Clostridium Hiranonis, a Bile Acid 7Α-Dehydroxylating
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Uneven Distribution of Cobamide Biosynthesis and Dependence in Bacteria Predicted By
bioRxiv preprint doi: https://doi.org/10.1101/342006; this version posted June 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 1 Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by 2 comparative genomics 3 4 Running title: Cobamide biosynthesis predictions 5 6 Amanda N. Shelton1, Erica C. Seth1, Kenny C. Mok1, Andrew W. Han2, Samantha N. Jackson3,4, 7 David R. Haft3, Michiko E. Taga1* 8 9 1 Department of Plant & Microbial Biology, University of California, Berkeley, Berkeley, CA, 10 USA 11 2 Second Genome, Inc., South San Francisco, CA, USA 12 3 J. Craig Venter Institute, Rockville, MD, USA 13 4 Current address: Department of Biological & Environmental Engineering, Cornell University, 14 Ithaca, NY, USA 15 16 * Address correspondence to Michiko E. Taga, [email protected] 17 18 19 -- 20 Abstract 21 22 The vitamin B12 family of cofactors known as cobamides are essential for a variety of microbial 23 metabolisms. We used comparative genomics of 11,000 bacterial species to analyze the extent 1 bioRxiv preprint doi: https://doi.org/10.1101/342006; this version posted June 8, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. 24 and distribution of cobamide production and use across bacteria. -
Supporting Information
Supporting Information Lozupone et al. 10.1073/pnas.0807339105 SI Methods nococcus, and Eubacterium grouped with members of other Determining the Environmental Distribution of Sequenced Genomes. named genera with high bootstrap support (Fig. 1A). One To obtain information on the lifestyle of the isolate and its reported member of the Bacteroidetes (Bacteroides capillosus) source, we looked at descriptive information from NCBI grouped firmly within the Firmicutes. This taxonomic error was (www.ncbi.nlm.nih.gov/genomes/lproks.cgi) and other related not surprising because gut isolates have often been classified as publications. We also determined which 16S rRNA-based envi- Bacteroides based on an obligate anaerobe, Gram-negative, ronmental surveys of microbial assemblages deposited near- nonsporulating phenotype alone (6, 7). A more recent 16S identical sequences in GenBank. We first downloaded the gbenv rRNA-based analysis of the genus Clostridium defined phylo- files from the NCBI ftp site on December 31, 2007, and used genetically related clusters (4, 5), and these designations were them to create a BLAST database. These files contain GenBank supported in our phylogenetic analysis of the Clostridium species in the HGMI pipeline. We thus designated these Clostridium records for the ENV database, a component of the nonredun- species, along with the species from other named genera that dant nucleotide database (nt) where 16S rRNA environmental cluster with them in bootstrap supported nodes, as being within survey data are deposited. GenBank records for hits with Ͼ98% these clusters. sequence identity over 400 bp to the 16S rRNA sequence of each of the 67 genomes were parsed to get a list of study titles Annotation of GTs and GHs. -
WO 2018/064165 A2 (.Pdf)
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/064165 A2 05 April 2018 (05.04.2018) W !P O PCT (51) International Patent Classification: Published: A61K 35/74 (20 15.0 1) C12N 1/21 (2006 .01) — without international search report and to be republished (21) International Application Number: upon receipt of that report (Rule 48.2(g)) PCT/US2017/053717 — with sequence listing part of description (Rule 5.2(a)) (22) International Filing Date: 27 September 2017 (27.09.2017) (25) Filing Language: English (26) Publication Langi English (30) Priority Data: 62/400,372 27 September 2016 (27.09.2016) US 62/508,885 19 May 2017 (19.05.2017) US 62/557,566 12 September 2017 (12.09.2017) US (71) Applicant: BOARD OF REGENTS, THE UNIVERSI¬ TY OF TEXAS SYSTEM [US/US]; 210 West 7th St., Austin, TX 78701 (US). (72) Inventors: WARGO, Jennifer; 1814 Bissonnet St., Hous ton, TX 77005 (US). GOPALAKRISHNAN, Vanch- eswaran; 7900 Cambridge, Apt. 10-lb, Houston, TX 77054 (US). (74) Agent: BYRD, Marshall, P.; Parker Highlander PLLC, 1120 S. Capital Of Texas Highway, Bldg. One, Suite 200, Austin, TX 78746 (US). (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Genome and Pangenome Analysis of Lactobacillus Hilgardii FLUB—A New Strain Isolated from Mead
International Journal of Molecular Sciences Article Genome and Pangenome Analysis of Lactobacillus hilgardii FLUB—A New Strain Isolated from Mead Klaudia Gustaw 1,* , Piotr Koper 2,* , Magdalena Polak-Berecka 1 , Kamila Rachwał 1, Katarzyna Skrzypczak 3 and Adam Wa´sko 1 1 Department of Biotechnology, Microbiology and Human Nutrition, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; [email protected] (M.P.-B.); [email protected] (K.R.); [email protected] (A.W.) 2 Department of Genetics and Microbiology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland 3 Department of Fruits, Vegetables and Mushrooms Technology, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland; [email protected] * Correspondence: [email protected] (K.G.); [email protected] (P.K.) Abstract: The production of mead holds great value for the Polish liquor industry, which is why the bacterium that spoils mead has become an object of concern and scientific interest. This article describes, for the first time, Lactobacillus hilgardii FLUB newly isolated from mead, as a mead spoilage bacteria. Whole genome sequencing of L. hilgardii FLUB revealed a 3 Mbp chromosome and five plasmids, which is the largest reported genome of this species. An extensive phylogenetic analysis and digital DNA-DNA hybridization confirmed the membership of the strain in the L. hilgardii species. The genome of L. hilgardii FLUB encodes 3043 genes, 2871 of which are protein coding sequences, Citation: Gustaw, K.; Koper, P.; 79 code for RNA, and 93 are pseudogenes. -
The Isolation of Novel Lachnospiraceae Strains and the Evaluation of Their Potential Roles in Colonization Resistance Against Clostridium Difficile
The isolation of novel Lachnospiraceae strains and the evaluation of their potential roles in colonization resistance against Clostridium difficile Diane Yuan Wang Honors Thesis in Biology Department of Ecology and Evolutionary Biology College of Literature, Science, & the Arts University of Michigan, Ann Arbor April 1st, 2014 Sponsor: Vincent B. Young, M.D., Ph.D. Associate Professor of Internal Medicine Associate Professor of Microbiology and Immunology Medical School Co-Sponsor: Aaron A. King, Ph.D. Associate Professor of Ecology & Evolutionary Associate Professor of Mathematics College of Literature, Science, & the Arts Reader: Blaise R. Boles, Ph.D. Assistant Professor of Molecular, Cellular and Developmental Biology College of Literature, Science, & the Arts 1 Table of Contents Abstract 3 Introduction 4 Clostridium difficile 4 Colonization Resistance 5 Lachnospiraceae 6 Objectives 7 Materials & Methods 9 Sample Collection 9 Bacterial Isolation and Selective Growth Conditions 9 Design of Lachnospiraceae 16S rRNA-encoding gene primers 9 DNA extraction and 16S ribosomal rRNA-encoding gene sequencing 10 Phylogenetic analyses 11 Direct inhibition 11 Bile salt hydrolase (BSH) detection 12 PCR assay for bile acid 7α-dehydroxylase detection 12 Tables & Figures Table 1 13 Table 2 15 Table 3 21 Table 4 25 Figure 1 16 Figure 2 19 Figure 3 20 Figure 4 24 Figure 5 26 Results 14 Isolation of novel Lachnospiraceae strains 14 Direct inhibition 17 Bile acid physiology 22 Discussion 27 Acknowledgments 33 References 34 2 Abstract Background: Antibiotic disruption of the gastrointestinal tract’s indigenous microbiota can lead to one of the most common nosocomial infections, Clostridium difficile, which has an annual cost exceeding $4.8 billion dollars. -
Bioinformatics Resource Centers Systems Biology (Brcs) Centers
Fondation Merieux – J Craig Venter Institute Bioinformatics Workshop December 5 – 8, 2017 Module 3: Genomic Data & Sequence Annotations in Public Databases NIH/NIAID Genomics and Bioinformatics Program SlideSource:A.S.Fauci SlideSource:A.S.Fauci Conducts and supports basic and applied research to better understand, treat, and ultimately prevent infectious, immunologic, and allergic diseases. NIAIDGenomicsProgram Proteomics Systems Sequencing Functional Structural Biology Genomics Genomics Genomic Clinical Functional Systems Sequencing Proteomics Structural Genomic Biology Centers Centers Genomics Research Centers Centers Centers Bioinformatics BioinformaticsResource Centers GenomicResearchResources Genomic/OmicsDataSets,Databases,BioinformaticsTools,Biomarkers,3DStructures,ProteinClones,PredictiveModels Toaddresskeyquestionsin microbiologyandinfectious disease NIAID Genome Sequencing Center Influenza Genome Sequencing Project at JCVI • 2004: 80 influenza genomes in GenBank • 3OCT2017: ~20,000 influenza genomes sequenced at JCVI • 75% complete influenza genomes in GenBank by JCVI Slide source: Maria Giovanni * Genome Sequencing Centers Bioinformatics Resource Centers Systems Biology (BRCs) Centers Structure Genomics Centers Clinical Proteomics Centers Courtesy of Alison Yao, DMID *Bioinformatics Resource Centers (BRCs) Goal: Provide integrated bioinformatics resources in support of basic and applied infectious diseases research • Data and metadata management and integration solutions • Computational analysis and visualization tools • Work -
Berberine Alters Gut Microbial Function Through Modulation of Bile Acids Patricia G
Wolf et al. BMC Microbiology (2021) 21:24 https://doi.org/10.1186/s12866-020-02020-1 RESEARCH ARTICLE Open Access Berberine alters gut microbial function through modulation of bile acids Patricia G. Wolf1,2,3,4,5, Saravanan Devendran3,5,6, Heidi L. Doden3,5, Lindsey K. Ly3,4,5, Tyler Moore7, Hajime Takei8, Hiroshi Nittono8, Tsuyoshi Murai9, Takao Kurosawa9, George E. Chlipala10, Stefan J. Green10, Genta Kakiyama11, Purna Kashyap12, Vance J. McCracken13, H. Rex Gaskins3,4,5,14,15, Patrick M. Gillevet6 and Jason M. Ridlon3,4,5,15,16* Abstract Background: Berberine (BBR) is a plant-based nutraceutical that has been used for millennia to treat diarrheal infections and in contemporary medicine to improve patient lipid profiles. Reduction in lipids, particularly cholesterol, is achieved partly through up-regulation of bile acid synthesis and excretion into the gastrointestinal tract (GI). The efficacy of BBR is also thought to be dependent on structural and functional alterations of the gut microbiome. However, knowledge of the effects of BBR on gut microbiome communities is currently lacking. Distinguishing indirect effects of BBR on bacteria through altered bile acid profiles is particularly important in understanding how dietary nutraceuticals alter the microbiome. Results: Germfree mice were colonized with a defined minimal gut bacterial consortium capable of functional bile acid metabolism (Bacteroides vulgatus, Bacteroides uniformis, Parabacteroides distasonis, Bilophila wadsworthia, Clostridium hylemonae, Clostridium hiranonis, Blautia producta; B4PC2). Multi-omics (bile acid metabolomics, 16S rDNA sequencing, cecal metatranscriptomics) were performed in order to provide a simple in vivo model from which to identify network-based correlations between bile acids and bacterial transcripts in the presence and absence of dietary BBR. -
Uneven Distribution of Cobamide Biosynthesis and Dependence in Bacteria Predicted by Comparative Genomics
The ISME Journal (2018) 13:789–804 https://doi.org/10.1038/s41396-018-0304-9 ARTICLE Uneven distribution of cobamide biosynthesis and dependence in bacteria predicted by comparative genomics 1 1 1 1,2 3,4 3 Amanda N. Shelton ● Erica C. Seth ● Kenny C. Mok ● Andrew W. Han ● Samantha N. Jackson ● David R. Haft ● Michiko E. Taga1 Received: 7 June 2018 / Revised: 14 September 2018 / Accepted: 4 October 2018 / Published online: 14 November 2018 © The Author(s) 2018. This article is published with open access Abstract The vitamin B12 family of cofactors known as cobamides are essential for a variety of microbial metabolisms. We used comparative genomics of 11,000 bacterial species to analyze the extent and distribution of cobamide production and use across bacteria. We find that 86% of bacteria in this data set have at least one of 15 cobamide-dependent enzyme families, but only 37% are predicted to synthesize cobamides de novo. The distribution of cobamide biosynthesis and use vary at the phylum level. While 57% of Actinobacteria are predicted to biosynthesize cobamides, only 0.6% of Bacteroidetes have the complete pathway, yet 96% of species in this phylum have cobamide-dependent enzymes. The form of cobamide produced 1234567890();,: 1234567890();,: by the bacteria could be predicted for 58% of cobamide-producing species, based on the presence of signature lower ligand biosynthesis and attachment genes. Our predictions also revealed that 17% of bacteria have partial biosynthetic pathways, yet have the potential to salvage cobamide precursors. Bacteria with a partial cobamide biosynthesis pathway include those in a newly defined, experimentally verified category of bacteria lacking the first step in the biosynthesis pathway. -
Metabolic and Genetic Basis for Auxotrophies in Gram-Negative Species
Metabolic and genetic basis for auxotrophies in Gram-negative species Yara Seifa,1 , Kumari Sonal Choudharya,1 , Ying Hefnera, Amitesh Ananda , Laurence Yanga,b , and Bernhard O. Palssona,c,2 aSystems Biology Research Group, Department of Bioengineering, University of California San Diego, CA 92122; bDepartment of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada; and cNovo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Lyngby, Denmark Edited by Ralph R. Isberg, Tufts University School of Medicine, Boston, MA, and approved February 5, 2020 (received for review June 18, 2019) Auxotrophies constrain the interactions of bacteria with their exist in most free-living microorganisms, indicating that they rely environment, but are often difficult to identify. Here, we develop on cross-feeding (25). However, it has been demonstrated that an algorithm (AuxoFind) using genome-scale metabolic recon- amino acid auxotrophies are predicted incorrectly as a result struction to predict auxotrophies and apply it to a series of the insufficient number of known gene paralogs (26). Addi- of available genome sequences of over 1,300 Gram-negative tionally, these methods rely on the identification of pathway strains. We identify 54 auxotrophs, along with the corre- completeness, with a 50% cutoff used to determine auxotrophy sponding metabolic and genetic basis, using a pangenome (25). A mechanistic approach is expected to be more appropriate approach, and highlight auxotrophies conferring a fitness advan- and can be achieved using genome-scale models of metabolism tage in vivo. We show that the metabolic basis of auxotro- (GEMs). For example, requirements can arise by means of a sin- phy is species-dependent and varies with 1) pathway structure, gle deleterious mutation in a conditionally essential gene (CEG), 2) enzyme promiscuity, and 3) network redundancy. -
Insights Into the Phylogeny and Evolution of Cold Shock Proteins: from Enteropathogenic Yersinia and Escherichia Coli to Eubacteria
International Journal of Molecular Sciences Article Insights into the Phylogeny and Evolution of Cold Shock Proteins: From Enteropathogenic Yersinia and Escherichia coli to Eubacteria Tao Yu 1,2,* , Riikka Keto-Timonen 2 , Xiaojie Jiang 2, Jussa-Pekka Virtanen 2 and Hannu Korkeala 2 1 Department of Life Science and Technology, Xinxiang University, Xinxiang 453003, China 2 Department of Food Hygiene and Environmental Health, University of Helsinki, P.O. Box 66, FI-00014 Helsinki, Finland * Correspondence: yu.tao@helsinki.fi Received: 21 July 2019; Accepted: 16 August 2019; Published: 20 August 2019 Abstract: Psychrotrophic foodborne pathogens, such as enteropathogenic Yersinia, which are able to survive and multiply at low temperatures, require cold shock proteins (Csps). The Csp superfamily consists of a diverse group of homologous proteins, which have been found throughout the eubacteria. They are related to cold shock tolerance and other cellular processes. Csps are mainly named following the convention of those in Escherichia coli. However, the nomenclature of certain Csps reflects neither their sequences nor functions, which can be confusing. Here, we performed phylogenetic analyses on Csp sequences in psychrotrophic enteropathogenic Yersinia and E. coli. We found that representative Csps in enteropathogenic Yersinia and E. coli can be clustered into six phylogenetic groups. When we extended the analysis to cover Enterobacteriales, the same major groups formed. Moreover, we investigated the evolutionary and structural relationships and the origin time of Csp superfamily members in eubacteria using nucleotide-level comparisons. Csps in eubacteria were classified into five clades and 12 subclades. The most recent common ancestor of Csp genes was estimated to have existed 3585 million years ago, indicating that Csps have been important since the beginning of evolution and have enabled bacterial growth in unfavorable conditions. -
Characterization of an Endolysin Targeting Clostridioides Difficile
International Journal of Molecular Sciences Article Characterization of an Endolysin Targeting Clostridioides difficile That Affects Spore Outgrowth Shakhinur Islam Mondal 1,2 , Arzuba Akter 3, Lorraine A. Draper 1,4 , R. Paul Ross 1 and Colin Hill 1,4,* 1 APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; [email protected] (S.I.M.); [email protected] (L.A.D.); [email protected] (R.P.R.) 2 Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh 3 Biochemistry and Molecular Biology Department, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh; [email protected] 4 School of Microbiology, University College Cork, T12 K8AF Cork, Ireland * Correspondence: [email protected] Abstract: Clostridioides difficile is a spore-forming enteric pathogen causing life-threatening diarrhoea and colitis. Microbial disruption caused by antibiotics has been linked with susceptibility to, and transmission and relapse of, C. difficile infection. Therefore, there is an urgent need for novel therapeutics that are effective in preventing C. difficile growth, spore germination, and outgrowth. In recent years bacteriophage-derived endolysins and their derivatives show promise as a novel class of antibacterial agents. In this study, we recombinantly expressed and characterized a cell wall hydrolase (CWH) lysin from C. difficile phage, phiMMP01. The full-length CWH displayed lytic activity against selected C. difficile strains. However, removing the N-terminal cell wall binding domain, creating CWH351—656, resulted in increased and/or an expanded lytic spectrum of activity. C. difficile specificity was retained versus commensal clostridia and other bacterial species. -
Outline Release 7 7C
Garrity, et. al., March 6, 2007 Taxonomic Outline of the Bacteria and Archaea, Release 7.7 March 6, 2007. Part 7 – The Bacteria: Phylum “Firmicutes”: Class “Clostridia” George M. Garrity, Timothy G. Lilburn, James R. Cole, Scott H. Harrison, Jean Euzéby, and Brian J. Tindall F Phylum Firmicutes AL N4Lid DOI: 10.1601/nm.3874 Class "Clostridia" N4Lid DOI: 10.1601/nm.3875 71 Order Clostridiales AL Prévot 1953. N4Lid DOI: 10.1601/nm.3876 Family Clostridiaceae AL Pribram 1933. N4Lid DOI: 10.1601/nm.3877 Genus Clostridium AL Prazmowski 1880. GOLD ID: Gi00163. GCAT ID: 000971_GCAT. Entrez genome id: 80. Sequenced strain: BC1 is from a non-type strain. Genome sequencing is incomplete. Number of genomes of this species sequenced 6 (GOLD) 6 (NCBI). N4Lid DOI: 10.1601/nm.3878 Clostridium butyricum AL Prazmowski 1880. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 19398. High-quality 16S rRNA sequence S000436450 (RDP), M59085 (Genbank). N4Lid DOI: 10.1601/nm.3879 Clostridium aceticum VP (ex Wieringa 1940) Gottschalk and Braun 1981. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 35044. High-quality 16S rRNA sequence S000016027 (RDP), Y18183 (Genbank). N4Lid DOI: 10.1601/nm.3881 Clostridium acetireducens VP Örlygsson et al. 1996. Source of type material recommended for DOE sponsored genome sequencing by the JGI: DSM 10703. High-quality 16S rRNA sequence S000004716 (RDP), X79862 (Genbank). N4Lid DOI: 10.1601/nm.3882 Clostridium acetobutylicum AL McCoy et al. 1926. Source of type material recommended for DOE sponsored genome sequencing by the JGI: ATCC 824.