3. Silicification of Deep-Sea Sediments and the Oxygen Isotope
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Radiolarians, Radiolarites, and Mesozoic Paleogeography of the Circum-Mediterranean Alpine Belts
3 Radiolarians, Radiolarites, and Mesozoic Paleogeography of the Circum-Mediterranean Alpine Belts Patrick De Wever Overview pearance of all the radiolarites in the Uppermost Jurassic may be attributed to a drastic change in cir Radiolarites are of great importance as bathymetric culation from gyres producing upwelling in the indicators for paleogeographic reconstructions and Tethyan basin, to latitudinal, east-to-west circula geodynamic models. Only recently have we been tion through Central America which broke down the able to date radiolarites and many age dates are scat upwelling regime in much of the tethyan area. tered through the specialized geologic literature. The inventory ofavailable data from the Mesozoic of the circum-Mediterranean Alpine fold belts reveals Introduction two general periods of 'radiolarite sedimentation, both associated with sedimentary and ophiolitic Radiolarites (rhythmically centimeter-bedded cherts sequences: one period occurred during Triassic alternating with millimeter-bedded shale) are of and/or Liassic time, the other during Dogger and/or great importance for paleogeographic reconstruc MaIm time. The Triassic-Liassic sections are alloch tions and geodynamic models because of their bath tonous. Radiolarites associated with extrusive rocks ymetric significance and their frequent association are considered to be the sedimentary cover of an with ophiolites. They are a very good marker for the oceanic crust, either of an open ocean, back-arc study of margin formation, subsidence, and evolu basin or small ocean basin. Radiolarites intercalated tion and are important for dating the oceanic crust. with other sedimentary rocks belong to nappes with However, direct dating of radiolarite was not pos unknown basement rocks, probably of thinned con sible until recently, since these sedimentary rocks do tinental crust. -
Key to Rocks & Minerals Collections
STATE OF MICHIGAN MINERALS DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY DIVISION A mineral is a rock substance occurring in nature that has a definite chemical composition, crystal form, and KEY TO ROCKS & MINERALS COLLECTIONS other distinct physical properties. A few of the minerals, such as gold and silver, occur as "free" elements, but by most minerals are chemical combinations of two or Harry O. Sorensen several elements just as plants and animals are Reprinted 1968 chemical combinations. Nearly all of the 90 or more Lansing, Michigan known elements are found in the earth's crust, but only 8 are present in proportions greater than one percent. In order of abundance the 8 most important elements Contents are: INTRODUCTION............................................................... 1 Percent composition Element Symbol MINERALS........................................................................ 1 of the earth’s crust ROCKS ............................................................................. 1 Oxygen O 46.46 IGNEOUS ROCKS ........................................................ 2 Silicon Si 27.61 SEDIMENTARY ROCKS............................................... 2 Aluminum Al 8.07 METAMORPHIC ROCKS.............................................. 2 Iron Fe 5.06 IDENTIFICATION ............................................................. 2 Calcium Ca 3.64 COLOR AND STREAK.................................................. 2 Sodium Na 2.75 LUSTER......................................................................... 2 Potassium -
Origin of Fibrosity and Banding in Agates from Flood Basalts: American Journal of Science, V
Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Senior Integrative Exercise March 9, 2005 Submitted in partial fulfillment of the requirements for a Bachelor of Arts degree from Carleton College, Northfield, Minnesota. 2 Table of Contents AGATES: A LITERATURE REVEW………………………………………...……..3 Introduction………………....………………………………………………….4 Structural and compositional description of agates………………..………..6 Some problems concerning agate genesis………………………..…………..11 Silica Sources…………………………………………..………………11 Method of Deposition………………………………………………….13 Temperature of Formation…………………………………………….16 Age of Agates…………………………………………………………..17 LAKE SUPERIOR AGATES: AN ELECTRON BACKSCATTER DIFFRACTION (EBSD) ANALYSIS …………………………………………………………………..19 Abstract………………………………………………………………………...19 Introduction……………………………………………………………………19 Geologic setting………………………………………………………………...20 Methods……………………………………………………...…………………20 Results………………………………………………………….………………22 Discussion………………………………………………………………………26 Conclusions………………………………………………….…………………26 Acknowledgments……………………………………………………..………………28 References………………………………………………………………..……………28 3 Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Carleton College Senior Integrative Exercise March 9, 2005 Advisor: Cam Davidson 4 AGATES: A LITERATURE REVEW Introduction Agates, valued as semiprecious gemstones for their colorful, intricate banding, (Fig.1) are microcrystalline quartz nodules found in veins and cavities -
Costa Rica) Geologica Acta: an International Earth Science Journal, Vol
Geologica Acta: an international earth science journal ISSN: 1695-6133 [email protected] Universitat de Barcelona España Denyer, P.; Baumgartner, P.O. Emplacement of Jurassic-Lower Cretaceous radiolarites of the Nicoya Complex (Costa Rica) Geologica Acta: an international earth science journal, vol. 4, núm. 1-2, 2006, pp. 203-218 Universitat de Barcelona Barcelona, España Available in: http://www.redalyc.org/articulo.oa?id=50540212 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Geologica Acta, Vol.4, Nº1-2, 2006, 203-218 Available online at www.geologica-acta.com Emplacement of Jurassic-Lower Cretaceous radiolarites of the Nicoya Complex (Costa Rica) 1 2 P. DENYER and P.O. BAUMGARTNER 1 Escuela Centroamericana de Geología, Universidad de Costa Rica P.O. Box 214-2060, San José Costa Rica. E-mail: [email protected] 2 Institut de Géologie et Paléontologie, Université de Lausanne BFSH2-1015 Lausanne, Switzerland. E-mail: [email protected] ABSTRACT We present a new model to explain the origin, emplacement and stratigraphy of the Nicoya Complex in the NW part of the Nicoya Peninsula (Costa Rica) based on twenty-five years of field work, accompanied with the evo- lution of geochemical, vulcanological, petrological, sedimentological and paleontological paradigms. The igneous-sedimentary relation, together with radiolarian biochronology of the NW-Nicoya Peninsula is re-exa- mined. We interpret the Nicoya Complex as a cross-section of a fragment of the Late Cretaceous Caribbean Plateau, in which the deepest levels are exposed in the NW-Nicoya Peninsula. -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Data of Geochemistry
Data of Geochemistry * Chapter T. Nondetrital Siliceous Sediments GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Data of Geochemistry Michael Fleischer, Technical Editor Chapter T. Nondetrital Siliceous Sediments By EARLE R. CRESSMAN GEOLOGICAL SURVEY PROFESSIONAL PAPER 440-T Tabulation and discussion of chemical analyses of chert with respect to mineralogic composition, petrographic type, and geologic occurrence UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1962 UNITED STATES DEPARTMENT OF THE INTERIOR STEW ART L. UDALL, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. DATA OP GEOCHEMISTRY, SIXTH EDITION Michael Fleischer, Technical Editor The first edition of the Data of Geochemistry, by F. W. Clarke, was published in 1908 as U.S. Geological Survey Bulletin 330. Later editions, also by Clarke, were published in 1911, 1916, 1920, and 1924 as Bul letins 491, 616, 695, and 770. This, the sixth edition, has been written by several scientists in the Geological Survey and in other institutions in the United States and abroad, each preparing a chapter on his special field. The current edition is being published in individual chapters, titles of which are listed below. Chapters already published are indicated by boldface type. CHAPTER A. The chemical elements B. Cosmochemistry C. Internal structure and composition of the Earth D. Composition of the earth's crust E. Chemistry of the atmosphere F. Chemical composition of subsurface waters, by Donald E. White, John D. Hem, and G. A. Waring G. Chemical composition of rivers and lakes, by Daniel A. Livingstone H. Chemistry of the oceans I. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
The Geological Distribution of Chert in the Brooks Range
August 30,1995 Price: $2.00 Division of Geological & Geophysical Surveys PUBLIC-DATA FILE 95-32 THE GEOLOGICAL DISTRIBUTION OF CHERT IN THE BROOKS RANGE by C.G. Mull August 1995 THIS REPORT HAS NOT BEEN REVIEWED FOR TECHNICAL CONTENT (EXCEPT AS NOTED IN TEXT) OR FOR CONFORMITY TO THE EDITORIAL STANDARDS OF DGGS. Released by STATE OF ALASKA DEPARTMENT OF NATURAL RESOURCES Division of Geological & Geophysical Surveys 794 University Avenue, Suite 200 Fairbanks, Alaska 99709-3645 THE GEOLOGICAL DISTRIBUTION OF QHERT IN THE BROOKS RANGE CONTENTS ABSTRACT THE ORIGIN OF CHERT IN THE BROOKS RANGE DISTRIBUTION OF CHERT IN THE BROOKS RANGE Banded Cav to black chert fLisburne Group) Jet black chert (Akmalik Ched Gray and m-wn n chert @JcsIkpuJs. Fo-atchak . CheN Tan to gray to black banded chert fOt& Formation) Bri~htred, maroon. and gem chert SUMMARY FIGURES Fig. 1. Distribution of Lisburne Group limestone Fig. 2. Distribution of Akrnalik Chert. Fig. 3. Distribution of Siksikpuk Fonnation and Imnaitchiak Chert Fig. 4. Distribution of Otuk Formation. Fig. 5. Distribution of red and green chert THE GEOLOGICAL DISTRIBUTION OF CHERT IN THE BROOKS RANGE Text of a paper read at Alaska Anthropological Association 22nd Annual Meeting, March 23-25,1995, Anchorage, Alaska ABSTRACT Geological mapping in the Brooks Range shows that high quality chert for tool making is abundant in sedimentary rocks in a number of areas along the northern flank and particularly in the foothills of the central and western Brooks Range. These cherts are dominantly black, light to dark gray, greenish gray, banded gray to black, or tan. -
“Lithic Sourcing and Prehistoric Cultural Geography in The
Lithic Sourcing and Prehistoric Cultural Geography in the Champlain Valley by Adrian Burke Introduction torically in the Northeast can be identified macroscopical- ly with some ease by experienced archaeologists (e.g. Western Onondaga chert or Ramah quartzite), the majority The purpose of this paper is to demonstrate the usefulness of materials can be confused and misidentified because of and the necessity of analytical techniques developed in their macroscopic similarities (Calogero 1992). This is physics and chemistry in studying prehistoric cultural especially true for the most common lithic material used geography. My primary interest is understanding the prehistorically in the Northeast - chert. Geographically nature and extent of interactions between aboriginal groups distant sources of chert can often resemble one another in prior to European contact. This in turn provides insight color, luster, and texture. This is in part due to their simi- into various prehistoric processes and in some cases to his- lar geological genesis. In order to differentiate among toric processes in the Northeast. these cherts archaeologists are increasingly turning to physico-chemical analyses (Luedtke 1992; Leute 1987). I The question I will be tackling here is modest in scope; will discuss here one of these techniques called X-ray flu- basically I wish to accurately identify the geographic and orescence or XRF. geological sources of lithic materials found on a small Woodland period site near Montreal (Figure 1). This site was found during CRM work conducted by the Ministry of The BiFi-lO Site Transportation of Quebec (Arkeos 1994). The lithic mate- rials used by the occupants of site BiFi-lO to make their The BiFi-lO site is a small site covering less than 200 tools can not be found in the immediate vicinity of the site. -
Oldest Cretaceous Sequence, Giralia Anticline, Carnarvon Basin, Western Australia: Late Hauterivian-Barremian
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Earth and Atmospheric Sciences, Department Papers in the Earth and Atmospheric Sciences of 1995 Oldest Cretaceous sequence, Giralia Anticline, Carnarvon Basin, Western Australia: late Hauterivian-Barremian S. McLoughlin University of Western Australia, Nedlands, WA D. W. Haig University of Western Australia, Nedlands, WA J. Backhouse Geological Survey of Western Australia Mary Anne Holmes University of Nebraska-Lincoln, [email protected] G. Ellis Switzerland See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/geosciencefacpub Part of the Earth Sciences Commons McLoughlin, S.; Haig, D. W.; Backhouse, J.; Holmes, Mary Anne; Ellis, G.; Long, J. A.; and McNamara, K. J., "Oldest Cretaceous sequence, Giralia Anticline, Carnarvon Basin, Western Australia: late Hauterivian- Barremian" (1995). Papers in the Earth and Atmospheric Sciences. 81. https://digitalcommons.unl.edu/geosciencefacpub/81 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Papers in the Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors S. McLoughlin, D. W. Haig, J. Backhouse, Mary Anne Holmes, G. Ellis, J. A. Long, and K. J. McNamara This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/ geosciencefacpub/81 AGSO Journal of Australian Geology & Geophysics, 15(4), 445-468 © Commonwealth of Australia 1995 Oldest Cretaceous sequence, Giralia Anticline, Carnarvon Basin, Western Australia: late Hauterivian-Barremian S. Mcl.oughlin'>, D. W. Haigl, J. Backhouse-, M. -
Revised Middle and Late Triassic Radiolarian Ages for Ophiolite
Bull. Soc. géol. France, 2012, t. 183, no 4, pp. 273-286 Revised Middle and Late Triassic radiolarian ages for ophiolite mélanges: implications for the geodynamic evolution of the northern part of the early Mesozoic Neotethyan subbasins PÉTER OZSVÁRT1 and SÁNDOR KOVÁCS2 Key-words. – Triassic, Darnó and SzarvaskÅ Complex, Radiolarians, Ophiolite mélange, Western Neotethys Abstract. – The study is based on the radiolarian assemblages of five radiolarite outcrops and two boreholes from the Darnó and SzarvaskÅ Complex, Hungary, and three radiolarite sections from the western Vardar Ophiolitic Unit in Ser- bia. These investigated sections belong to a Mesozoic volcano-sedimentary mélange belt that can be followed from the Hellenides, through the Dinarides to the western Carpathians. Samples from radiolarite localities in the Darnó and SzarvaskÅ Complex contain a mixture of Middle Triassic (Illyrian to Longobardian) and Upper Triassic (Carnian) fairly poorly preserved radiolarian assemblages. Radiolarite samples from the western Vardar Ophiolitic Unit (Gostilje, Krš Gradac and Bukovi) yielded poorly preserved Upper Triassic (Carnian-?Norian) radiolarians. Co-occurrences of Middle and Upper Triassic radiolarian specimens in Darnó and SzarvaskÅ Complex suggest resedimentation during the Carnian or later. One new radiolarian species (Baumgartneria szarvaskoensis n. sp.) is described herein from the Darnó and SzarvaskÅ Complex. Révision des âges des radiolaires des mélanges ophiolitiques du Trias moyen et supérieur : implications pour l’évolution géodynamique de la partie nord des sub-bassins téthysiens du Mésozoïque inférieur Mots-clés. – Trias, Complexe de Darnó et de SzarvaskÅ, Radiolaires, Mélange ophiolitique, Néotéthys de l’Ouest. Résumé. – Cette étude est basée sur des assemblages de radiolaires de cinq affleurements de radiolarites et de deux fora- ges dans le complexe de Darnó et de SzarvaskÅ (Hongrie), ainsi que de trois sections de radiolarites de l’unité ophioli- tique de l’Ouest Vardar en Serbie. -
Dating the Tethyan Ocean in the Western Alps with Radiolarite
Dating the Tethyan Ocean in the Western Alps with radiolarite pebbles from synorogenic Oligocene molasse basins (southeast France) Fabrice Cordey, Pierre Tricart, Stéphane Guillot, Stéphane Schwartz To cite this version: Fabrice Cordey, Pierre Tricart, Stéphane Guillot, Stéphane Schwartz. Dating the Tethyan Ocean in the Western Alps with radiolarite pebbles from synorogenic Oligocene molasse basins (southeast France). Swiss Journal of Geosciences, Springer, 2012, 105 (1), pp.39-48. 10.1007/s00015-012-0090-8. hal-02178343 HAL Id: hal-02178343 https://hal.archives-ouvertes.fr/hal-02178343 Submitted on 30 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Dating the Tethyan ocean in the Western Alps with radiolarite pebbles from 2 synorogenic Oligocene molasse basins (southeast France) 3 4 5 Running title: Radiolarite pebbles from Alpine Oligocene molasses 6 7 8 Fabrice Cordey1*, Pierre Tricart2, Stéphane Guillot2, Stéphane Schwartz2 9 10 11 12 1Département des Sciences de la Terre, CNRS UMR 5276 Laboratoire de Géologie de Lyon, 13 Université Lyon 1, 69622 Villeurbanne, France 14 2IsTerre, CNRS, Université de Grenoble I, 38041 Grenoble, cedex 9, France 15 16 *corresponding author: [email protected] 17 18 19 20 21 22 23 Keywords: Western Alps, radiolarite, Jurassic, molasse, Oligocene, subduction wedge.