Host Specificity and Phylogenetic Relationships Among Atlantic Ovulidae (Mollusca: Gastropoda)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
National Reports (Term of Reference A) Presented at the 46Th Meeting of the ICES Working Group on Introductions and Transfers Of
National Reports (Term of Reference a) Presented at the 46th meeting of the ICES Working Group on Introductions and Transfers of Marine Organisms, held in Gdynia, Poland from 4 to 6 March 2020. Arranged Alphabetically by Country Compiled by Cynthia H McKenzie, Chair, WGITMO CANADA …………………………………………………………………… …. 2 DENMARK ………………………………………………………………………. 10 FINLAND ………………………………………………………………………. 18 FRANCE ………………………………………………………………………. 21 GERMANY ………………………………………………………………………. 33 GREECE ………………………………………………………………………. 46 ICELAND ………………………………………………………………………. 54 ITALY ………………………………………………………………………. 58 LITHUANIA ………………………………………………………………………. 73 NETHERLANDS …………………………………………………………………. 75 NORWAY ………………………………………………………………………. 77 POLAND ………………………………………………………………………. 86 PORTUGAL ………………………………………………………………………. 89 SWEDEN ………………………………………………………………………. 99 UNITED KINGDOM ……………………………………………………………. 104 UNITED STATES …………………………………………………………………. 119 1 CANADA National Report for Canada 2019 Report Prepared By: Cynthia McKenzie, Fisheries and Oceans Canada, Newfoundland and Labrador Region: [email protected]; Contributions By: Nathalie Simard, Fisheries and Oceans Canada, Quebec Region: [email protected]; Kimberly Howland, Fisheries and Oceans Canada, Central and Arctic Region: [email protected]; Renée Bernier and Chantal Coomber, Fisheries and Oceans Canada, Gulf Region: renee.bernier@dfo- mpo.gc.ca, [email protected]; Angelica Silva, Fisheries and Oceans Canada, Maritimes Region: [email protected] Overview: NEW or SPREAD -
Marlin Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Pink sea fan (Eunicella verrucosa) MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review John Readman & Dr Keith Hiscock 2017-03-30 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1121]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Readman, J.A.J. & Hiscock, K. 2017. Eunicella verrucosa Pink sea fan. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1121.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2017-03-30 Pink sea fan (Eunicella verrucosa) - Marine Life Information Network See online review for distribution map Two fans of Eunicella verrucosa showing the two morphs, pink and white. -
Contributions to the Knowledge of the Ovulidae. XVI. the Higher Systematics
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Spixiana, Zeitschrift für Zoologie Jahr/Year: 2007 Band/Volume: 030 Autor(en)/Author(s): Fehse Dirk Artikel/Article: Contributions to the knowledge of the Ovulidae. XVI. The higher systematics. (Mollusca: Gastropoda) 121-125 ©Zoologische Staatssammlung München/Verlag Friedrich Pfeil; download www.pfeil-verlag.de SPIXIANA 30 1 121–125 München, 1. Mai 2007 ISSN 0341–8391 Contributions to the knowledge of the Ovulidae. XVI. The higher systematics. (Mollusca: Gastropoda) Dirk Fehse Fehse, D. (2007): Contributions to the knowledge of the Ovulidae. XVI. The higher systematics. (Mollusca: Gastropoda). – Spixiana 30/1: 121-125 The higher systematics of the family Ovulidae is reorganised on the basis of re- cently published studies of the radulae, shell and animal morphology and the 16S rRNA gene. The family is divided into four subfamilies. Two new subfamilîes are introduced as Prionovolvinae nov. and Aclyvolvinae nov. The apomorphism and the result of the study of the 16S rRNA gene are contro- versally concerning the Pediculariidae. Therefore, the Pediculariidae are excluded as subfamily from the Ovulidae. Dirk Fehse, Nippeser Str. 3, D-12524 Berlin, Germany; e-mail: [email protected] Introduction funiculum. A greater surprise seemed to be the genetically similarity of Ovula ovum (Linneaus, 1758) In conclusion of the recently published studies on and Volva volva (Linneaus, 1758) in fi rst sight but a the shell morphology, radulae, anatomy and 16S closer examination of the shells indicates already rRNA gene (Fehse 2001, 2002, Simone 2004, Schia- that O. -
New Records of the Rare Gastropods Erato Voluta and Simnia Patula, and First Record of Simnia Hiscocki from Norway
Fauna norvegica 2017 Vol. 37: 20-24. Short communication New records of the rare gastropods Erato voluta and Simnia patula, and first record of Simnia hiscocki from Norway Jon-Arne Sneli1 and Torkild Bakken2 Sneli J-A, and Bakken T. 2017. New records of the rare gastropods Erato voluta and Simnia patula, and first record of Simnia hiscocki from Norway. Fauna norvegica 37: 20-24. New records of rare gastropod species are reported. A live specimen of Erato voluta (Gastropoda: Triviidae), a species considered to have a far more southern distribution, has been found from outside the Trondheimsfjord. The specimen was sampled from a gravel habitat with Modiolus shells at 49–94 m depth, and was found among compound ascidians, its typical food resource. Live specimens of Simnia patula (Caenogastropoda: Ovulidae) have during the later years repeatedly been observed on locations on the coast of central Norway, which is documented by in situ observations. In Egersund on the southwest coast of Norway a specimen of Simnia hiscocki was in March 2017 observed for the first time from Norwegian waters, a species earlier only found on the south-west coast of England. Also this was documented by pictures and in situ observations. The specimen of Simnia hiscocki was for the first time found on the octocoral Swiftia pallida. doi: 10.5324/fn.v37i0.2160. Received: 2016-12-01. Accepted: 2017-09-20. Published online: 2017-10-26. ISSN: 1891-5396 (electronic). Keywords: Gastropoda, Ovulidae, Triviidae, Erato voluta, Simnia hiscocki, Simnia patula, Xandarovula patula, distribution, morphology. 1. NTNU Norwegian University of Science and Technology, Department of Biology, NO-7491 Trondheim, Norway. -
Best Research Practices in Systematic Zoology
Non-indigenous species from a scientific point of view Arjan Gittenberger GiMaRIS Marine Research, Inventory, & Strategy solutions Institute of Biology, (IBL); Institute of Environmental Sciences (CML), Naturalis Biodiversity Center The study of non-indigenous species concerns the study of population dynamics in time and space Systematics Phylogenetics Population genetics Ecology Ethology Anthropology …Politology Species concept of Ernst MAYR, 1940 Species are: Groups of natural populations forming a reproductive community or capable of doing so, that are reproductively isolated from other such groups. Subspecies concept of Ernst MAYR, 1940 Subspecies have their own, exclusive range within that of the species, but are not reproductively isolated, so that hybridisation occurs whenever individuals of two subspecies of the same species are in contact (in a contact-zone) Subspecies A Hybrids of A & B Subspecies B Subspecies concept of Ernst MAYR, 1940 Should Mytilus edulis galloprovincialis be considered a non-indigenous species in northern Europe? Mytilus edulis edulis Hybrids Mytilus edulis galloprovincialis The mystery dripping sea-squirt Didemnum sp. ? http://woodshole.er.usgs.gov/project-pages/stellwagen/didemnum/index.htm Phylogenetics: The identity of Didemnum sp. in Didemnum sp. from Japan, Japan, North New Zealand, America, New Zealand, North America & Europe & Europe ? = Didemnum vexillum Kott, 2002 Stefaniak, L., G. Lambert, A. Gittenberger, H. Zhang, S. Lin & R.B. Whitlach, 2009. Genetic conspecificity of the worldwide populations of Didemnum vexillum Kott, 2002. Aquatic Invasions 4(1): 29-44. Population genetics: The origin of Didemnum vexillum Stefaniak, L., Zhang, H., Gittenberger, A., Smith, K., Holsinger, K., Lin, S. & R.B. Whitlatch, 2012. Determining the native region of the putatively invasive ascidian Didemnum vexillum Kott, 2002. -
South Carolina Department of Natural Resources
FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas. -
Epibenthic Mobile Invertebrates Along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-21-2014 Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Ecology and Evolutionary Biology Commons, Other Education Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Netchy, Kristin, "Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5085 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure by Kristin H. Netchy A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Marine Science College of Marine Science University of South Florida Major Professor: Pamela Hallock Muller, Ph.D. Kendra L. Daly, Ph.D. Kathleen S. Lunz, Ph.D. Date of Approval: March 21, 2014 Keywords: Echinodermata, Mollusca, Arthropoda, guilds, coral, survey Copyright © 2014, Kristin H. Netchy DEDICATION This thesis is dedicated to Dr. Gustav Paulay, whom I was fortunate enough to meet as an undergraduate. He has not only been an inspiration to me for over ten years, but he was the first to believe in me, trust me, and encourage me. -
ABSTRACT Title of Dissertation: PATTERNS IN
ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range. -
Vulnerable Forests of the Pink Sea Fan Eunicella Verrucosa in the Mediterranean Sea
diversity Article Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea Giovanni Chimienti 1,2 1 Dipartimento di Biologia, Università degli Studi di Bari, Via Orabona 4, 70125 Bari, Italy; [email protected]; Tel.: +39-080-544-3344 2 CoNISMa, Piazzale Flaminio 9, 00197 Roma, Italy Received: 14 April 2020; Accepted: 28 April 2020; Published: 30 April 2020 Abstract: The pink sea fan Eunicella verrucosa (Cnidaria, Anthozoa, Alcyonacea) can form coral forests at mesophotic depths in the Mediterranean Sea. Despite the recognized importance of these habitats, they have been scantly studied and their distribution is mostly unknown. This study reports the new finding of E. verrucosa forests in the Mediterranean Sea, and the updated distribution of this species that has been considered rare in the basin. In particular, one site off Sanremo (Ligurian Sea) was characterized by a monospecific population of E. verrucosa with 2.3 0.2 colonies m 2. By combining ± − new records, literature, and citizen science data, the species is believed to be widespread in the basin with few or isolated colonies, and 19 E. verrucosa forests were identified. The overall associated community showed how these coral forests are essential for species of conservation interest, as well as for species of high commercial value. For this reason, proper protection and management strategies are necessary. Keywords: Anthozoa; Alcyonacea; gorgonian; coral habitat; coral forest; VME; biodiversity; mesophotic; citizen science; distribution 1. Introduction Arborescent corals such as antipatharians and alcyonaceans can form mono- or multispecific animal forests that represent vulnerable marine ecosystems of great ecological importance [1–4]. -
Submission Re Proposed Cooloola World Heritage Area Boundary
Nearshore Marine Biodiversity of the Sunshine Coast, South-East Queensland: Inventory of molluscs, corals and fishes July 2010 Photo courtesy Ian Banks Baseline Survey Report to the Noosa Integrated Catchment Association, September 2010 Lyndon DeVantier, David Williamson and Richard Willan Executive Summary Nearshore reef-associated fauna were surveyed at 14 sites at seven locations on the Sunshine Coast in July 2010. The sites were located offshore from Noosa in the north to Caloundra in the south. The species composition and abundance of corals and fishes and ecological condition of the sites were recorded using standard methods of rapid ecological assessment. A comprehensive list of molluscs was compiled from personal observations, the published literature, verifiable unpublished reports, and photographs. Photographic records of other conspicuous macro-fauna, including turtles, sponges, echinoderms and crustaceans, were also made anecdotally. The results of the survey are briefly summarized below. 1. Totals of 105 species of reef-building corals, 222 species of fish and 835 species of molluscs were compiled. Thirty-nine genera of soft corals, sea fans, anemones and corallimorpharians were also recorded. An additional 17 reef- building coral species have been reported from the Sunshine Coast in previous publications and one additional species was identified from a photo collection. 2. Of the 835 mollusc species listed, 710 species could be assigned specific names. Some of those not assigned specific status are new to science, not yet formally described. 3. Almost 10 % (81 species) of the molluscan fauna are considered endemic to the broader bioregion, their known distribution ranges restricted to the temperate/tropical overlap section of the eastern Australian coast (Central Eastern Shelf Transition). -
First Record of Xandarovula Patula (Pennant, 1777) in the Dutch North Sea (Gastropoda, Ovulidae )
B75-Schrieken:Basteria-2010 28/11/2011 14:49 Page 107 First record of Xandarovula patula (Pennant, 1777) in the Dutch North Sea (Gastropoda, Ovulidae ) Niels Schrieken BiOrganized, Grenadiersweg 8, NL-3902 JC Veenendaal, The Netherlands; [email protected]. ANEMOON Foundation, P.O. Box 29, NL-2120 AA Bennebroek, The Netherlands [Corresponding author] Arjan Gittenberger GiMaRIS, J.H. Oortweg 21, NL-2333 CH Leiden, The Netherlands; [email protected] NCB Naturalis, P.O. Box 9517, NL-2300 RA Leiden, The Netherlands . Institute of Biology Leiden (IBL) & Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9516, NL-2300 RA Leiden, The Netherlands . ANEMOON Foundation, P.O. Box 29, NL-2120 AA Bennebroek, The Netherlands & Wouter Lengkeek Bureau Waardenburg, Varkensmarkt 9, NL-4101 CK Culemborg, The Netherlands; [email protected] . Duik de Noordzee Schoon, Duyvenvoordestraat 35, NL-2681 HH Monster, The Netherlands Introduction The ovulid gastropod Xandarovula patula (Pennant, 1777) 107 was found 14.vi.2011 on the soft coral Alcyonium digitatum For a long time, Xandarovula patula (Pennant, 1777) has been Linnaeus, 1758 (Dead man’s fingers) during a dive in the referred to as Simnia patula (e.g. Reijnen et al., 2010) , regard - central North Sea on the wreck ‘Jeanette Kristina ’ on the less of the fact that Cate (1973) designated this species as the Dutch Dogger Bank. Later on additional specimens were type species of a new genus Xandarovula Cate, 1973. Dolin & found, sometimes with egg-capsules, on A. digitatum again, Ledon (2002), Fehse (2007) and Høisæter et al. (2011) even at two locations on the Dutch Cleaver Bank. -
Caenogastropoda
13 Caenogastropoda Winston F. Ponder, Donald J. Colgan, John M. Healy, Alexander Nützel, Luiz R. L. Simone, and Ellen E. Strong Caenogastropods comprise about 60% of living Many caenogastropods are well-known gastropod species and include a large number marine snails and include the Littorinidae (peri- of ecologically and commercially important winkles), Cypraeidae (cowries), Cerithiidae (creep- marine families. They have undergone an ers), Calyptraeidae (slipper limpets), Tonnidae extraordinary adaptive radiation, resulting in (tuns), Cassidae (helmet shells), Ranellidae (tri- considerable morphological, ecological, physi- tons), Strombidae (strombs), Naticidae (moon ological, and behavioral diversity. There is a snails), Muricidae (rock shells, oyster drills, etc.), wide array of often convergent shell morpholo- Volutidae (balers, etc.), Mitridae (miters), Buccin- gies (Figure 13.1), with the typically coiled shell idae (whelks), Terebridae (augers), and Conidae being tall-spired to globose or fl attened, with (cones). There are also well-known freshwater some uncoiled or limpet-like and others with families such as the Viviparidae, Thiaridae, and the shells reduced or, rarely, lost. There are Hydrobiidae and a few terrestrial groups, nota- also considerable modifi cations to the head- bly the Cyclophoroidea. foot and mantle through the group (Figure 13.2) Although there are no reliable estimates and major dietary specializations. It is our aim of named species, living caenogastropods are in this chapter to review the phylogeny of this one of the most diverse metazoan clades. Most group, with emphasis on the areas of expertise families are marine, and many (e.g., Strombidae, of the authors. Cypraeidae, Ovulidae, Cerithiopsidae, Triphori- The fi rst records of undisputed caenogastro- dae, Olividae, Mitridae, Costellariidae, Tereb- pods are from the middle and upper Paleozoic, ridae, Turridae, Conidae) have large numbers and there were signifi cant radiations during the of tropical taxa.