Making Eco Logic and Models Work. an Integrative Approach to Lake Ecosystem Modelling, 192 Pages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Assessment of Marine Ecosystem Damage from the Penglai 19-3 Oil Spill Accident
Journal of Marine Science and Engineering Article An Assessment of Marine Ecosystem Damage from the Penglai 19-3 Oil Spill Accident Haiwen Han 1, Shengmao Huang 1, Shuang Liu 2,3,*, Jingjing Sha 2,3 and Xianqing Lv 1,* 1 Key Laboratory of Physical Oceanography, Ministry of Education, Ocean University of China, Qingdao 266100, China; [email protected] (H.H.); [email protected] (S.H.) 2 North China Sea Environment Monitoring Center, State Oceanic Administration (SOA), Qingdao 266033, China; [email protected] 3 Department of Environment and Ecology, Shandong Province Key Laboratory of Marine Ecology and Environment & Disaster Prevention and Mitigation, Qingdao 266100, China * Correspondence: [email protected] (S.L.); [email protected] (X.L.) Abstract: Oil spills have immediate adverse effects on marine ecological functions. Accurate as- sessment of the damage caused by the oil spill is of great significance for the protection of marine ecosystems. In this study the observation data of Chaetoceros and shellfish before and after the Penglai 19-3 oil spill in the Bohai Sea were analyzed by the least-squares fitting method and radial basis function (RBF) interpolation. Besides, an oil transport model is provided which considers both the hydrodynamic mechanism and monitoring data to accurately simulate the spatial and temporal distribution of total petroleum hydrocarbons (TPH) in the Bohai Sea. It was found that the abundance of Chaetoceros and shellfish exposed to the oil spill decreased rapidly. The biomass loss of Chaetoceros and shellfish are 7.25 × 1014 ∼ 7.28 × 1014 ind and 2.30 × 1012 ∼ 2.51 × 1012 ind in the area with TPH over 50 mg/m3 during the observation period, respectively. -
Development and Application of a Landscape-Based Lake Typology for the Muskoka River Watershed, Ontario, Canada
Development and application of a landscape-based lake typology for the Muskoka River Watershed, Ontario, Canada by Rachel Anne Plewes A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfillment of the requirements for the degree of Master of Science in Geography Carleton University Ottawa, Ontario © 2015, Rachel Anne Plewes ABSTRACT Lake management typologies have been used successfully in many parts of Europe, but their use in Canada has been limited. In this study, a lake typology was developed for 650 lakes within the Muskoka River Watershed (MRW), Ontario, Canada, to quantify freshwater, terrestrial, and human landscape influences on water quality (Ca, pH, TP and DOC). Five distinct lake types were identified, using a hierarchical system based on three broad physiographic regions within the MRW, and lake and catchment morphometrics derived through digital terrain analysis. The three regions exhibited significantly different DOC concentrations (F=15.85; p<0.001), whereas the lake types had significantly different TP concentrations (F=12.88, p<0.001). Type-specific reference conditions were used to identify lakes affected by human activities that may be in need of restoration due to high TP concentrations. Overall, this thesis demonstrates the applicability of new and emerging landscape modelling tools for lake classification and management in Ontario, Canada. ii ACKNOWLEDGMENTS Firstly, I would like to thank my supervisor Dr. Murray C. Richardson for his guidance and support throughout the past 2 years. Additionally, I appreciate all of Dr. Derek Mueller’s feedback on the drafts of this thesis. I am grateful for the guidance I received from Dr. -
Vegetation Demographics in Earth System Models: a Review of Progress and Priorities
Lawrence Berkeley National Laboratory Recent Work Title Vegetation demographics in Earth System Models: A review of progress and priorities. Permalink https://escholarship.org/uc/item/3912p4m3 Journal Global change biology, 24(1) ISSN 1354-1013 Authors Fisher, Rosie A Koven, Charles D Anderegg, William RL et al. Publication Date 2018 DOI 10.1111/gcb.13910 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Received: 11 April 2017 | Revised: 12 August 2017 | Accepted: 17 August 2017 DOI: 10.1111/gcb.13910 RESEARCH REVIEW Vegetation demographics in Earth System Models: A review of progress and priorities Rosie A. Fisher1 | Charles D. Koven2 | William R. L. Anderegg3 | Bradley O. Christoffersen4 | Michael C. Dietze5 | Caroline E. Farrior6 | Jennifer A. Holm2 | George C. Hurtt7 | Ryan G. Knox2 | Peter J. Lawrence1 | Jeremy W. Lichstein8 | Marcos Longo9 | Ashley M. Matheny10 | David Medvigy11 | Helene C. Muller-Landau12 | Thomas L. Powell2 | Shawn P. Serbin13 | Hisashi Sato14 | Jacquelyn K. Shuman1 | Benjamin Smith15 | Anna T. Trugman16 | Toni Viskari12 | Hans Verbeeck17 | Ensheng Weng18 | Chonggang Xu4 | Xiangtao Xu19 | Tao Zhang8 | Paul R. Moorcroft20 1National Center for Atmospheric Research, Boulder, CO, USA 2Lawrence Berkeley National Laboratory, Berkeley, CA, USA 3Department of Biology, University of Utah, Salt Lake City, UT, USA 4Los Alamos National Laboratory, Los Alamos, NM, USA 5Department of Earth and Environment, Boston University, Boston, MA, USA 6Department of Integrative Biology, -
The Nfluence of Land Use and the Catchment Properties
THE INFLUENCE OF LAND USE AND THE CATCHMENT PROPERTIES ON THE TROPHIC STATUS OF SHALLOW LAKES IN TURKEY A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY BY SAADET PEREN TUZKAYA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN BIOLOGY FEBRUARY 2015 Approval of the thesis: THE INFLUENCE OF LAND USE AND THE CATCHMENT PROPERTIES ON THE TROPHIC STATUS OF SHALLOW LAKES IN TURKEY submitted by SAADET PEREN TUZKAYA in partial fulfillment of the requirements for the degree of Master of Science in Biology Department, Middle East Technical University by, Prof. Dr. Gülbin DURAL ÜNVER ________________ Dean, Graduate School of Natural and Applied Sciences Prof. Dr. Orhan ADALI ________________ Head of Department, Biology Assoc. Prof. Dr. C. Can BİLGİN ________________ Supervisor, Biology Dept., METU Prof. Dr. Meryem Beklioğlu YERLİ ________________ Co-Supervisor, Biology Dept., METU Examining Committee Members: Prof. Dr. Zeki KAYA ________________ Biology Dept., METU Assoc. Prof. Dr. C. Can BİLGİN ________________ Biology Dept., METU Prof. Dr. Zuhal AKYÜREK ________________ Civil Engineering Dept., METU Prof. Dr. Meryem BEKLİOĞLU YERLİ ________________ Biology Dept., METU Prof. Dr. Ayşegül Çetin GÖZEN ________________ Biology Dept., METU Date: 16.02.2015 I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work. Name, Last Name: Saadet Peren Tuzkaya Signature: iv ABSTRACT THE INFLUENCE OF LAND USE AND THE CATCHMENT PROPERTIES ON THE TROPHIC STATUS OF SHALLOW LAKES IN TURKEY Tuzkaya, Saadet Peren M.S., Department of Biology Supervisor: Assoc. -
Emergent Biogeography of Microbial Communities in a Model Ocean
REPORTS germ insects not only uncovers those features es- mRNA localization indeed appears to be an sential to this developmental mode but also sheds important component of long-germ embryogene- light on how the bcd-dependent anterior patterning sis, perhaps even playing a role in the transition program might have evolved. Through analysis of from the ancestral short-germ to the derived long- the regulation of the trunk gap gene Kr in Dro- germ fate. sophila and Nasonia,wehavebeenabletodem- onstrate that anterior repression of Kr is essential References and Notes for head and thorax formation and is a common 1. G. K. Davis, N. H. Patel, Annu. Rev. Entomol. 47, 669 (2002). feature of long-germ patterning. Both insects 2. T. Berleth et al., EMBO J. 7, 1749 (1988). accomplish this task through maternal, anteriorly 3. W. Driever, C. Nusslein-Volhard, Cell 54, 83 (1988). localized factors that either indirectly (Drosophila) 4. J. Lynch, C. Desplan, Curr. Biol. 13, R557 (2003). or directly (Nasonia) repress Kr and, hence, trunk 5. J. A. Lynch, A. E. Brent, D. S. Leaf, M. A. Pultz, C. Desplan, Nature 439, 728 (2006). fates. In Drosophila, the terminal system and bcd 6. J. Savard et al., Genome Res. 16, 1334 (2006). regulate expression of gap genes, including Dm-gt, 7. G. Struhl, P. Johnston, P. A. Lawrence, Cell 69, 237 (1992). that repress Dm-Kr. Nasonia’s bcd-independent 8. A. Preiss, U. B. Rosenberg, A. Kienlin, E. Seifert, long-germ embryos must solve the same problem, H. Jackle, Nature 313, 27 (1985). Fig. 4. -
Meta-Ecosystems: a Theoretical Framework for a Spatial Ecosystem Ecology
Ecology Letters, (2003) 6: 673–679 doi: 10.1046/j.1461-0248.2003.00483.x IDEAS AND PERSPECTIVES Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology Abstract Michel Loreau1*, Nicolas This contribution proposes the meta-ecosystem concept as a natural extension of the Mouquet2,4 and Robert D. Holt3 metapopulation and metacommunity concepts. A meta-ecosystem is defined as a set of 1Laboratoire d’Ecologie, UMR ecosystems connected by spatial flows of energy, materials and organisms across 7625, Ecole Normale Supe´rieure, ecosystem boundaries. This concept provides a powerful theoretical tool to understand 46 rue d’Ulm, F–75230 Paris the emergent properties that arise from spatial coupling of local ecosystems, such as Cedex 05, France global source–sink constraints, diversity–productivity patterns, stabilization of ecosystem 2Department of Biological processes and indirect interactions at landscape or regional scales. The meta-ecosystem Science and School of perspective thereby has the potential to integrate the perspectives of community and Computational Science and Information Technology, Florida landscape ecology, to provide novel fundamental insights into the dynamics and State University, Tallahassee, FL functioning of ecosystems from local to global scales, and to increase our ability to 32306-1100, USA predict the consequences of land-use changes on biodiversity and the provision of 3Department of Zoology, ecosystem services to human societies. University of Florida, 111 Bartram Hall, Gainesville, FL Keywords 32611-8525, -
Chapter 4 – Steady State Models
CHAPTER 4 Steady State Models X.-Z. Kong, F.-L. Xu1, W. He, W.-X. Liu, B. Yang Peking University, Beijing, China 1Corresponding author: E-mail: xufl@urban.pku.edu.cn OUTLINE 4.1 Steady State Model: Ecopath as an 4.2.4.2 Changes in Ecosystem Example 66 Functioning 79 4.1.1 Steady State Model 66 4.2.4.3 Collapse in the Food 4.1.2 Ecopath Model 66 Web: Differences in 4.1.3 Future Perspectives 68 Structure 81 4.2.4.4 Toward an Immature 4.2 Ecopath Model for a Large Chinese but Stable Ecosystem 83 Lake: A Case Study 68 4.2.4.5 Potential Driving 4.2.1 Introduction 68 Factors and 4.2.2 Study Site 70 Underlying 4.2.3 Model Development 73 Mechanisms 84 4.2.3.1 Model Construction 4.2.4.6 Hints for Future Lake and Parameterization 73 Fishery and 4.2.3.2 Evaluation of Ecosystem Restoration 85 Functioning 74 4.2.3.3 Determination of 4.3 Conclusions 86 Trophic Level 76 References 86 4.2.4 Results and Discussion 76 4.2.4.1 Basic Model Performance 76 Ecological Model Types, Volume 28 Ó 2016 Elsevier B.V. http://dx.doi.org/10.1016/B978-0-444-63623-2.00004-9 65 All rights reserved. 66 4. STEADY STATE MODELS 4.1 STEADY STATE MODEL: ECOPATH AS AN EXAMPLE 4.1.1 Steady State Model Steady state ecological models are established to describe conditions in which the modeled components (mass or energy) are stable, i.e., do not change over time (Jørgensen and Fath, 2011). -
Models for an Ecosystem Approach to Fisheries
ISSN 0429-9345 FAO FISHERIES 477 TECHNICAL PAPER 477 Models for an ecosystem approach to fisheries Models for an ecosystem approach to fisheries This report reviews the methods available for assessing the impacts of interactions between species and fisheries and their implications for marine fisheries management. A brief description of the various modelling approaches currently in existence is provided, highlighting in particular features of these models that have general relevance to the field of ecosystem approach to fisheries (EAF). The report concentrates on the currently available models representative of general types such as bionergetic models, predator-prey models and minimally realistic models. Short descriptions are given of model parameters, assumptions and data requirements. Some of the advantages, disadvantages and limitations of each of the approaches in addressing questions pertaining to EAF are discussed. The report concludes with some recommendations for moving forward in the development of multispecies and ecosystem models and for the prudent use of the currently available models as tools for provision of scientific information on fisheries in an ecosystem context. FAO Cover: Illustration by Elda Longo FAO FISHERIES Models for an ecosystem TECHNICAL PAPER approach to fisheries 477 by Éva E. Plagányi University of Cape Town South Africa FOOD AND AGRICULTURE AND ORGANIZATION OF THE UNITED NATIONS Rome, 2007 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Choosing Spatial Units for Landscape-Based Management of the Fisheries Protection Program
Canadian Science Advisory Secretariat (CSAS) Research Document 2017/040 National Capital Region Choosing Spatial Units for Landscape-Based Management of the Fisheries Protection Program D. T. de Kerckhove1, J.A. Freedman2, K.L. Wilson3, M.V. Hoyer4, C. Chu1, and C.K. Minns5 1Ontario Ministry of Natural Resources and Forestry Aquatic Research and Monitoring Section 2140 East Bank Drive Peterborough, ON K9L 1Z8 2University of Florida, School of Forest Resources and Conservation 3University of Calgary, Dept. of Biological Sciences 4University of Florida, Florida LAKEWATCH 5University of Toronto, Dept. of Ecology and Evolutionary Biology July 2017 Foreword This series documents the scientific basis for the evaluation of aquatic resources and ecosystems in Canada. As such, it addresses the issues of the day in the time frames required and the documents it contains are not intended as definitive statements on the subjects addressed but rather as progress reports on ongoing investigations. Research documents are produced in the official language in which they are provided to the Secretariat. Published by: Fisheries and Oceans Canada Canadian Science Advisory Secretariat 200 Kent Street Ottawa ON K1A 0E6 http://www.dfo-mpo.gc.ca/csas-sccs/ [email protected] © Her Majesty the Queen in Right of Canada, 2017 ISSN 1919-5044 Correct citation for this publication: de Kerckhove, D.T., Freedman, J.A., Wilson, K.L., Hoyer, M.V., Chu, C., and Minns, C.K. 2017. Choosing Spatial Units for Landscape-Based Management of the Fisheries Protection Program. DFO Can. Sci. Advis. Sec. Res. Doc. 2017/040. v + 44. TABLE OF CONTENTS ABSTRACT .............................................................................................................................. -
Can We Detect Ecosystem Critical Transitions and Signals of Changing Resilience from Paleo-Ecological Records? Zofia E
Can we detect ecosystem critical transitions and signals of changing resilience from paleo-ecological records? Zofia E. Taranu, Stephen R. Carpenter, Victor Frossard, Jean-Philippe Jenny, Zoe Thomas, Jesse C. Vermaire, Marie-Elodie Perga To cite this version: Zofia E. Taranu, Stephen R. Carpenter, Victor Frossard, Jean-Philippe Jenny, Zoe Thomas, etal.. Can we detect ecosystem critical transitions and signals of changing resilience from paleo-ecological records?. Ecosphere, Ecological Society of America, 2018, 9 (10), 10.1002/ecs2.2438. hal-01959637 HAL Id: hal-01959637 https://hal.archives-ouvertes.fr/hal-01959637 Submitted on 18 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Can we detect ecosystem critical transitions and signals of changing resilience from paleo-ecological records? 1, 2 3 3,4 € 5 ZOFIA E. TARANU, STEPHEN R. CARPENTER, VICTOR FROSSARD, JEAN-PHILIPPE JENNY, ZOE THOMAS, 6 7 JESSE C. VERMAIRE, AND MARIE-ELODIE PERGA 1Department of Biology, University -
Pattern and Process Second Edition Monica G. Turner Robert H. Gardner
Monica G. Turner Robert H. Gardner Landscape Ecology in Theory and Practice Pattern and Process Second Edition L ANDSCAPE E COLOGY IN T HEORY AND P RACTICE M ONICA G . T URNER R OBERT H . G ARDNER LANDSCAPE ECOLOGY IN THEORY AND PRACTICE Pattern and Process Second Edition Monica G. Turner University of Wisconsin-Madison Department of Zoology Madison , WI , USA Robert H. Gardner University of Maryland Center for Environmental Science Frostburg, MD , USA ISBN 978-1-4939-2793-7 ISBN 978-1-4939-2794-4 (eBook) DOI 10.1007/978-1-4939-2794-4 Library of Congress Control Number: 2015945952 Springer New York Heidelberg Dordrecht London © Springer-Verlag New York 2015 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. -
The Drivers and Patterns of Total Phosphorus Across Lake, Stream, and Wetland Ecosystems at the National Scale
The drivers and patterns of total phosphorus across lake, stream, and wetland ecosystems at the national scale Katelyn King Michigan State University (Co-authors: Kendra Cheruvelil and Amina Pollard (EPA)) lake + wetland + stream 2 publications! lake + wetland wetland + stream lake + stream wetland lake stream 0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000 5,500 6,000 6,500 Publications lakes wetlands streams Integrated Freshwater Landscape Lakes Wetlands Streams Lake Michigan Dataset: US EPA National Aquatic Resource Survey Lake assessment 2012 Wetland assessment 2011 River/Stream assessment 2008/2009 https://www.epa.gov/national-aquatic-resource-surveys/nrsa Dataset: Total Phosphorus (TP) Total Dataset: (ln) Total Phosphorus lakes wetlands streams Dataset: Ecological context Waterbody scale: Watershed scale: Ecoregion: • freshwater type • mean elevation • (lake, wetland, stream) • land use/cover • depth • nitrogen deposition • % riparian vegetation • road density • lat/lon of site • population density • precipitation at the site • watershed area* • temperature at the site Ecoregion membership consisting of similar land use, topography, climate, and natural vegetation *no wetland watersheds, approximated with 1000m buffer Q1: What are the drivers of total phosphorus across lakes, wetlands, and streams at the macroscale? lakes wetlands streams Hypothesis: freshwater type will be important in predicting TP • Depth • lentic vs. lotic • water residence time • form/shape Q1 Method - drivers – Random Forest Subset of sample splitting value splitting value Node Streams splitting value splitting value Lakes Wetlands Results - important drivers of TP • watershed % forest • watershed % agriculture • longitude • ecoregion membership Percent variance explained = 50.0 Total Phosphorus Forest lakes wetlands streams Total Phosphorus Agriculture lakes wetlands streams Total Phosphorus Agriculture lakes wetlands streams Spatial Patterns Mean Annual Temperature Lapierre et al.