39, No. 3, 343-352, June 2007 TACI:Fc scavenging B cell activating factor (BAFF) alleviates ovalbumin-induced bronchial asthma in mice 1,2,3 2 Eun-Yi Moon and Sook-Kyung Ryu the percentage of non-lymphoid cells and no changes were detected in lymphoid cell population. 1 Department of Bioscience and Biotechnology Hypodiploid cell formation in BALF was decreased Sejong University by OVA-challenge but it was recovered by TACI:Fc Seoul 143-747, Korea treatment. Collectively, data suggest that asthmatic 2 Laboratory of Human Genomics symptom could be alleviated by scavenging BAFF Korea Research Institute of Bioscience and Biotechnology (KRIBB) and then BAFF could be a novel target for the Daejeon 305-806, Korea develpoment of anti-asthmatic agents. 3 Corresponding author: Tel, 82-2-3408-3768; Fax, 82-2-466-8768; E-mail, [email protected] Keywords: asthma; B-cell activating factor; ovalbu- and [email protected] min; transmembrane activator and CAML interactor protein Accepted 28 March 2007 Introduction Abbreviations: BAFF, B cell activating factor belonging to TNF- family; BALF, bronchoalveolar lavage fluid; OVA, ovalbumin; PAS, Mature B cell generation and maintenance are regu- periodic acid-Schiff; Prx, peroxiredoxin; TACI, transmembrane lated by B-cell activating factor (BAFF). BAFF is pro- activator and calcium modulator and cyclophilin ligand interactor duced by macrophages or dendritic cells upon stim- ulation with LPS or IFN- . BAFF belongs to the TNF family. Its biological role is mediated by the specific Abstract receptors, B-cell maturation antigen (BCMA), trans- membrane activator and calcium modulator and cy- Asthma was induced by the sensitization and chal- clophilin ligand interactor (TACI) and BAFF receptor, lenge with ovalbumin (OVA) in mice.
    [Show full text]
  • (Blys) on Diabetes-Related Periodontitis
    ORIGINAL RESEARCH Immunology Preliminary findings on the possible role of B-lymphocyte stimulator (BLyS) on diabetes-related periodontitis Marx Haddley Ferreira Abstract: The possible role of B-cell growth and differentiation- DRUMOND(a) related cytokines on the pathogenesis of diabetes-related periodontitis Luciano Eduardo PUHL(a) has not been addressed so far. The aim of this study was to evaluate Poliana Mendes DUARTE(b) the effects of diabetes mellitus (DM) on the gene expression of Tamires Szeremeske de proliferation-inducing ligand (APRIL) and B-lymphocyte stimulator MIRANDA(c) (BLyS), two major cytokines associated to survival, differentiation Juliana Trindade and maturation of B cells in biopsies from gingival tissue with CLEMENTE-NAPIMOGA(a) periodontitis. Gingival biopsies were obtained from subjects with Daiane Cristina PERUZZO(a) periodontitis (n = 17), with periodontitis and DM (n = 19) as well as Elizabeth Ferreira MARTINEZ(a) from periodontally and systemically healthy controls (n = 10). Gene Marcelo Henrique NAPIMOGA(a) expressions for APRIL, BLyS, RANKL, OPG, TRAP and DC-STAMP were evaluated using qPCR. The expressions APRIL, BLyS, RANKL, (a) Faculdade São Leopoldo Mandic, Instituto OPG, TRAP and DC-STAMP were all higher in both periodontitis de Pesquisas São Leopoldo Mandic, groups when compared to the control group (p < 0.05). Furthermore, Campinas, SP, Brazil. the expressions of BLyS, TRAP and RANKL were significantly higher (b) University of Florida, College of Dentistry, in the subjects with periodontitis and DM when compared to those Department of Periodontology, Gainesville, FL, USA. with periodontitis alone (p < 0.05). The mRNA levels of BLyS correlated positively with RANKL in the subjects with periodontitis and DM (c) Guarulhos University, Dental Research Division, Department of Periodontology, São (p < 0.05).
    [Show full text]
  • CD134 (OX40) Antibodies, Human for Research Use Only
    CD134 (OX40) antibodies, human For research use only One test corresponds to labeling of up to 107 cells in a total volume of 100 µL. Product Content Order no. CD134 (OX40)­VioBright FITC for 30 tests 130­109­664 CD134 (OX40)­VioBright FITC for 100 tests 130­109­605 CD134 (OX40)­PE for 30 tests 130­109­660 CD134 (OX40)­PE for 100 tests 130­109­601 CD134 (OX40)­APC for 30 tests 130­109­661 CD134 (OX40)­APC for 100 tests 130­109­602 CD134 (OX40)­PE­Vio770 for 30 tests 130­109­662 CD134 (OX40)­PE­Vio770 for 100 tests 130­109­603 CD134 (OX40)­APC­Vio770 for 30 tests 130­109­663 CD134 (OX40)­APC­Vio770 for 100 tests 130­109­604 CD134 (OX40)­Biotin for 30 tests 130­109­659 CD134 (OX40)­Biotin for 100 tests 130­109­600 Warnings Reagents contain sodium azide. Under acidic conditions sodium azide yields hydrazoic acid, which is extremely toxic. Azide compounds should be diluted with running water before discarding. These precautions are recommended to avoid deposits in plumbing where explosive conditions may develop. Technical data and background information Antigen CD134 (OX40) Clone REA621 Isotype recombinant human IgG1 Isotype control REA Control (S) antibodies Alternative names of antigen OX­40, OX40 Molecular mass of antigen [kDa] 27 Distribution of antigen B cells, endothelial cells, fibroblasts, lymphocytes, T cells Product format Reagents are supplied in buffer containing stabilizer and 0.05% sodium azide. Fixation Cells should be stained prior to fixation, if formaldehyde is used as a fixative. Storage Store protected from light at 2–8 °C.
    [Show full text]
  • The Thrombopoietin Receptor : Revisiting the Master Regulator of Platelet Production
    This is a repository copy of The thrombopoietin receptor : revisiting the master regulator of platelet production. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/175234/ Version: Published Version Article: Hitchcock, Ian S orcid.org/0000-0001-7170-6703, Hafer, Maximillian, Sangkhae, Veena et al. (1 more author) (2021) The thrombopoietin receptor : revisiting the master regulator of platelet production. Platelets. pp. 1-9. ISSN 0953-7104 https://doi.org/10.1080/09537104.2021.1925102 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Platelets ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/iplt20 The thrombopoietin receptor: revisiting the master regulator of platelet production Ian S. Hitchcock, Maximillian Hafer, Veena Sangkhae & Julie A. Tucker To cite this article: Ian S. Hitchcock, Maximillian Hafer, Veena Sangkhae & Julie A. Tucker (2021): The thrombopoietin receptor: revisiting the master regulator of platelet production, Platelets, DOI: 10.1080/09537104.2021.1925102 To link to this article: https://doi.org/10.1080/09537104.2021.1925102 © 2021 The Author(s).
    [Show full text]