Famous Building Stones of Our Nation's Capital

Total Page:16

File Type:pdf, Size:1020Kb

Famous Building Stones of Our Nation's Capital Famous Building Stones of Our Nation’s Capital The buildings of our Nation’s Capital are constructed with rocks from quarries located throughout the United States and many distant lands. The earliest Government buildings, however, were constructed with stones from nearby sources because it was too difficult and expensive to move heavy materials such as stone any great distance without the aid of modern transportation methods, including large cargo ships, trains, and trucks. This Fact Sheet describes the source and appearance of three local stones commonly used in building Washington, D.C. Aquia Creek Sandstone: White House, Capitol Building, and Gatehouses The Aquia Creek sandstone, also quality of toughness without brittle hard- called “freestone,” was a popular build- ness. In appearance, the coarse-grained ing material between 1790 and 1840. It stone is light gray or tan, and it is streaked was prized for construction because of or clouded with buff, yellow, or red colors the ease with which it could be carved that give it a warm tone. and transported to building sites along Unfortunately, the Aquia Creek the Potomac River. George Washington sandstone proved to have quality-related selected the Aquia Creek sandstone flaws, and it weathered poorly. After the as the primary material for use in burning of the White House and Capitol Government buildings. In 1791, and buildings by British troops in 1814, the acting on the Government’s behalf, walls made of Aquia Creek sandstone USGS Laura Corey, Pierre L’Enfant—the architect and engi- suffered cracking and pitting. Both build- Aquia Creek sandstone neer selected to design the new city of ings were whitewashed and later painted Washington, D.C.—purchased a quarry to mask the damage and help protect the about 40 miles south of Washington along stone from weathering. As the defects Aquia Creek in Stafford County, Virginia. of the stone became apparent, its use for (The peninsula on which the quarry is exteriors declined. One of the last major located subsequently became known as exterior uses of the stone was at the Government Island and today is a natural U.S. Capitol gatehouses and gateposts park preserve and archaeological site.) (circa 1827). One of these gatehouses Stone from this quarry was used for the and three of the gateposts are located at original portions of the President’s House 15th Street and Constitution Avenue NW, (later known as the White House), some and another gatehouse is located farther older portions of the U.S. Capitol building, west at 17th Street NW. USGS Laura Corey, the oldest portions of the U.S. Treasury Interior use of the Aquia Creek sand- U.S. Capitol gatehouse building, and numerous other smaller stone may also be seen in the U.S. Capitol, structures around the city. including in the walls and columns of the The Aquia Creek sandstone is of rooms adjoining the Rotunda and in the Early Cretaceous age (between 100 and spiral staircase. It was also used in the 140 million years old). It is composed pri- Little Rotunda tobacco column colon- marily of sand and pebble-sized quartz and nade in the Senate wing on the same floor, clay pellets and is cemented with silica. in the famous cornstalk columns in the Unlike many other sandstones, its matrix Senate vestibule, and downstairs in the is harder than its crystals, which gives it a Doric sandstone columns of the crypt. Laura Corey, USGS Laura Corey, White House U.S. Capitol U.S. Capitol gatepost U.S. Department of the Interior Fact Sheet 2012–3044 Printed on recycled paper U.S. Geological Survey April 2012 Seneca Sandstone: Smithsonian Institution Main Building (the Castle) During the “brownstone era,” from Montgomery County just west of Seneca about 1840 to about 1880, red Seneca Creek. The remains of the quarry where sandstone was an extremely popular canal barges were loaded with stone for building stone in Washington. This stone shipment up or down the canal may still of Triassic age (more than 200 million be seen. The ruins of a quarry building years old) crops out along the Potomac that housed saws and machinery for fin- River in the Triassic lowlands from ishing the stone stand nearby. (Note: This Seneca, Maryland, to just east of Point of site is located on private land.) Rocks, Md. Red Seneca sandstone ranges The first important Government from reddish brown to a deep purplish building to be constructed of this sand- Smithsonian Castle brown. It is brightly colored when cut stone was the carved and turreted main but darkens and hardens on exposure building of the Smithsonian Institution to air. Seneca sandstone is generally (the Castle), which was built between fine-grained and uniform, and it does not 1847 and 1857. The sandstone, when easily scale when exposed to weather. first quarried, was described as lilac gray; Several quarries supplied this after years of oxidation, it is now a dark red sandstone to the city. The best red. Seneca sandstone is also promi- known is located about 20 miles up the nent on the floors and the Rotunda door USGS Laura Corey, Potomac River on the Maryland shore in frames in the U.S. Capitol. Seneca sandstone Cockeysville Marble: Washington Monument Marble eventually replaced annulled in 1880. The extensive upper sandstone as the most popular building part of the monument was then finished stone in Washington. Of particular with marble from a quarry located north note were the three different kinds of of Baltimore in Cockeysville, Md. The regionally metamorphosed marbles of monument was completed in 1884, late Precambrian to early Paleozoic reaching a height of 555 feet and 5 inches. age that were used in the construction The three kinds of marble used of the Washington Monument. The in the monument can be distinguished first 152 feet of the monument, which by their differences in color. The lower was built between 1848 and 1854, is section is the white, coarse-grained, faced with marble from the quarry nearly pure calcium carbonate marble located at Texas, Md., just north of from the Texas, Md., quarry. The upper Baltimore in the Piedmont Province. section is built of fine-grained marble Cockeysville marble Work stopped when funds ran out. from the Cockeysville, Md., quarry. The When construction was about to resume Cockeysville marble is a clear white Sheffield marble in 1876, the builders discovered that stone with a few pale streaks or bands, the foundations were inadequate and and its higher magnesium content gives it that the monument was sinking and a pale gray sheen. Both marbles contain Texas marble tilting. To straighten and stabilize the veins and pockets of mica and pyrite, monument, wider subfoundations were which can stain the marble if it is exposed constructed to a depth of nearly 37 feet. to the elements. In between these two In 1879, work began again on the upward marbles are four rows of a pronounced projection of the monument, and four white marble from the Sheffield, Mass., courses, or rows, of white marble from quarry. Washington Monument Sheffield, Massachusetts, were laid above the Texas, Md., marble. Because This Fact Sheet is based on a more extensive of difficulties with timely delivery and U.S. Geological Survey publication, quality control of the marble, however, “Building Stones of Our Nation’s Capital,” the contract with the Sheffield quarry was at http://pubs.usgs.gov/gip/stones. For more information, contact: U.S. Geological Survey National Park Service Office of Science Quality and Integrity Cockeysville marble from the Washington 12201 Sunrise Valley Drive, MS 912 Monument showing damage caused by the Reston, VA 20192 August 2011 earthquake. Web site: http://education.usgs.gov.
Recommended publications
  • Building Stones of Our Nation's Capital
    /h\q AaAjnyjspjopiBs / / \ jouami aqi (O^iqiii^eda . -*' ", - t »&? ?:,'. ..-. BUILDING STONES OF OUR NATION'S CAPITAL The U.S. Geological Survey has prepared this publication as an earth science educational tool and as an aid in understanding the history and physi­ cal development of Washington, D.C., the Nation's Capital. The buildings of our Nation's When choosing a building stone, Capital have been constructed with architects and planners use three char­ rocks from quarries throughout the acteristics to judge a stone's suitabili­ United States and many distant lands. ty. It should be pleasing to the eye; it Each building shows important fea­ should be easy to quarry and work; tures of various stones and the geolog­ and it should be durable. Today it is ic environment in which they were possible to obtain fine building stone formed. from many parts of the world, but the This booklet describes the source early builders of the city had to rely and appearance of many of the stones on materials from nearby sources. It used in building Washington, D.C. A was simply too difficult and expensive map and a walking tour guide are to move heavy materials like stone included to help you discover before the development of modern Washington's building stones on your transportation methods like trains and own. trucks. Ancient granitic rocks Metamorphosed sedimentary""" and volcanic rocks, chiefly schist and metagraywacke Metamorphic and igneous rocks Sand.gravel, and clay of Tertiary and Cretaceous age Drowned ice-age channel now filled with silt and clay Physiographic Provinces and Geologic and Geographic Features of the District of Columbia region.
    [Show full text]
  • The Franklin Marble: One of New Jersey’S Most Famous Geologic Formations
    New Jersey Geological and Water Survey Information Circular The Franklin Marble: One of New Jersey’s Most Famous Geologic Formations Introduction 0 5 10 Miles NY Sussex County Few rocks in New Jersey are as attractive or as well known as the Franklin Marble, which displays a Franklin virtual rainbow of colors from white, PA to light gray, pale pink, orange, pale Limecrest green, or pale blue. Samples of Franklin Quarry Marble are displayed in many museum exhibits nationally and internation- ally because of its importance as host rock for the world-famous zinc-iron- manganese deposits at the Franklin and Sterling Hill mines in Sussex County. These deposits contain more than 350 minerals, of which 90 are fluorescent. If New Jersey Highlands area of ever there were a contender for the offi- detail cial state rock of New Jersey, Franklin Marble would certainly be among those at the top of the list. Early in the study of the state’s geologic history, all marble was simply called white or crystalline limestone (Cook, 1868). The name “Frank- lin white limestone” was first intro- Figure 1. Distribution of the Franklin Marble (shown in blue) and other uncorre- duced by Wolff and Brooks (1898) for lated marble deposits (shown in red) in the New Jersey Highlands. marble at the zinc deposits in Frank- lin Borough. This was later shortened the area, where it forms a nearly continu- known. As a result, Franklin Marble was to “Franklin limestone” on one of the ous 21-mile-long belt in Sussex County. quarried extensively during the 20th cen- early state geologic maps of New Jersey Marble also crops out in small, detached tury, although most of the quarries are no (Lewis and Kümmel, 1910-1912), and bodies in the southwestern and eastern longer in operation.
    [Show full text]
  • Fact Sheet 5 Principles of Stone Extraction
    QuarryScapes guide to ancient stone quarries Fact Sheet 5 Fact Sheet 5 Principles of stone extraction In all stone quarry situations the extraction phase rich) ones. Partly because they in general display is based on one or combinations of three the most brittle behaviour, but also because it is a fundamental principles: well documented fact (and experience among quarrymen) that siliceous rocks (granite in 1. Levering; expanding open fractures by particular) have well defined preferred splitting inserting levers, crowbars or stones 2. Splitting; creating fractures, preferable directions defined by microfractures in quartz. planar, by strokes (i.e. sledge hammer), Splitting by heating is caused by a combination of wedging; heating or blasting with thermal expansion properties and brittle explosives behaviour. It works best on quartz-rich rocks due 3. Channelling (carving); making channels in to the well known but poorly understood change the rock by carving with hammer and of mechanical properties of quartz when heated. chisel, pickaxe or stone tools, heating with fire, sawing or drilling Channelling is the third fundamental principle. Channels in the rock are made by removing the Levering may be described as the “simplest” way rock mass by chiselling, picking, sawing or of extraction, involving the expansion of natural heating. In most soft stone quarries from the cracks or other planes of weakness (such as Bronze Age onwards, channelling is the most bedding planes) using various tools. important extraction method. In most cases, channelling is combined with other methods. For Splitting may be defined as the act of generating instance, channels are made perpendicular to the new fractures for extracting rock.
    [Show full text]
  • Cemetery Preservation QUICK TIPS
    Georgia’s State Historic Preservation Office IIIIIICCCeeemmmeeettteeerrryyy PPPrrreeessseeerrrvvvaaatttiiiooonnn QQQUUUIIICCCKKK TTTIIIPPPSSSIIIIII Common Monument and Gravemarker Materials Below are brief descriptions of the most common stones and monument material types found in Georgia. Stones vary in hardness and therefore in their ability to survive satisfactorily outdoors in cemeteries, as well as their ability to withstand cleaning or restoration. The Mohs Scale of Mineral Hardness, created in 1812, establishes talc as the softest mineral material and diamond as the hardest. There is no need to determine the exact hardness of a stone you are working on. However, seeing how some common cemetery materials rank on the Mohs Scale can guide your choice of the best methods for working with them: Talc (see "soapstone" below) Marble Sandstone Granite Diamond 1 3-4 5 7-8 10 If identifying the type of stone is difficult, but will be important to a cemetery preservation project, referring to a stone/mineral field guide is recommended, or consulting with a geologist or other expert. Marker Material Descriptions MARBLE Marble has been used for a great many markers in historic cemeteries in Georgia. The state's marble industry dates back to the late 1830s, when outcroppings of surface marble were discovered in north Georgia. Quarrying began, and markers were carved and sold throughout the area. The Georgia marble industry still thrives today. Several different types of stone that can be polished are called marble. A true marble, though, is a metamorphic rock made up of calcium carbonate, traces of silica and iron oxides; it is rather soft and easily carved.
    [Show full text]
  • Draft National Mall Plan / Environmental Impact Statement the National Mall
    THE AFFECTED ENVIRONMENT DRAFT NATIONAL MALL PLAN / ENVIRONMENTAL IMPACT STATEMENT THE NATIONAL MALL THE MALL CONTENTS: THE AFFECTED ENVIRONMENT THE AFFECTED ENVIRONMENT .................................................................................................... 249 Context for Planning and Development of the National Mall ...................................................................251 1790–1850..................................................................................................................................................251 L’Enfant Plan....................................................................................................................................251 Changes on the National Mall .......................................................................................................252 1850–1900..................................................................................................................................................253 The Downing Plan...........................................................................................................................253 Changes on the National Mall .......................................................................................................253 1900–1950..................................................................................................................................................254 The McMillan Plan..........................................................................................................................254
    [Show full text]
  • Building Stones of the National Mall
    The Geological Society of America Field Guide 40 2015 Building stones of the National Mall Richard A. Livingston Materials Science and Engineering Department, University of Maryland, College Park, Maryland 20742, USA Carol A. Grissom Smithsonian Museum Conservation Institute, 4210 Silver Hill Road, Suitland, Maryland 20746, USA Emily M. Aloiz John Milner Associates Preservation, 3200 Lee Highway, Arlington, Virginia 22207, USA ABSTRACT This guide accompanies a walking tour of sites where masonry was employed on or near the National Mall in Washington, D.C. It begins with an overview of the geological setting of the city and development of the Mall. Each federal monument or building on the tour is briefly described, followed by information about its exterior stonework. The focus is on masonry buildings of the Smithsonian Institution, which date from 1847 with the inception of construction for the Smithsonian Castle and continue up to completion of the National Museum of the American Indian in 2004. The building stones on the tour are representative of the development of the Ameri­ can dimension stone industry with respect to geology, quarrying techniques, and style over more than two centuries. Details are provided for locally quarried stones used for the earliest buildings in the capital, including A quia Creek sandstone (U.S. Capitol and Patent Office Building), Seneca Red sandstone (Smithsonian Castle), Cockeysville Marble (Washington Monument), and Piedmont bedrock (lockkeeper's house). Fol­ lowing improvement in the transportation system, buildings and monuments were constructed with stones from other regions, including Shelburne Marble from Ver­ mont, Salem Limestone from Indiana, Holston Limestone from Tennessee, Kasota stone from Minnesota, and a variety of granites from several states.
    [Show full text]
  • Special Effects with Stains
    Get Fortified with Fiber Vol. 7 No. 4 • June/July 2007 • $6.95 Special Effects With Stains The masters reveal their secrets Getting Edgy New border tools and stamps Kitchen Countertops: Safety First II • www.ConcreteDecor.net • Aug./Sept. 2006 June/July 2007 | www.ConcreteDecor.net | 1 Publisher’s Letter Dear Readers, My wife’s grandfather is turning 98 years old in a month or June/July 2007 • Volume 7 so. Having lost his wife a couple of years ago, Papa, believe it or Issue No. 4 • $6.95 not, still lives at home by himself. On a recent visit to Papa we sat, as usual, in his family Publisher: Bent O. Mikkelsen room talking about a lot of things, like the way things used to Co-Publisher: Ernst H. Mikkelsen Editor: Wendy Ardolino be and, for obvious reasons, our concern for his health. During Editor: John Strieder our conversation Papa told me in a matter-of-fact tone of voice Translation Editor: Eduardo Morales that he had suffered a heart attack a couple of weeks earlier. Shocked by the news, I asked Creative Director: Patrick Hunter if he had seen a doctor or spent time in the hospital following that ordeal. Papa responded Web Design: Mark Dixon by saying “Oh yes, one night. My legs feel numb but I’m getting better.” Pressing for more Writers: Andrew Amrhein Susan Brimo-Cox information, he added, “… when I had the heart attack I was afraid I was going to die Christina Camara – however, a moment later, I became afraid I wasn’t going to die.” Saddened as we both Doug Carlton were by his news, this announcement caused us to laugh at the ordeal.
    [Show full text]
  • BUIL])ING STON.E O·F WASHINGTON
    BUIL])ING STON.E o·f WASHINGTON By WAYNE S. MOEN Washington Department of Conservation Division of Mines and Geology Bulletin No. 55 1967 State of Washington DANIEL J. EV ANS, Governor Department of Conservation H. MAURICE AHLQUIST, Director DIVISION OF MINES AND GEOLOGY MARSHALL T. HUNTTING, Supervisor Bulletin No. 55 BUILDING STONE OF WASHINGTON By WAYNE S. MOEN STATE PRINTING PLANT. OLYMPI A , WASHINGTON 1967 For sale by Department Pof? ceConsl]SliARYervation, Olympia, Washington. PACIFIC NORTHWEST FOREST AND RANGE EXPERIMENT STATION etnDTLAND. OR£00N CONTENTS Poge Introduction 7 General history .. ...... ...........................•............ 8 Production and vo lue . 10 Forms of building stone . 12 Field stone . 12 Rough building stone . 13 Rubble . • . 14 Flogging (flagstone) . 14 Ashlar . .. ......... ........ , ................. , . , . 15 Crushed stone . 16 Terrozzo . 17 Roofing granules.............. .... ..... ......... 18 Exposed aggregate . 18 Reconstituted stone . • . 19 Landscape rock . 20 Area coverage of bui Iding stone . 21 Acquisition of bui )ding stone . 22 Examination of stone deposits . 23 General quarrying methods . 24 Physical properties of building stone . 26 Strength . 26 Hardness and workabi Iity . • . 27 Color . 28 Alteration ....•...................... , ........... , . 29 Porosity and absorption ...........•. : . 31 Testing of building stone... .. .................... ................ 33 Common building stones of Washington . 34 Granite . 35 Geology and distribution . 35 Physical properties . 38 Varieties
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • Descriptions of Common Sedimentary Environments
    Descriptions of Common Sedimentary Environments River systems: . Alluvial Fan: a pile of sediment at the base of mountains shaped like a fan. When a stream comes out of the mountains onto the flat plain, it drops its sediment load. The sediment ranges from fine to very coarse angular sediment, including boulders. Alluvial fans are often built by flash floods. River Channel: where the river flows. The channel moves sideways over time. Typical sediments include sand, gravel and cobbles. Particles are typically rounded and sorted. The sediment shows signs of current, such as ripple marks. Flood Plain: where the river overflows periodically. When the river overflows, its velocity decreases rapidly. This means that the coarsest sediment (usually sand) is deposited next to the river, and the finer sediment (silt and clay) is deposited in thin layers farther from the river. Delta: where a stream enters a standing body of water (ocean, bay or lake). As the velocity of the river drops, it dumps its sediment. Over time, the deposits build further and further into the standing body of water. Deltas are complex environments with channels of coarser sediment, floodplain areas of finer sediment, and swamps with very fine sediment and organic deposits (coal) Lake: fresh or alkaline water. Lakes tend to be quiet water environments (except very large lakes like the Great Lakes, which have shorelines much like ocean beaches). Alkaline lakes that seasonally dry up leave evaporite deposits. Most lakes leave clay and silt deposits. Beach, barrier bar: near-shore or shoreline deposits. Beaches are active water environments, and so tend to have coarser sediment (sand, gravel and cobbles).
    [Show full text]
  • Sandstone Problems
    CONSERVATION TALK Michael Trinkley Why Sandstone Monuments Have So Many Problems Whether in the Carolinas, Utah or Massachusetts biggest cause is the effect of moisture, brought on by many sandstone are in very poor condition. Why? And capillary action, humidity and even a monument's perhaps even more importantly, what can be done? environment and micro-climate. Sources not related to Sandstone is a sedimentary rock, meaning that moisture include solar and UV radiation, as well as minerals or organic particles have settled in layers and the structural issues-although I don't believe any of these layers have gradually formed into rock. They often (but not are as important as moisture. Contributing to the always) have distinct bedding planes-or layers. Geologists problems caused by moisture are salts and air pollution. generally divided sedimentary rocks into three categories So let's look at a few of the more common problems. and most of what we see in cemeteries may be classified as Keep in mind that relatively little conservation research "clastic." These are formed by the accumulation of has been conducted concerning these problems, so there mechanically distintegrated rocks that are cemented remains much debate-and few simple answers. together. Air pollution can cause what are known as Sandstones are composed of quartz, feldspar, silicates, pollution crusts-often hard and brittle, leaving the stone mica, hornblende, and clay minerals that are cemented with beneath soft, friable, and disaggregating. They may also either siliceous or carbonate/calcite cement (see Table 1). It be known as carbon deposits. Found in urban settings is largely these cementing materials that affect the they are formed from pollution products, including longevity of one sandstone over another.
    [Show full text]
  • Short Notice to Quarrying Sector
    DRAFT REPORT STATE-OF-THE-ART: ORNAMENTAL STONE QUARRYING IN EUROPE Nicos Arvantides Tom Heldal 1 OSNET quarrying sector Nicos Arvantides Institute of Geology and Mineral exploration (IGME) 1. Fragon str. 54626 Thessaloniki Greece [email protected] Tom Heldal Geological Survey of Norway (NGU) N-7491 Trondheim Norway [email protected] Preface This report is an attempt to summarize some characteristics of the ornamental stone quarrying industry throughout Europe and underline some challenges that this sector is facing. Furthermore, it seeks to highlight some of the most important innovative technologies and methods contributing to improve the viability and sustainability of ornamental stone quarrying. In addition to quarrying itself, the report also deals with other important aspects directly relevant to quarrying – such as exploration, some environmental issues, management of deposits and handling and use of waste rock. For other aspects related to the ornamental stone production, including environmental, the work by the other sectors within OSNET is recommended. These are: Processing, Stone characterization, Tools and equipment, Risk assessment, safety and environment and Technology transfer. Ornamental stone quarrying in Europe is characterized by a great variation in traditions, extraction methods and, not at least, rock types. To give a complete picture of everything happening within the sector would demand far more pages and time than available, but we hope that we have not forgotten too much. The members of the OSNET quarrying sector come from Greece, Italy, Portugal, Sweden, Finland and Norway. Clearly, the report will be "coloured" by examples and case studies from these countries, but we hope – and believe - they have a more general validity.
    [Show full text]