Metabolite Analysis of Resurrection Plants

Total Page:16

File Type:pdf, Size:1020Kb

Metabolite Analysis of Resurrection Plants METABOLITE ANALYSIS OF RESURRECTION PLANTS Master thesis in Plant Sciences- Laboratory of Plant Physiology (PPH) at Wageningen University and Department of Molecular and Cell Biology at University of Cape Town (UCT) Supervised by: Dr. Henk Hilhorst Prof. Jill Margaret Farrant Halford Dace Celeste Righi Ricco 23/07/2018 Table of contents ............................................................................................................................................................. 0 List of figures ........................................................................................................................................ 1 List of tables ......................................................................................................................................... 1 Acknowledgments ................................................................................................................................ 2 Abstract ................................................................................................................................................ 3 1. Introduction ................................................................................................................................. 4 1.1 Desiccation tolerance ............................................................................................................ 4 1.2 Metabolites analysis in resurrection plants .......................................................................... 7 1.3 Numerical analysis ............................................................................................................... 10 1.4 Plants under study and objectives of the research ............................................................. 11 1.5 Research questions ............................................................................................................. 13 2 Materials and methods ................................................................................................................ 1 2.1 Plant materials and maintenance ......................................................................................... 1 2.2 Sampling procedures ............................................................................................................. 8 2.3 Freeze drying ......................................................................................................................... 9 2.4 Metabolites extraction .......................................................................................................... 9 2.5 Drying extracts in vacuum ................................................................................................... 10 2.6 Derivatisation ...................................................................................................................... 10 2.7 GC-MS analysis .................................................................................................................... 10 2.8 Numerical analysis ............................................................................................................... 10 3 Results and discussion ............................................................................................................... 12 3.1 Drying process ..................................................................................................................... 12 3.2 Morphological changes upon dehydration ......................................................................... 12 3.3 Principal component analysis of GC-MS data ..................................................................... 15 3.4 Heat map ............................................................................................................................. 25 3.5 Biochemistry and adaptations ............................................................................................ 28 3.6 Suggestion for future research ............................................................................................ 30 4 Conclusions ................................................................................................................................ 31 5 References.................................................................................................................................. 32 List of figures Figure 1 :Selaginella spp. .................................................................................................................................................... 2 Figure 2: Xerophyta viscosa ................................................................................................................................................ 2 Figure 3: Xerophyta elegans. .............................................................................................................................................. 3 Figure 4: Xerophyta humili .................................................................................................................................................. 4 Figure 5: Eragrostis nindensis tiller. .................................................................................................................................... 5 Figure 6: Eragrostis nindensis ............................................................................................................................................. 5 Figure 7: Craterostigma pumilum ....................................................................................................................................... 6 Figure 8: Myrothamnus flabellifolia. ................................................................................................................................... 7 Figure 9:Eragrostis tef ......................................................................................................................................................... 7 Figure 10: Arabidopsis thaliana .......................................................................................................................................... 7 Figure 11: Cumulative and relative variance per Principal Component for GC-MS peaks of Xerophyta viscosa. ............. 15 Figure 12:PCA of Xerophyta viscosa ................................................................................................................................. 16 Figure 13: Boxplot of Xerophyta viscosa for the first principle component. ..................................................................... 16 Figure 14:Cumulative and relative variance per Principal Component for GC-MS peaks of Xerophyta humilis. .............. 17 Figure 15:PCA of Xerophyta humilis . ................................................................................................................................ 17 Figure 16: Boxplot of Xerophyta humilis for the first principle component. ..................................................................... 18 Figure 17: Cumulative and relative variance per Principal Component for GC-MS peaks of Myrothamnus flabellifolia.. 18 Figure 18:PCA of Myrothamnus flabellifolia .................................................................................................................... 19 Figure 19: Boxplot of Myrothamnus flabellifolia for the first principle component. ......................................................... 19 Figure 20: Cumulative and relative variance per Principal Component for GC-MS peaks of Craterostigma pumilum. .... 19 Figure 21:PCA of Craterostigma pumilum ........................................................................................................................ 20 Figure 22:PCA of Craterostigma pumilum ....................................................................................................................... 21 Figure 23: Boxplot of Craterostigma pumilum for the first principle component. ............................................................ 21 Figure 24: Cumulative and relative variance per Principal Component for GC-MS peaks of Arabidopsis thaliana. ......... 22 Figure 25: PCA of Arabidopsis thaliana . ........................................................................................................................... 22 Figure 26: Boxplot of Arabidopsis thaliana for the first principle component. ................................................................. 23 Figure 27: Cumulative and relative variance per Principal Component for GC-MS peaks of all species together. ........... 23 Figure 28:Total PCA .......................................................................................................................................................... 24 Figure 29:Total PCA. ......................................................................................................................................................... 24 Figure 30: Heat map. ........................................................................................................................................................ 25 List of tables Table 1:Pprimary metabolites classes with examples and function explanation ............................................................. 10 Table 2: Plants under study and their phylogenetic classification. ................................................................................... 12 Table 3: Harvesting specificities . ........................................................................................................................................ 8 Table 4:Harvesting
Recommended publications
  • Comparative Transcriptome Analysis Suggests Convergent Evolution Of
    Alejo-Jacuinde et al. BMC Plant Biology (2020) 20:468 https://doi.org/10.1186/s12870-020-02638-3 RESEARCH ARTICLE Open Access Comparative transcriptome analysis suggests convergent evolution of desiccation tolerance in Selaginella species Gerardo Alejo-Jacuinde1,2, Sandra Isabel González-Morales3, Araceli Oropeza-Aburto1, June Simpson2 and Luis Herrera-Estrella1,4* Abstract Background: Desiccation tolerant Selaginella species evolved to survive extreme environmental conditions. Studies to determine the mechanisms involved in the acquisition of desiccation tolerance (DT) have focused on only a few Selaginella species. Due to the large diversity in morphology and the wide range of responses to desiccation within the genus, the understanding of the molecular basis of DT in Selaginella species is still limited. Results: Here we present a reference transcriptome for the desiccation tolerant species S. sellowii and the desiccation sensitive species S. denticulata. The analysis also included transcriptome data for the well-studied S. lepidophylla (desiccation tolerant), in order to identify DT mechanisms that are independent of morphological adaptations. We used a comparative approach to discriminate between DT responses and the common water loss response in Selaginella species. Predicted proteomes show strong homology, but most of the desiccation responsive genes differ between species. Despite such differences, functional analysis revealed that tolerant species with different morphologies employ similar mechanisms to survive desiccation. Significant functions involved in DT and shared by both tolerant species included induction of antioxidant systems, amino acid and secondary metabolism, whereas species-specific responses included cell wall modification and carbohydrate metabolism. Conclusions: Reference transcriptomes generated in this work represent a valuable resource to study Selaginella biology and plant evolution in relation to DT.
    [Show full text]
  • Desiccation Tolerance: Phylogeny and Phylogeography
    Desiccation Tolerance: Phylogeny and Phylogeography BioQUEST Workshop 2009 Resurrection Plants Desiccation tolerant Survive dehydration Survive in dormant state for extended time period Survive rehydration Xerophyta humilis, from J. Farrant web site (http://www.mcb.uct.ac.za/Staff/JMF/index.htm) Figure 2. Selaginella lepidophylla http://en.wikipedia.org/wiki/ File:Rose_of_Jericho.gif Desiccation Issues Membrane integrity Protein structure Generation of free radicals Rascia, N, La Rocca, N. 2005 Critical Reviews in Plant Sciences Solutions Repair upon hydration Prevent damage during dehydration Production/accumulation of replacement solutes Inhibition of photosynthesis http://www.cbs.dtu.dk/staff/dave/roanoke/elodeacell.jpg Evolution of Desiccation Tolerance From Oliver, et al 2000. Plant Ecology Convergent Evolution Among Vascular Plants From Oliver, et al 2000. Plant Ecology Desiccation Tolerance in Vascular Plants Seeds Pollen Spores Osmotic stress Desertification 40% of Earth’s surface 38% of population Low productivity Lack of water Depletion of soil Loss of soil Delicate system Using Evolutionary Relationships to Identify Genes for Crop Enhancement If desiccation sensitive plants have retained genes involved in desiccation tolerance, perhaps expression of those genes can be genetically modified to enhance desiccation tolerance. Expression patterns in dehydratingTortula and Xerophyta Michael Luth Xerophyta humilis, from J. Farrant web site (http://www.mcb.uct.ac.za/Staff/JMF/index.htm) ? Methods Occurrence data for Anastatica hierochuntic: o Downloaded from the Global Biodiversity Information Facility (gbif.org). o Of 127 available occurrence points, only 68 were georeferenced with latitude and longitude information. Environmental layers: Precipitation and temperature from the IPCC climate dataset Niche Modeling: Maximum Entropy (Maxent) Maxent principle is to estimate the probability distribution such as the spatial distribution of a species.
    [Show full text]
  • Topic 11: Land Plants, Part 1 (Bryophytes, Ferns & Fern Allies)
    BIOL 221 – Concepts of Botany Spring 2008 Topic 11: Land Plants, part 1 (Bryophytes, Ferns & Fern Allies) A. Objectives for today’s lab . 1. Get to know 2 of the three groups of bryophytes (liverworts & mosses). 2. Get to know some of the Ferns and Fern Allies, which include some of the earliest lineages of vascular plants (represented today by Psilotum, Lycopodium, Equisetum, & Ferns—Boston (sword) fern, Staghorn fern) 3. Think about the morphological/anatomical innovations that are represented by each. Place these in the context of the origins of leaves, roots, and the fossil record and green plant phylogeny. 4. Know the general sequence of appearance: Green Algae ==> Bryophyte Lineages ==> Lycopod & Horsetail Lineages ==> Fern Lineages ==> Seed Plants (Gymnosperms & Angiosperms) B. Green Plant Phylogeny . Concepts of Botany, (page 1 of 12) C. NonVascular Free-Sporing Land Plants (Bryophytes) . C1. Liverworts . a. **LIVING MATERIAL**: Marchantia &/or Conacephalum (thallose liverworts). The conspicuous green plants are the gametophytes. With a dissecting scope, observe the polygonal outlines of the air chambers. On parts of the thallus are drier, it is easy to see the pore opening to the chamber. These are not stomata. They cannot open and close and the so the thallus can easily dry out if taking from water. Note the gemmae cups on some of that thalli. Ask your instructor what these are for. DRAW THEM TOO. b. **SLIDES**. Using the compound microscope, make observations of the vegetative and reproductive parts of various liverwort species. Note the structure of the air-chambers and the photosynthetic cells inside on the Marchantia sections! Concepts of Botany, (page 2 of 12) C2.
    [Show full text]
  • Induced Expression of Xerophyta Viscosa Xvsap1 Gene Greatly Impacts Tolerance to Drought Stress in Transgenic Sweetpotato
    bioRxiv preprint doi: https://doi.org/10.1101/603910; this version posted April 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Induced expression of Xerophyta viscosa XvSap1 gene greatly impacts tolerance to 2 drought stress in transgenic sweetpotato 3 4 Wilton Mbinda1*, Christina Dixelius2, Richard Oduor3 5 6 7 8 1Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya 9 10 2Department of Plant Biology, Uppsala BioCenter, Linnéan Center for Plant Biology, 11 Swedish University of Agricultural Sciences, Uppsala, Sweden 12 13 3Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya 14 15 *Corresponding author: Wilton Mbinda; Email: [email protected]; Phone: 16 254722723950 17 18 19 20 21 22 23 24 25 26 27 28 bioRxiv preprint doi: https://doi.org/10.1101/603910; this version posted April 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 29 Abstract 30 Key message Drought stress in sweetpotato could be overcome by introducing XvSap1 31 gene from Xerophyta viscosa. 32 33 Abstract. Drought stress often leads to reduced yields and is perilous delimiter for expanded 34 cultivation and increased productivity of sweetpotato. Cell wall stabilization proteins have 35 been identified to play a pivotal role in mechanical stabilization during desiccation stress 36 mitigation.
    [Show full text]
  • Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers
    International Journal of Molecular Sciences Article Plastid Genomes of the Early Vascular Plant Genus Selaginella Have Unusual Direct Repeat Structures and Drastically Reduced Gene Numbers Hyeonah Shim 1, Hyeon Ju Lee 1, Junki Lee 1,2, Hyun-Oh Lee 1,2, Jong-Hwa Kim 3, Tae-Jin Yang 1,* and Nam-Soo Kim 4,* 1 Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture & Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Korea; [email protected] (H.S.); [email protected] (H.J.L.); [email protected] (J.L.); [email protected] (H.-O.L.) 2 Phyzen Genomics Institute, Seongnam 13558, Korea 3 Department of Horticulture, Kangwon National University, Chuncheon 24341, Korea; [email protected] 4 Department of Molecular Bioscience, Kangwon National University, Chuncheon 24341, Korea * Correspondence: [email protected] (T.-J.Y.); [email protected] (N.-S.K.); Tel.: +82-2-880-4547 (T.-J.Y.); +82-33-250-6472 (N.-S.K.) Abstract: The early vascular plants in the genus Selaginella, which is the sole genus of the Selaginel- laceae family, have an important place in evolutionary history, along with ferns, as such plants are valuable resources for deciphering plant evolution. In this study, we sequenced and assembled the plastid genome (plastome) sequences of two Selaginella tamariscina individuals, as well as Se- laginella stauntoniana and Selaginella involvens. Unlike the inverted repeat (IR) structures typically found in plant plastomes, Selaginella species had direct repeat (DR) structures, which were confirmed by Oxford Nanopore long-read sequence assembly.
    [Show full text]
  • Rehydration from Desiccation: Evaluating the Potential for Leaf Water Absorption in X. Elegans
    Honors Thesis Honors Program 5-5-2017 Rehydration from Desiccation: Evaluating the Potential for Leaf Water Absorption in X. elegans Mitchell Braun Loyola Marymount University, [email protected] Follow this and additional works at: https://digitalcommons.lmu.edu/honors-thesis Part of the Biology Commons Recommended Citation Braun, Mitchell, "Rehydration from Desiccation: Evaluating the Potential for Leaf Water Absorption in X. elegans" (2017). Honors Thesis. 143. https://digitalcommons.lmu.edu/honors-thesis/143 This Honors Thesis is brought to you for free and open access by the Honors Program at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Honors Thesis by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact [email protected]. Rehydration from Desiccation: Evaluating the Potential for Leaf Water Absorption in X. elegans A thesis submitted in partial satisfaction of the requirements of the University Honors Program of Loyola Marymount University by Mitchell Braun May 5, 2017 Abstract: Desiccation tolerance is the ability to survive through periods of extreme cellular water loss. Most seeds commonly exhibit a degree of desiccation tolerance while vegetative bodies of plants rarely show this characteristic. Desiccation tolerant vascular plants, in particular, are a rarity. Although this phenomenon may have potential benefits in crop populations worldwide, there are still many gaps in our scientific understanding. While the science behind the process of desiccating has been widely researched, the process of recovering from this state of stress, especially in restoring xylem activity after cavitation is still relatively unknown.
    [Show full text]
  • Investigating Water Responsive Actuation Using the Resurrection Plant Selaginella Lepidophylla As a Model System
    Investigating Water Responsive Actuation using the Resurrection Plant Selaginella lepidophylla as a Model System Véronique Brulé Department of Biology McGill University, Montréal Summer 2018 A thesis submitted to McGill University in partial fulfillment of the requirements of the degree of Doctor of Philosophy © Véronique Brulé 1 ! ABSTRACT Nature is a wealth of inspiration for biomimetic and actuating devices. These devices are, and have been, useful for advancing society, such as giving humans the capability of flight, or providing household products such as velcro. Among the many biomimetic models studied, plants are interesting because of the scope of functions and structures produced from combinations of the same basic cell wall building blocks. Hierarchical investigation of structure and composition at various length-scales has revealed unique micro and nano-scale properties leading to complex functions in plants. A better understanding of such micro and nano-scale properties will lead to the design of more complex actuating devices, including those capable of multiple functions, or those with improved functional lifespan. In this thesis, the resurrection plant Selaginella lepidophylla is explored as a new model for studying actuation. S. lepidophylla reversibly deforms at the organ, tissue, and cell wall level as a physiological response to water loss or gain, and can repeatedly deform over multiple cycles of wetting and drying. Thus, it is an excellent model for studying properties leading to reversible, hierarchical (i.e., multi length-scale) actuation. S. lepidophylla has two stem types, inner (developing) and outer (mature), that display different modes of deformation; inner stems curl into a spiral shape while outer stems curl into an arc shape.
    [Show full text]
  • Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River
    National Park Service U.S. Department of the Interior Natural Resource Program Center Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River Natural Resource Report NPS/CHDN/NRR—2011/299 ON THE COVER Chisos Basin, as viewed from Casa Grande Peak. Image provided by NPS Vegetation Classification List Update for Big Bend National Park and Rio Grande National Wild and Scenic River Natural Resource Report NPS/CHDN/NRR—2011/299 James Von Loh Cogan Technology, Inc. 8140 East Lightening View Drive Parker, Colorado 80134 Dan Cogan Cogan Technology, Inc. 21 Valley Road Galena, Illinois 61036 February 2011 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate high-priority, current natural resource management information with managerial application. The series targets a general, diverse audience, and may contain NPS policy considerations or address sensitive issues of management applicability. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analysis, or reporting of the data.
    [Show full text]
  • The Highly Reduced Plastome of Mycoheterotrophic Sciaphila (Triuridaceae) Is Colinear with Its Green Relatives and Is Under Strong Purifying Selection
    GBE The Highly Reduced Plastome of Mycoheterotrophic Sciaphila (Triuridaceae) Is Colinear with Its Green Relatives and Is under Strong Purifying Selection Vivienne K.Y. Lam1,2,y, Marybel Soto Gomez1,2,y, and Sean W. Graham1,2,* 1Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada 2UBC Botanical Garden & Centre for Plant Research, University of British Columbia, Vancouver, British Columbia, Canada *Corresponding author: E-mail: [email protected]. yThese authors contributed equally to this work. Accepted: July 8, 2015 Data deposition: The genomes and gene sequences have been deposited at GenBank under the accession numbers KP462882, KR902497, and KT204539-KT205273. Abstract The enigmatic monocot family Triuridaceae provides a potentially useful model system for studying the effects of an ancient loss of photosynthesis on the plant plastid genome, as all of its members are mycoheterotrophic and achlorophyllous. However, few studies have placed the family in a comparative context, and its phylogenetic placement is only partly resolved. It was also unclear whether any taxa in this family have retained a plastid genome. Here, we used genome survey sequencing to retrieve plastid genome data for Sciaphila densiflora (Triuridaceae) and ten autotrophic relatives in the orders Dioscoreales and Pandanales. We recovered a highly reduced plastome for Sciaphila that is nearly colinear with Carludovica palmata, a photosynthetic relative that belongs to its sister group in Pandanales, Cyclanthaceae–Pandanaceae. This phylogenetic placement is well supported and robust to a broad range of analytical assumptions in maximum-likelihood inference, and is congruent with recent findings based on nuclear and mitochondrial evidence. The 28 genes retained in the S.
    [Show full text]
  • Redalyc.Diuretic Effect of Alkaloids Fraction Extracted from Selaginella
    Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas ISSN: 0717-7917 [email protected] Universidad de Santiago de Chile Chile MELENDEZ-CAMARGO, María Estela; CONTRERAS-LEÓN, Isaías; SILVA-TORRES, Rafael Diuretic effect of alkaloids fraction extracted from Selaginella lepidophylla (Hook. et Grev.) Spring Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, vol. 13, núm. 1, 2014, pp. 92-99 Universidad de Santiago de Chile Santiago, Chile Available in: http://www.redalyc.org/articulo.oa?id=85629766009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative © 2014 Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas 13 (1): 92 - 99 ISSN 0717 7917 www.blacpma.usach.cl Artículo Original | Original Article Diuretic effect of alkaloids fraction extracted from Selaginella lepidophylla (Hook. et Grev.) Spring [Efecto diurético de la fracción con contenido de alcaloides extraída de Selaginella lepidophylla (Hook. et Grev.) Spring] María Estela MELENDEZ-CAMARGO1, Isaías CONTRERAS-LEÓN1 & Rafael SILVA-TORRES2 1Laboratorio de Farmacología y Toxicología Renal y Hepática 2Laboratorio de Fitoquímica, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas (ENCB), Zacatenco del Instituto Politécnico Nacional (IPN), Av. Wilfrido Massieu s/n, Unidad Profesional Adolfo López Mateos, Col. Lindavista, CP 07738, México, DF, México. Contactos | Contacts: María Estela MELENDEZ-CAMARGO - E-mail address: [email protected] Abstract: The aerial parts of Selaginella lepidophylla (Hook. et Grev.) Spring, are used in Mexican folk medicine to treat renal diseases.
    [Show full text]
  • 3',8''-Biisokaempferide, a Cytotoxic Biflavonoid and Other Chemical
    J. Braz. Chem. Soc., Vol. 21, No. 10, 1819-1824, 2010. Printed in Brazil - ©2010 Sociedade Brasileira de Química 0103 - 5053 $6.00+0.00 Article 3’,8’’-Biisokaempferide, a Cytotoxic Biflavonoid and Other Chemical Constituents of Nanuza plicata (Velloziaceae) Meri Emili F. Pinto,a Marcelo Sobral da Silva,*,a Elisabete Schindler,b José Maria Barbosa Filho,a Ramon dos Santos El-Bachá,b Marianna Vieira S. Castello-Branco,a Maria de Fatima Agraa and Josean Fechine Tavaresa aLaboratório de Tecnologia Farmacêutica, Universidade Federal da Paraíba, CP 5009, 58051-970 João Pessoa-PB, Brazil bLaboratório de Neuroquímica e Biologia Celular (LabNq), Instituto de Ciências da Saúde (ICS), Universidade Federal da Bahia, 40110-902 Salvador-BA, Brazil Foi isolado das folhas de Nanuza plicata um novo biflavonóide, chamado 3’,8’’-biisocampferideo (1), juntamente com os conhecidos compostos amentoflavona 2( ), ácido patagônico (3), (4aR,5S,6R,8aR)-5-[2-(2,5-dihidro-5-metóxi-2-oxofuran-3-il)etil]-3,4,4a,5,6,7,8, 8a-octahidro-5,6,8a-trimetilnaftaleno-1-ácido carboxílico (4), cafeoilquinato de metila (5), ácido 3,5-di-cafeoilquínico (6) e luteolina (7). Os compostos 3, 4, 5 e 6 são relatados pela primeira vez em Velloziaceae. As estruturas dos compostos foram elucidadas com base em métodos espectroscópicos, especialmente RMN e EM. A citotoxicidade de 3’,8’’-biisocampferideo foi estudada em células de glioblastoma humano (GL-15). A concentração efetiva, que produziu morte em 50% das células após 72 h foi 36,5 μmol L-1. Alterações na morfologia celular, incluindo retração e degradação de citoplasma, foram observadas quando as células foram tratadas com concentrações a partir de 20 μmol L-1 de 3’,8’’-biisocampferideo por 72 h.
    [Show full text]
  • 2776-0979 Volume 2, Issue 4, April, 2021 PHARMACOLOGICAL AND
    ISSN: 2776-0979 Volume 2, Issue 4, April, 2021 PHARMACOLOGICAL AND MEDICINAL ACTIVITIES OF RESURRECTION PLANTS Gali Adamu Ishaku Department of Biotechnology, School of Life Sciences, Modibbo Adama University of Technology, Yola, Adamawa State *Corresponding author email: [email protected] Muhammad Akram Department of Eastern Medicine, Government College University Faisalabad-Pakistan Umme Laila Department of Eastern Medicine, Government College University Faisalabad-Pakistan Ayuba Abaka Kalum Department of Biotechnology, School of Life Sciences, Modibbo Adama University of Technology, Yola, Adamawa State Daniel Thakuma Tizhe Department of Biotechnology, School of Life Sciences, Modibbo Adama University of Technology, Yola, Adamawa State Bello Pariya Ardo 3Chevron Biotechnology Centre, Modibbo Adama University of Technology, Yola, Adamawa State. Abstract Resurrection plants are special kinds of plants in that they can survive almost complete desiccation from their vegetative parts. They do so by shutting down their metabolic systems to tolerate dehydration and the plants are obviously lifeless. In the recent past, invaluable bioactive compounds from resurrection plants have attracted much attention cognizance of their potential application in medicine. Some of these 323 metabolites are reported to have antibacterial, anticancer, antifungal, and antiviral biological effectiveness. In this review article, particular emphases are made on pharmacological and medicinal applications of some resurrection plants. Key words: Desiccation, Medicinal
    [Show full text]